1
|
Yang C, Zhong M, Jiao X, Cao H, Qin Y, Xu H, Guo F, Tang Z, Lv T, Guan L, Wang Y, Gao Y, Zhang K. Polysaccharides from Dicliptera chinensis (L.) Juss. Attenuates drug-induced liver injury by phosphorylating AMPK and thus facilitating the entry of FOXO3 into the cell nucleus. Int Immunopharmacol 2025; 155:114633. [PMID: 40239335 DOI: 10.1016/j.intimp.2025.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Isoniazid and rifampicin, frontline tuberculosis drugs, frequently induce drug-induced liver injury (DILI), marked by hepatitis and hepatocyte necrosis. Polysaccharides from Dicliptera chinensis (L.) Juss. (DCP) exhibit anti-inflammatory, antioxidant, and hepatoprotective properties, but their effects on DILI remain unexplored OBJECTIVE: This study investigated DCP therapeutic potential against DILI and elucidated its molecular mechanisms METHODS: In vivo (using C57BL/6 mice) and in vitro (using HepG2 cells) DILI models were established and treated with DCP. Transcriptomics, qRT-PCR, and Western blotting were employed to analyze pathway regulation RESULTS: DCP significantly attenuated hepatocyte apoptosis, inflammation, and oxidative stress in DILI mice. Transcriptomic analysis linked DCP'S effects to the modulation of AMPK-FOXO3, p53, and NF-κB pathways, alongside regulation of antioxidant and cell cycle genes. In HepG2 cells, DCP similarly protected against DILI by enhancing AMPK phosphorylation, which facilitated the FOXO3 nuclear translocation. Both models demonstrated DCP'S suppression of p53 and NF-κB activation, restoration of antioxidant defenses, and correction of cell cycle dysregulation CONCLUSION: DCP mitigates DILI by reducing apoptosis, oxidative stress, and inflammation through activation of the AMPK-FOXO3 pathway, inhibition of p53/NF-κB signaling, and stabilization of the cell cycle. These findings highlight DCP'S potential as a therapeutic agent for DILI prevention and treatment.
Collapse
Affiliation(s)
- Chaoyue Yang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541100, China
| | - Xuefei Jiao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541100, China
| | - Yandan Qin
- Guangxi Vocational University of Agriculture,Nanning 530009, China
| | - Hengjie Xu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Fengyue Guo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Zixuan Tang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Tiansong Lv
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Lilin Guan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Yongwang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541100, China.
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541100, China.
| |
Collapse
|
2
|
Fernandes RS, Dey N. Tuning Fluorescence Properties of BIM Probes via Clay Integration: Targeting Rifampicin with Improved Selectivity. Chem Asian J 2025; 20:e202401354. [PMID: 39724492 DOI: 10.1002/asia.202401354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
The incorporation of photoactive organic dyes into layered inorganic materials substantially improves the optical and chemical properties, rendering them highly suitable for sensing applications. Therefore, we integrated Bisindolyl methane (BIM)-based neutral probes with bentonite clay, an inorganic layered material. Probes 1 and 2 were unoxidized and oxidized BIM-derivatives respectively, which typically exhibited quenched luminescence due to intramolecular rotations in the solution. By embedding probe 1 within bentonite interlayers or adsorbing it onto the clay surface, the molecular conformation of the probe was immobilized. Furthermore, the restricted intramolecular rotation via molecular flattening (planarization), resulted in enhanced fluorescence emission in the 1. clay composite. On the other hand, it was observed that the unoxidized rigid probe 2 was predominantly adsorbed on the clay surface, consequently resulting in fluorescence quenching. Detailed photophysical analysis revealed that the intercalation of probe 1 into the clay induces a planarization that differs from its behavior in solution. Moreover, the 1. clay composite was successfully utilized for the selective detection of rifampicin. The fluorescence intensity of the 1. clay composite was quenched, with the appearance of a new red-shifted band in the presence of rifampicin. The quenched band originally attributed to the probe, suggests that rifampicin displaced probe molecules from the clay interlayer into the solution, likely due to strong hydrogen bonding between hydroxyl groups of rifampicin and the clay interlayers. Additionally, the probe demonstrated higher selectivity for rifampicin over other tuberculosis drugs. This finding highlights the potential application of the 1. clay in developing a highly selective and efficient sensing platform for rifampicin detection, which could be employed in clinical diagnostics or therapeutic drug monitoring.
Collapse
Affiliation(s)
- Rikitha S Fernandes
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Hyderabad, 500078, India
| |
Collapse
|
3
|
Wang Z, Guo Z, Wang W, Zhang Q, Song S, Xue Y, Zhang Z, Wang J. Prediction of tuberculosis treatment outcomes using biochemical makers with machine learning. BMC Infect Dis 2025; 25:229. [PMID: 39962412 PMCID: PMC11834319 DOI: 10.1186/s12879-025-10609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Tuberculosis (TB) continues to pose a significant threat to global public health. Enhancing patient prognosis is essential for alleviating the disease burden. OBJECTIVE This study aims to evaluate TB prognosis by incorporating treatment discontinuation into the assessment framework, expanding beyond mortality and drug resistance. METHODS Seven feature selection methods and twelve machine learning algorithms were utilized to analyze admission test data from TB patients, identifying predictive features and building prognostic models. SHapley Additive exPlanations (SHAP) were applied to evaluate feature importance in top-performing models. RESULTS Analysis of 1,086 TB cases showed that a K-Nearest Neighbor classifier with Mutual Information feature selection achieved an area under the receiver operation curve (AUC) of 0.87 (95% CI: 0.83-0.92). Key predictors of treatment failure included elevated levels of 5'-nucleotidase, uric acid, globulin, creatinine, cystatin C, and aspartate transaminase. SHAP analysis highlighted 5'-nucleotidase, uric acid, and globulin as having the most significant influence on predicting treatment discontinuation. CONCLUSION Our model provides valuable insights into TB outcomes based on initial patient tests, potentially guiding prevention and control strategies. Elevated biomarker levels before therapy are associated with increased risk of treatment discontinuation, indicating their potential as early warning indicators.
Collapse
Affiliation(s)
- Zheyue Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing, 211166, China
| | - Zhenpeng Guo
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
| | - Weijia Wang
- School of Information and Software, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, 211166, China
| | - Suya Song
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
- Department of Pulmonary Diseases, The Third People's Hospital of Changzhou, Changzhou, 213001, China
| | - Yuan Xue
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
| | - Zhixin Zhang
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China.
- Department of Pulmonary Diseases, The Third People's Hospital of Changzhou, Changzhou, 213001, China.
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China.
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Lin Q, Zhang J, Qi J, Tong J, Chen S, Zhang S, Liu X, Lou H, Lv J, Lin R, Xie J, Jin Y, Wang Y, Ying L, Wu J, Niu J. Hepatocyte-Derived FGF1 Alleviates Isoniazid and Rifampicin-Induced Liver Injury by Regulating HNF4α-Mediated Bile Acids Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408688. [PMID: 39731358 PMCID: PMC11831436 DOI: 10.1002/advs.202408688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/09/2024] [Indexed: 12/29/2024]
Abstract
Isoniazid and rifampicin co-therapy are the main causes of anti-tuberculosis drug-induced liver injury (ATB-DILI) and acute liver failure, seriously threatening human health. However, its pathophysiology is not fully elucidated. Growing evidences have shown that fibroblast growth factors (FGFs) play a critical role in diverse aspects of liver pathophysiology. The aim of this study is to investigate the role of FGFs in the pathogenesis of isoniazid (INH) and rifampicin (RIF)-induced liver injury. Through systematic screening, this study finds that hepatic FGF1 expression is significantly downregulated in both mouse model and human patients challenged with INH and RIF. Hepatocyte-specific Fgf1 deficiency exacerbates INH and RIF-induced liver injury resulted from elevated bile acids (BAs) synthases and aberrant BAs accumulation. Conversely, pharmacological administration of the non-mitogenic FGF1 analog - FGF1ΔHBS significantly alleviated INH and RIF-induced liver injury via restoring BAs homeostasis. Mechanically, FGF1 repressed hepatocyte nuclear factor 4α (Hnf4α) transcription via activating FGF receptor 4 (FGFR4)-ERK1/2 signaling pathway, thus reducing BAs synthase. The findings demonstrate hepatic FGF1 functions as a negative regulator of BAs biosynthesis to protect against INH and RIF-induced liver injury via normalizing hepatic BAs homeostasis, providing novel mechanistic insights into the pathogenesis of ATB-DILI and potential therapeutic strategies for treatment of ATB-DILI.
Collapse
Affiliation(s)
- Qian Lin
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiaren Zhang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jie Qi
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jialin Tong
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Shenghuan Chen
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Sudan Zhang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xingru Liu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Huatong Lou
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiaxuan Lv
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Ruoyu Lin
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Junjun Xie
- Department of PharmacySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016China
| | - Yi Jin
- Department of PathologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Yang Wang
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Lei Ying
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiamin Wu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jianlou Niu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| |
Collapse
|
5
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
6
|
Yeter B, Suleyman Z, Bulut S, Cicek B, Coban TA, Demir O, Suleyman H. Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats. Drug Chem Toxicol 2025:1-9. [PMID: 39881661 DOI: 10.1080/01480545.2025.2457386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
The purpose of this trial was to assess the effects of methylphenidate on the kidney tissues and to investigate the protective effect of adenosine triphosphate (ATP) against possible methylphenidate nephrotoxicity in rats. The rats were separated into; healthy control (HG), methylphenidate (MPHG), ATP (ATPG), and ATP+ methylphenidate (AMPG). The ATPG and AMPG groups were administered ATP 4 mg/kg bw/d, and the HG and MPHG groups received distilled water intraperitoneally. One hour from, ATP and distilled water administration, methylphenidate 10 mg/kg bw/d was applied via oral gavage to the AMPG and MPHG groups once daily for 30 d (1 × 1). Animals were euthanized after 30 d and tissues were collected. The levels of certain oxidant/antioxidant parameters, pro-inflammatory cytokines, and Blood urea nitrogen (BUN) and creatinine levels were measured. Kidneys were also examined histopathologically. ATP inhibited the increase in oxidant and decrease antioxidant levels induced by methylphenidate. The amounts of pro-inflammatory cytokines were increased in methylphenidate-treated kidney tissue compared with the HG and AMPG groups. However, ATP increased oxidative damage markers and cytokines levels close to the healthy group. Serum BUN and creatinine levels increased with methylphenidate but ATP prevented BUN and creatinine from rising in the ATPG and MPHG groups. ATP also reduced the histopathological damage increased by methylphenidate. The potential efficacy of ATP in treating kidney damage induced by methylphenidate use.
Collapse
Affiliation(s)
- Bahtinur Yeter
- Department of Child Health and Diseases, Faculty of Health Sciences, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Zeynep Suleyman
- Department of Nursing, Faculty of Health Sciences, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Taha Abdulkadir Coban
- Department of Medical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| |
Collapse
|
7
|
Shaoqiang W, Qiaohua Y, Huai L, Yongzhong L. The feasibility of using liver function indices and FibroScan in combination to predict the occurrence of anti-tuberculosis drug-induced liver injury in Patients with liver disease. J Med Biochem 2025; 44:17-23. [PMID: 39991175 PMCID: PMC11846638 DOI: 10.5937/jomb0-50878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/22/2024] [Indexed: 02/25/2025] Open
Abstract
Background The study aims to assess the feasibility of using a combined approach of liver function indices and FibroScan measurements as a predictive tool for the early detection of anti-tuberculosis drug-induced liver injury (DILI) in patients with existing liver disease. Methods A retrospective cohort study was conducted, including adult tuberculosis patients with documented liver disease. Liver function was assessed using standard biochemical parameters, and FibroScan examinations were performed to determine liver stiffness measurement (LSM). Patients were monitored for clinical and biochemical signs of DILI throughout treatment. Logistic regression models and Receiver Operating Characteristic (ROC) curves were used for data analysis. Statistical significance was set at P<0.05. Results Patients who developed DILI showed significantly higher levels of ALT, AST, total bilirubin, GGT, and LSM, with strong positive correlations between these markers and DILI occurrence. Logistic regression analysis revealed elevated ALT, AST, TBIL, and GGT were strongly associated with an increased likelihood of DILI. The area under the ROC curves indicated excellent predictive accuracy of these parameters. A nomogram for predicting DILI based on the combined biomarkers was established. Conclusions The study demonstrates the feasibility of combining liver function indices and FibroScan measurements to predict anti-tuberculosis DILI. The results highlight the importance of baseline liver health assessment and offer promising implications for clinical practice, aiding in individualized risk estimation and therapeutic decision-making for patients with liver disease initiating anti-tuberculosis therapy. Further validation in larger cohorts is warranted to strengthen the predictive model.
Collapse
Affiliation(s)
- Wu Shaoqiang
- Hunan University of Medicine General Hospital, Infectious Disease Center, Department of Hepatology, Huaihua, China
| | - Yang Qiaohua
- Hunan University of Medicine General Hospital, Infectious Disease Center, Department of Hepatology, Huaihua, China
| | - Li Huai
- Hunan University of Medicine General Hospital, Infectious Disease Center, Department of Hepatology, Huaihua, China
| | - Li Yongzhong
- Hunan University of Medicine General Hospital, Infectious Disease Center, Department of Hepatology, Huaihua, China
| |
Collapse
|
8
|
Ma J, Chen H, Sun J, Huang J, He G, Yang G. Efficient analysis of drug interactions in liver injury: a retrospective study leveraging natural language processing and machine learning. BMC Med Res Methodol 2024; 24:312. [PMID: 39707270 DOI: 10.1186/s12874-024-02443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Liver injury from drug-drug interactions (DDIs), notably with anti-tuberculosis drugs such as isoniazid, poses a significant safety concern. Electronic medical records contain comprehensive clinical information and have gained increasing attention as a potential resource for DDI detection. However, a substantial portion of adverse drug reaction (ADR) information is hidden in unstructured narrative text, which has yet to be efficiently harnessed, thereby introducing bias into the research. There is a significant need for an efficient framework for the DDI assessment. METHODS Using a Chinese natural language processing (NLP) model, we extracted 25,130 adverse drug reaction (ADR) records, dividing them into sets for training an automated normalization model. The trained models, in conjunction with liver function laboratory tests, were used to thoroughly and efficiently identify liver injury cases. Ultimately, we applied a case-control study design to detect DDI signals increasing isoniazid's liver injury risk. RESULTS The Logistic Regression model demonstrated stable and superior performance in classification task. Based on laboratory criteria and NLP, we identified 128 liver injury cases among a cohort of 3,209 patients treated with isoniazid. Preliminary screening of 113 drug combinations with isoniazid highlighted 20 potential signal drugs, with antibacterials constituting 25%. Sensitivity analysis confirmed the robustness of signal drugs, especially in cardiac therapy and antibacterials. CONCLUSION Our NLP and machine learning approach effectively identifies isoniazid-related DDIs that increase the risk of liver injury, identifying 20 signal drugs, mainly antibacterials. Further research is required to validate these DDI signals.
Collapse
Affiliation(s)
- Junlong Ma
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Chen
- Department of Pharmacy, The First Hospital of Changsha, Central South University, Changsha, Hunan, China
| | - Ji Sun
- Department of Pharmacy, The First Hospital of Changsha, Central South University, Changsha, Hunan, China
| | - Juanjuan Huang
- Department of Pharmacy, The First Hospital of Changsha, Central South University, Changsha, Hunan, China
| | - Gefei He
- Department of Pharmacy, The First Hospital of Changsha, Central South University, Changsha, Hunan, China.
- The First Hospital of Changsha, No 311, Yingpan Road, Kaifu District, Changsha, 410005, Hunan, China.
| | - Guoping Yang
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Third Xiangya Hospital of Central South University, No 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
Balkrishna A, Gohel V, Tomer M, Dev R, Varshney A. Herbo-vitamin medicine Livogrit Vital ameliorates isoniazid induced liver injury (IILI) in human liver (HepG2) cells by decreasing isoniazid accumulation and oxidative stress driven hepatotoxicity. BMC Complement Med Ther 2024; 24:386. [PMID: 39516811 PMCID: PMC11545855 DOI: 10.1186/s12906-024-04685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) is a leading cause of infection related mortality. Isoniazid is one of the frontline drugs for anti-TB therapy. Hepatotoxicity induced by isoniazid is a major cause of drug-discontinuation which may lead to development of resistant TB or increased mortality. PURPOSE To characterize pharmacological properties of plant-based prescription medicine, Livogrit Vital (LVV) against isoniazid-induced liver injury (IILI) using HepG2 cells. METHOD Phytometabolite characterization of LVV was performed by High-performance liquid chromatography (HPLC). The effects of LVV on cytosafety, IC50 shift, oxidative stress, ER stress, apoptosis, liver injury markers, and accumulation of isoniazid and hydrazine was performed on HepG2 cells induced with isoniazid. Silymarin was used as the positive control. RESULTS HPLC based phytometabolite characterization of LVV revealed the presence of several anti-oxidant, anti-apoptotic, and hepatoprotective compounds. In isoniazid-induced HepG2 cells, LVV reduced cytotoxicity of isoniazid and shifted its IC50 value. Treatment with LVV reduced ROS generation and lipid peroxidation; enhanced GSH enzyme levels in isoniazid-induced HepG2 cells. As per the mechanistic evaluation, LVV modulated gene expression level of Caspase-3, FGF21, and IRE-1α. LVV treatment also normalized isoniazid-induced elevated Caspase-3 activity and cPARP1 protein levels, indicating its potentials to regulate liver cell apoptosis. Concomitantly, biomarkers of hepatotoxicity, ALT and GGT, also decreased by LVV treatment. Interestingly, LVV treatment reduced intracellular accumulation of isoniazid and its toxic metabolite hydrazine, in isoniazid-stimulated HepG2 cells. CONCLUSION Treatment of hepatic cells with the herbo-vitamin medicine, Livogrit Vital, regulates IILI by modulation of oxidative and ER stress, apoptosis, and bioaccumulation of isoniazid and hydrazine. Collectively, Livogrit Vital could well be explored as an adjuvant hepatoprotective agent alongwith anti-TB medicines.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249405, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow, G411AU, UK
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India.
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249405, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Campos DL, Canales CSC, Demarqui FM, Fernandes GFS, dos Santos CG, Prates JLB, da Silva IGM, Barros-Cordeiro KB, Báo SN, de Andrade LN, Abichabki N, Zacharias LV, de Campos MMA, dos Santos JL, Pavan FR. Screening of novel narrow-spectrum benzofuroxan derivatives for the treatment of multidrug-resistant tuberculosis through in silico, in vitro, and in vivo approaches. Front Microbiol 2024; 15:1487829. [PMID: 39464394 PMCID: PMC11502347 DOI: 10.3389/fmicb.2024.1487829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Tuberculosis remains a serious global health threat, exacerbated by the rise of resistant strains. This study investigates the potential of two benzofuroxan (Bfx) derivatives, 5n and 5b, as targeted treatments for MDR-TB using in silico, in vitro, and in vivo methodologies. In vitro analyses showed that Bfx compounds have significant activity against Mtb H37Rv, with Bfx 5n standing out with a MIC90 of 0.09 ± 0.04 μM. Additionally, their efficacy against MDR and pre-XDR strains was superior compared to commercial drugs. These Bfx compounds have a narrow spectrum for mycobacteria, which helps avoid dysbiosis of the gut microbiota, and they also exhibit high selectivity and low toxicity. Synergism studies indicate that Bfx derivatives could be combined with rifampicin to enhance treatment efficacy and reduce its duration. Scanning electron microscopy revealed severe damage to the morphology of Mtb following treatment with Bfx 5n, showing significant distortions in the bacillary structures. Whole-genome sequencing of the 5n-resistant isolate suggests resistance mechanisms mediated by the Rv1855c gene, supported by in silico studies. In vivo studies showed that the 5n compound reduced the pulmonary load by 3.0 log10 CFU/mL, demonstrating superiority over rifampicin, which achieved a reduction of 1.23 log10 CFU/mL. In conclusion, Bfx derivatives, especially 5n, effectively address resistant infections caused by Mtb, suggesting they could be a solid foundation for future therapeutic developments against MDR-TB.
Collapse
Affiliation(s)
- Débora Leite Campos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Christian Shleider Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, Biochemistry and Biotechnology, Santa Maria Catholic University, Arequipa, Peru
| | - Fernanda Manaia Demarqui
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Guilherme F. S. Fernandes
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, University College London, London, United Kingdom
| | - Camila Gonçalves dos Santos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - João Lucas B. Prates
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Ingrid Gracielle Martins da Silva
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Karine Brenda Barros-Cordeiro
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Leonardo Neves de Andrade
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Nathália Abichabki
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Luísa Vieira Zacharias
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Marli Matiko Anraku de Campos
- Mycobacteriology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jean Leandro dos Santos
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
11
|
Chen X, Pan H, Hao Z, Yi H, Tang S. Changing Trajectories of Alanine Aminotransferase and Risk of Antituberculosis Drug-Induced Liver Injury in Chinese Patients: A Cohort Study. J Clin Pharmacol 2024; 64:840-848. [PMID: 38436510 DOI: 10.1002/jcph.2422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Antituberculosis drug-induced liver injury (ATLI) is a major adverse effect during antituberculosis treatment. Early detection or prediction is essential to prevent ATLI in antituberculosis treatment patients. The purpose of this work is to explore the relationship between alanine aminotransferase (ALT) trajectories within 15 days of initial treatment and the risk of ATLI. Based on a historical cohort of patients hospitalized for antituberculosis treatment and group-based trajectory modeling analysis, ALT trajectories within 15 days of initial treatment were determined. Conditional logistic regression model was used to estimate the association between different ALT trajectories and the risk of ATLI, and the corresponding odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated with covariates. Based on the ALT levels within 15 days of initial treatment, a total of 853 patients were divided into four ALT trajectories. The incidence of ATLI significantly increased with the increase of ALT trajectories (2.33%, 4.38%, 5.90%, and 2.44%, respectively). Compared with trajectory 1, the adjusted OR for ATLI in trajectory 2, trajectory 3, and trajectory 4 were 2.448 (95% CI: 0.302-19.856, P = 0.402), 5.373 (95% CI: 0.636-45.411, P = 0.123), 11.010 (95% CI: 0.720-168.330, P = 0.085), respectively, and there was an increasing trend of ATLI risk (Ptrend = 0.015). Different ALT trajectories within 15 days of initial treatment were associated with different risk of ATLI, and it is necessary to pay attention to the ALT trajectory within 15 days of initial treatment to predict the occurrence of ATLI.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Mao Y, Ma S, Liu C, Liu X, Su M, Li D, Li Y, Chen G, Chen J, Chen J, Zhao J, Guo X, Tang J, Zhuge Y, Xie Q, Xie W, Lai R, Cai D, Cai Q, Zhi Y, Li X. Chinese guideline for the diagnosis and treatment of drug-induced liver injury: an update. Hepatol Int 2024; 18:384-419. [PMID: 38402364 DOI: 10.1007/s12072-023-10633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 02/26/2024]
Abstract
Drug-induced liver injury (DILI) is an important adverse drug reaction that can lead to acute liver failure or even death in severe cases. Currently, the diagnosis of DILI still follows the strategy of exclusion. Therefore, a detailed history taking and a thorough and careful exclusion of other potential causes of liver injury is the key to correct diagnosis. This guideline was developed based on evidence-based medicine provided by the latest research advances and aims to provide professional guidance to clinicians on how to identify suspected DILI timely and standardize the diagnosis and management in clinical practice. Based on the clinical settings in China, the guideline also specifically focused on DILI in chronic liver disease, drug-induced viral hepatitis reactivation, common causing agents of DILI (herbal and dietary supplements, anti-tuberculosis drugs, and antineoplastic drugs), and signal of DILI in clinical trials and its assessment.
Collapse
Affiliation(s)
- Yimin Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China.
| | - Shiwu Ma
- Department of Infectious Diseases, The 920th Hospital of Chinese PLA Joint Logistics Support Force, Kunming, 650032, Yunnan, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Liu
- Department of Pharmacy, Huangpu Branch of the 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Minghua Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongliang Li
- Department of Hepatobiliary Medicine, The 900th Hospital of Chinese PLA Joint Logistics Support Force, Fuzhou, 350025, Fujian, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Gongying Chen
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China
| | - Jun Chen
- Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China
| | - Jinjun Chen
- Hepatology Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoyan Guo
- Department of Gastroenterology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wen Xie
- Center of Liver Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100088, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dachuan Cai
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qingxian Cai
- Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China
| | - Yang Zhi
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China
| | - Xiaoyun Li
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China
| |
Collapse
|
13
|
Godkhindi VM, Gupta N, Bhat KV, Venkatagiri AM. Infantile Disseminated Bacille Calmette-Guérin Disease with Hemophagocytosis and Mimicking Juvenile Myelomonocytic Leukemia: A Case Report with Concise Literature Review. Int J Mycobacteriol 2024; 13:213-217. [PMID: 38916394 DOI: 10.4103/ijmy.ijmy_48_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Bacille Calmette-Guérin (BCG) is a live-attenuated vaccine routinely administered to newborns to prevent severe forms of tuberculosis (TB) in TB-endemic countries. Disseminated BCG vaccine disease is a classic feature of children with human immunodeficiency virus (HIV) or primary immunodeficiency disorders (PIDs) and is associated with high mortality. We report a case of a 6-month-old infant with disseminated BCG disease and hemophagocytic lymphohistiocytosis mimicking juvenile myelomonocytic leukemia with no demonstrable features of HIV or PID even after extensive laboratory work-up and succumbed to progressive disease. Disseminated BCG disease is a rare and potentially fatal complication of BCG vaccine, and prompt immunological evaluation complemented by initiation of 4-drug antitubercular therapy and definitive treatment with antiretroviral therapy or hematopoietic stem cell transplant is warranted.
Collapse
Affiliation(s)
| | - Nitin Gupta
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - K Vasudeva Bhat
- Division of Paediatric Haematology and Oncology, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Archana Mevalegire Venkatagiri
- Division of Paediatric Haematology and Oncology, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
14
|
Gautam N, Shrestha N, Bhandari S, Thapaliya S. Severe dengue infection unmasking drug-induced liver injury: Successful management with N-acetylcysteine. Clin Case Rep 2024; 12:e8578. [PMID: 38469128 PMCID: PMC10925800 DOI: 10.1002/ccr3.8578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Key Clinical Message Clinicians in tuberculosis and dengue endemic regions should have heightened vigilance for drug-induced liver injury (DILI) overlapping with active infections, enabling prompt recognition and life-saving conservative management. Abstract Severe dengue and drug-induced liver injury (DILI) are significant independent risk factors for acute liver failure. The co-occurrence of these conditions significantly complicates clinical management. Here, we describe the case of a 21-year-old Nepali female who developed acute liver failure during antitubercular therapy (ATT). The patient, presenting with fever and nausea after 3 weeks of ATT, subsequently received a diagnosis of severe dengue. Laboratory evidence indicated markedly elevated transaminases (AST 4335 U/L, ALT 1958 U/L), total bilirubin (72 μmol/L), and INR (>5). Prompt discontinuation of first-line ATT, initiation of a modified ATT regimen, and N-acetylcysteine (NAC) infusion facilitated the patient's recovery after a week of intensive care. This case underscores the potential for synergistic hepatotoxicity in regions where multiple endemic illnesses coincide. Early recognition of DILI, cessation of offending agents, and comprehensive intensive care are crucial interventions. While the definitive efficacy of NAC remains under investigation, its timely administration in these complex cases warrants exploration for its potential lifesaving benefits.
Collapse
Affiliation(s)
| | | | - Sanjeev Bhandari
- Department of Internal MedicineTribhuvan University Teaching HospitalKathmanduNepal
| | - Sabin Thapaliya
- Department of Internal MedicineTribhuvan University Teaching HospitalKathmanduNepal
| |
Collapse
|
15
|
Wakai E, Shiromizu T, Otaki S, Koiwa J, Tamaru S, Nishimura Y. Lansoprazole Ameliorates Isoniazid-Induced Liver Injury. Pharmaceuticals (Basel) 2024; 17:82. [PMID: 38256915 PMCID: PMC10821343 DOI: 10.3390/ph17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Isoniazid is a first-line drug in antitubercular therapy. Isoniazid is one of the most commonly used drugs that can cause liver injury or acute liver failure, leading to death or emergency liver transplantation. Therapeutic approaches for the prevention of isoniazid-induced liver injury are yet to be established. In this study, we identified the gene expression signature for isoniazid-induced liver injury using a public transcriptome dataset, focusing on the differences in susceptibility to isoniazid in various mouse strains. We predicted that lansoprazole is a potentially protective drug against isoniazid-induced liver injury using connectivity mapping and an adverse event reporting system. We confirmed the protective effects of lansoprazole against isoniazid-induced liver injury using zebrafish and patients' electronic health records. These results suggest that lansoprazole can ameliorate isoniazid-induced liver injury. The integrative approach used in this study may be applied to identify novel functions of clinical drugs, leading to drug repositioning.
Collapse
Affiliation(s)
- Eri Wakai
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
- Mie University Research Center for Cilia and Diseases, Tsu 514-8507, Mie, Japan
| | - Shota Otaki
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
| | - Junko Koiwa
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
| | - Satoshi Tamaru
- Clinical Research Support Center, Mie University Hospital, Tsu 514-8507, Mie, Japan;
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
- Mie University Research Center for Cilia and Diseases, Tsu 514-8507, Mie, Japan
| |
Collapse
|
16
|
Pang S, An B, Miao Z, Li C, Wei N, Zhang Y. A near-infrared fluorescent probe for detecting hydrazine metabolized from isoniazid in living cells. LUMINESCENCE 2024; 39:e4676. [PMID: 38286600 DOI: 10.1002/bio.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 01/31/2024]
Abstract
Isoniazid is a drug for treating tuberculosis, but hydrazine (N2 H4 ), the major metabolite of isoniazid, can cause hepatotoxicity. Therefore, monitoring the content of N2 H4 in time is of great significance for studying the hepatotoxicity induced by isoniazid. In this study, a near-infrared fluorescent probe (BC-N) was designed and synthesized based on the specific reaction of acetyl ester with N2 H4 . BC-N exhibits excellent selectivity, sensitivity, and biocompatibility. In addition, BC-N is applied in the visualization of N2 H4 produced from isoniazid in living cells and is a potential tool for monitoring hepatotoxicity induced by isoniazid.
Collapse
Affiliation(s)
- Shude Pang
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Baoshuai An
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Zhuo Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Cheng Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Ningning Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Yanru Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
17
|
Rani J, Dhull SB, Rose PK, Kidwai MK. Drug-induced liver injury and anti-hepatotoxic effect of herbal compounds: a metabolic mechanism perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155142. [PMID: 37913641 DOI: 10.1016/j.phymed.2023.155142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is the most challenging and thought-provoking liver problem for hepatologists owing to unregulated medication usage in medical practices, nutritional supplements, and botanicals. Due to underreporting, analysis, and identification issues, clinically evaluated medication hepatotoxicity is prevalent yet hard to quantify. PURPOSE This review's primary objective is to thoroughly compare pharmaceutical drugs and herbal compounds that have undergone clinical trials, focusing on their metabolic mechanisms contributing to the onset of liver illnesses and their hepatoprotective effects. METHODS The data was gathered from several online sources, such as PubMed, Scopus, Google Scholar, and Web of Science, using appropriate keywords. RESULTS The prevalence of conventional and herbal medicine is rising. A comprehensive understanding of the metabolic mechanism is necessary to mitigate the hepatotoxicity induced by drugs and facilitate the incorporation or substitution of herbal medicine instead of pharmaceuticals. Moreover, pre-clinical pharmacological research has the potential to facilitate the development of natural products as therapeutic agents, displaying promising possibilities for their eventual clinical implementation. CONCLUSIONS Acetaminophen, isoniazid, rifampicin, diclofenac, and pyrogallol have been identified as the most often reported synthetic drugs that produce hepatotoxicity by oxidative stress, inflammation, apoptosis, and fibrosis during the last several decades. Due to their ability to downregulate many factors (such as cytokines) and activate several enzyme/enzyme systems, herbal substances (such as Gingko biloba extract, curcumin, resveratrol, and silymarin) provide superior protection against harmful mechanisms which induce hepatotoxicity with fewer adverse effects than their synthetic counterparts.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Mohd Kashif Kidwai
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| |
Collapse
|
18
|
Sharma D, Pooja, Nirban S, Ojha S, Kumar T, Jain N, Mohamad N, Kumar P, Pandey M. Nano vs Resistant Tuberculosis: Taking the Lung Route. AAPS PharmSciTech 2023; 24:252. [PMID: 38049695 DOI: 10.1208/s12249-023-02708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 infectious diseases worldwide. It is categorized among the leading killer diseases that are the reason for the death of millions of people globally. Although a standardized treatment regimen is available, non-adherence to treatment has increased multi-drug resistance (MDR) and extensive drug-resistant (XDR) TB development. Another challenge is targeting the death of TB reservoirs in the alveoli via conventional treatment. TB Drug resistance may emerge as a futuristic restraint of TB with the scarcity of effective Anti-tubercular drugs. The paradigm change towards nano-targeted drug delivery systems is mostly due to the absence of effective therapy and increased TB infection recurrent episodes with MDR. The emerging field of nanotechnology gave an admirable opportunity to combat MDR and XDR via accurate diagnosis with effective treatment. The new strategies targeting the lung via the pulmonary route may overcome the new incidence of MDR and enhance patient compliance. Therefore, this review highlights the importance and recent research on pulmonary drug delivery with nanotechnology along with prevalence, the need for the development of nanotechnology, beneficial aspects of nanomedicine, safety concerns of nanocarriers, and clinical studies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Pooja
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Sunita Nirban
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Smriti Ojha
- Department of Pharmaceutical Science and Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Tarun Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Najwa Mohamad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor Darul Ehsan, Malaysia
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
19
|
Zhu M, Chen X, Hao Z, He Y, Han B, Tang S. SLCO1B1 variants and the risk of antituberculosis drug-induced hepatotoxicity: a systematic review and meta-analysis. Pharmacogenomics 2023; 24:931-942. [PMID: 38019119 DOI: 10.2217/pgs-2023-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Aims: To evaluate the association between SLCO1B1 gene polymorphisms and susceptibility of antituberculosis drug-induced hepatotoxicity (ATDH). Methods: We searched the PubMed, Cochrane Library, Embase, Web of Science, Wan Fang and China National Knowledge Infrastructure database from inception to 2022. Results: Nine case-control studies with 1129 cases and 2203 controls were included. Among four SNPs reported in two or more studies, the final results indicated that SNP rs4149014 was significantly associated with decreased ATDH risk (dominant model, odds ratio: 0.73; 95% CI: 0.55-0.97; p = 0.03; allele model, odds ratio: 0.69; 95% CI: 0.55-0.86; p = 0.001), and the trial sequential analysis also confirmed this significant association. Conclusion: SLCO1B1 gene SNP rs4149014 was significantly associated with lower risk of ATDH susceptibility.
Collapse
Affiliation(s)
- Min Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yiwen He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bing Han
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
20
|
Datta S, Aggarwal D, Sehrawat N, Yadav M, Sharma V, Sharma A, Zghair AN, Dhama K, Sharma A, Kumar V, Sharma AK, Wang H. Hepatoprotective effects of natural drugs: Current trends, scope, relevance and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155100. [PMID: 37801892 DOI: 10.1016/j.phymed.2023.155100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The liver is a well-known player in the metabolism and removal of drugs. Drug metabolizing enzymes in the liver detoxify drugs and xenobiotics, ultimately leading to the acquisition of homeostasis. However, liver toxicity and cell damage are not only related to the nature and dosage of a particular drug but are also influenced by other factors such as aging, immune status, environmental contaminants, microbial metabolites, gender, obesity, and expression of individual genes Furthermore, factors such as drugs, alcohol, and environmental contaminants could induce oxidative stress, thereby impairing the regenerative potential of the liver and causing several diseases. Persons suffering from other ailments and those with comorbidities are found to be more prone to drug-induced toxicities. Moreover, drug composition and drug-drug interactions could further aggravate the risk of drug-induced hepatotoxicity. A plethora of mechanisms are responsible for initiating liver cell damage and further aggravating liver cell injury, followed by impairment of homeostasis, ultimately leading to the generation of reactive oxygen species, immune-suppression, and oxidative stress. OBJECTIVE To summarize the potential of phytochemicals and natural bioactive compounds to treat hepatotoxicity and other liver diseases. STUDY DESIGN A deductive qualitative content analysis approach was employed to assess the overall outcomes of the research and review articles pertaining to hepatoprotection induced by natural drugs, along with analysis of the interventions. METHODS An extensive literature search of bibliographic databases, including Web of Science, PUBMED, SCOPUS, GOOGLE SCHOLAR, etc., was carried out to understand the role of hepatoprotective effects of natural drugs. RESULTS Bioactive natural products, including curcumin, resveratrol, etc., have been seen as neutralizing agents against the side effects induced by the drugs. Moreover, these natural products are dietary and are readily available; thus, could be supplemented along with drugs to reduce toxicity to cells. Probiotics, prebiotics, and synbiotics have shown promise of improving overall liver functioning, and these should be evaluated more extensively for their hepatoprotective potential. Therefore, selecting an appropriate natural product or a bioactive compound that is free of toxicity and offers a reliable solution for drug-induced liver toxicity is quintessential. CONCLUSIONS The current review highlights the role of natural bioactive products in neutralizing drug-induced hepatotoxicity. Efforts have been made to delineate the possible underlying mechanism associated with the neutralization process.
Collapse
Affiliation(s)
- Sonal Datta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Nirmala Sehrawat
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Mukesh Yadav
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh 160019, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Abdulrazzaq N Zghair
- College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Aanchal Sharma
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India
| | - Vikas Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University, Sector-82-A, IT City Road, Mohali, Punjab 140306, India.
| | - Hailian Wang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
21
|
Kainat KM, Ansari MI, Bano N, Jagdale PR, Ayanur A, Kumar M, Sharma PK. Rifampicin-induced ER stress and excessive cytoplasmic vacuolization instigate hepatotoxicity via alternate programmed cell death paraptosis in vitro and in vivo. Life Sci 2023; 333:122164. [PMID: 37827230 DOI: 10.1016/j.lfs.2023.122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
AIMS Rifampicin-induced hepatotoxicity is a primary cause of drug-induced liver injury (DILI), posing a significant challenge to its continued clinical application. Moreover, the mechanism underlying rifampicin-induced hepatotoxicity remains unclear. MAIN METHODS Human hepatocyte line-17 (HHL-17) cells were treated with an increasing dose of rifampicin for 24 h, and male Wistar rats were given rifampicin [150 mg/kg body weight (bw)] orally for 28 days. Viability assay, protein expression, and cell death assays were analyzed in vitro. Moreover, liver serum markers, body/organ weight, H&E staining, protein expression, etc., were assayed in vivo. KEY FINDINGS Rifampicin induced a dose-dependent hepatotoxicity in HHL-17 cells (IC50; 600 μM), and increased the serum levels of liver injury markers, e.g., alanine transaminase (ALT) and aspartate transaminase (AST) in rats. Rifampicin-induced cell death was non-apoptotic and non-necroptotic both in vitro and in vivo. Further, excessive cellular vacuolization and reduced expression of Alix protein confirmed the induction of paraptosis both in vitro and in vivo. In addition, a significant increase in the endoplasmic reticulum (ER) stress markers (e.g., BiP, CHOP, and total polyubiquitinated proteins) was detected, demonstrating the induction of ER stress and altered protein homeostasis. Interestingly, rifampicin-induced hepatotoxicity was associated with the inhibition of autophagy and enhanced reactive oxygen species (ROS) generation in HHL-17 cells. Furthermore, inhibition of protein synthesis by cycloheximide (CHX) suppressed paraptosis by alleviating rifampicin-induced ER stress and ROS generation. SIGNIFICANCE Rifampicin-induced hepatotoxicity involves ER stress-driven paraptosis as a novel mechanism of its toxicity that may be targeted to protect liver cells from rifampicin toxicity.
Collapse
Affiliation(s)
- K M Kainat
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nuzhat Bano
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Ramji Jagdale
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Lim WS, Avery A, Kon OM, Dedicoat M. Anti-tuberculosis drug-induced liver injury. BMJ 2023; 383:e074866. [PMID: 37890885 DOI: 10.1136/bmj-2023-074866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Affiliation(s)
- Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, NG5 1PB, England UK
| | - Anthony Avery
- Faculty of Medicine & Health Sciences, University of Nottingham, NG7 2RD, England UK
| | - Onn Min Kon
- Chest & Allergy clinic, Imperial College Healthcare NHS Trust, St Mary's Hospital, London W2 1NY, England UK
| | - Martin Dedicoat
- Department of Infection, University Hospitals Birmingham, Birmingham. B9 5SS, England, UK
| |
Collapse
|
23
|
Zhu W, Su H, Wei Y, Huang Y, Chen S, Shi Y, Long Y, Qiu Y, Wei J. Asiatic acid ameliorates rifampicin- and isoniazid-induced liver injury in vivo by regulating sphingolipid metabolism and mitogen-activated protein kinase signalling pathways. Basic Clin Pharmacol Toxicol 2023; 133:402-417. [PMID: 37272388 DOI: 10.1111/bcpt.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
In this study, we aimed to determine whether asiatic acid (AA) exerts any therapeutic effects on rifampicin (RFP)- and isoniazid (INH)-induced liver injury and elucidate the underlying mechanisms. Briefly, liver injury in mice was induced via RFP and INH administration. We investigated the effects and potential action mechanisms of AA on liver injury using transcriptomics, metabolomics and various examinations. We found that AA significantly ameliorated the pathological changes in liver tissues and decreased the transaminase activity, inflammation and oxidative stress damage. Transcriptomics revealed 147 differentially expressed genes (DEGs) between the AA and model groups that were enriched in metabolic and mitogen-activated protein kinase (MAPK) signalling pathways. Metabolomics revealed 778 differentially expressed metabolites between the AA and model groups. Furthermore, integrated transcriptomics and metabolomics analyses revealed strong correlations between DEGs and differentially expressed metabolites and indicated that AA regulates the sphingolipid metabolism by inhibiting the expression of delta 4-desaturase, sphingolipid 1. Experimental results confirmed that AA inhibited the MAPK signalling pathway. In summary, AA inhibits inflammation and oxidative stress damage by regulating the sphingolipid metabolism pathway and blocking the MAPK signalling pathway, thereby relieving the RFP/INH-induced liver injury.
Collapse
Affiliation(s)
- Wuchang Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongmei Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuanyuan Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yushen Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Siyun Chen
- Pharmacy Department, The People's Hospital of Hezhou, Hezhou, China
| | - Yanxia Shi
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yan Long
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yue Qiu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Li T, Yang C, Cao H, Mo S, Li B, Huang Z, Zhang R, Wu J, Zhang K, Gao Y. The Effect of Bergenin on Isonicotinic Acid Hydrazide and Rifampicin-Induced Liver Injury Revealed by RNA Sequencing. Molecules 2023; 28:5496. [PMID: 37513369 PMCID: PMC10386747 DOI: 10.3390/molecules28145496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Bergenin (BER), a natural component of polyphenols, has a variety of pharmacological activities, especially in improving drug metabolism, reducing cholestasis, anti-oxidative stress and inhibiting inflammatory responses. The aim of this study was to investigate the effects of BER on liver injury induced by isonicotinic acid hydrazide (INH) and rifampicin (RIF) in mice. The mice model of liver injury was established with INH (100 mg/kg)+RIF (100 mg/kg), and then different doses of BER were used to intervene. The pathological morphology and biochemical indicators of mice were detected. Meanwhile, RNA sequencing was performed to screen the differentially expressed genes and signaling pathways. Finally, critical differentially expressed genes were verified by qRT-PCR and Western blot. RNA sequencing results showed that 707 genes were significantly changed in the INH+RIF group compared with the Control group, and 496 genes were significantly changed after the BER intervention. These differentially expressed genes were mainly enriched in the drug metabolism, bile acid metabolism, Nrf2 pathway and TLR4 pathway. The validation results of qRT-PCR and Western blot were consistent with the RNA sequencing. Therefore, BER alleviated INH+RIF-induced liver injury in mice. The mechanism of BER improving INH+RIF-induced liver injury was related to regulating drug metabolism enzymes, bile acid metabolism, Nrf2 pathway and TLR4 pathway.
Collapse
Affiliation(s)
- Ting Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Chaoyue Yang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Siyi Mo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Zhipeng Huang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Ruobing Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
25
|
Li X, Li C, Li C, Wu C, Bai Y, Zhao X, Bai Z, Zhang X, Xiao X, Niu M. A novel perspective on the preventive treatment of hydrazine compound-induced liver injury: Isoniazid liver injury as an example. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116616. [PMID: 37182677 DOI: 10.1016/j.jep.2023.116616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum graveolens L. (dill), which has been used as a medicine, spice and aromatic plant since ancient times, is not only a traditional Chinese medicines but also an important medicinal and functional food in Europe and Central and South Asia. In ethnomedicine, dill reportedly exerts a protective effect on the liver and has been widely used as a traditional medicine for the treatment of jaundice in the liver and spleen and inflammatory gout diseases in Saudi Arabia. Furthermore, studies have found that dill can regulate the NAT2 enzyme, and this plant was thus selected to study its alleviating effect on isoniazid liver injury. AIM OF THE STUDY The purpose of this study was to explore the effect of dill on alleviating liver injury induced by hydrazine compounds represented by isoniazid through the use of network pharmacology combined with in vivo and in vitro experimental verifications. MATERIALS AND METHODS First, we screened the key targets of dill in the treatment of liver injury through the use of network pharmacology; we then performed GO and KEGG pathway enrichment analyses using the DAVID database. We also verified the alleviative and anti-inflammatory effects of dill on isoniazid liver injury in rats by animal experiments. We further investigated the modulating effect of dill on the enzymatic activity of NAT2, a common metabolizing enzyme of hydrazine compounds. RESULTS A total of 111 key targets were screened through network pharmacology. In vivo experiments showed that dill reduced the amount of inflammatory factors produced by isoniazid, such as IL-10, IL-1β, TNF-α and IL-6, restored the levels of ALT, AST, r-GT, AKP and TBA in vivo, and attenuated isoniazid liver injury. Both in vivo and vitro results indicated that dill could regulate the expression of NAT2 enzymes. CONCLUSIONS The results tentatively demonstrate that dill can alleviate isoniazid liver injury through multiple components, targets and pathways and exerts a regulatory effect on the NAT2 enzyme, and these findings thus provide new ideas for subsequent studies on hydrazide liver injury--reducing the risk of hydrazide-induced liver injury through anti-inflammation and regulation of NAT2 enzymes.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Chengxian Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Chenyi Li
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China; College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Chengzhao Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yuxuan Bai
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xu Zhao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhaofang Bai
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xigang Zhang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xiaohe Xiao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|