1
|
Wu K, Wang Q, Zhang Z, Luo W, Peng J, Ma X, Wang L, Xie C, Guo W. Honokiol ameliorates pyroptosis in intestinal ischemia‑reperfusion injury by regulating the SIRT3‑mediated NLRP3 inflammasome. Int J Mol Med 2025; 55:96. [PMID: 40280115 PMCID: PMC12045469 DOI: 10.3892/ijmm.2025.5537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Intestinal ischemia‑reperfusion (IIR) injury is caused by the restoration of blood supply after a period of ischemia. It occurs in numerous clinical pathologies, such as intestinal obstruction, incarcerated hernia and septic shock, with mortality rates of 50‑80%. Honokiol (HKL), isolated from the herb Magnolia officinalis, is a biphenolic natural product with antioxidative, antibacterial, antitumor and anti‑inflammatory properties. Additionally, HKL has protective effects in ischemia‑reperfusion injuries, but its role and specific mechanisms in IIR injury are yet to be elucidated. In the present study, the superior mesenteric artery was ligated in rats to establish an IIR model. Hematoxylin and eosin staining and ELISA revealed that HKL administration ameliorated IIR‑induced injury in rats, which was demonstrated by a reduced destruction to the intestinal mucosa, as well as a reduced serum intestinal fatty acid‑binding protein concentration and Chiu's score in 10 mg/kg HKL treated IIR‑induced rats compared with those without HKL treatment. Additionally, immunohistochemical (IHC) staining and western blotting revealed that the occludin and tight junction protein 1 protein levels were increased in the 10 mg/kg HKL treated IIR‑induced rats compared with those without HKL treatment. Furthermore, an in vitro hypoxia/reoxygenation (H/R) cell model was established using IEC‑6 cells. Cell Counting Kit‑8 and lactate dehydrogenase (LDH) assays indicated that HKL mitigated the H/R‑inhibited cell viability and decreased the LDH levels in cell supernatants. Mechanistically, immunofluorescent (IF) staining and western blotting revealed that HKL inhibited H/R‑triggered pyroptosis. Furthermore, Mito‑Tracker, mitochondrial membrane potential and MitoSOX staining as well as western blotting revealed that reducing mitochondrial reactive oxygen species (ROS) inhibited the H/R‑induced pyroptosis by mitigating mitochondrial dysfunction. In the present H/R cell model, HKL improved the mitochondrial function by increasing the expression of sirtuin 3 (SIRT3), while IF staining and western blotting indicated that silencing SIRT3 notably reduced the beneficial effect of HKL on pyroptosis. In addition, IHC staining and western blotting revealed that HKL treatment mitigated the IIR‑induced pyroptosis in rats. Therefore, HKL treatment may mitigate IIR‑induced mitochondrial dysfunction and reduce mitochondrial ROS production by increasing the expression of SIRT3 protein, potentially resulting in an inhibition of pyroptosis during IIR.
Collapse
Affiliation(s)
- Ke Wu
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiuling Wang
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhengyu Zhang
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Luo
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Peng
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Ma
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wang
- Research Center of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunguang Xie
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Wubin Guo
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Ou H, Qiu S, Ye X, Wang X. Screening of Herbs with Potential Modulation of NLRP3 Inflammasomes for Acute Liver Failure: A Study Based on the Herb-Compound-Target Network and the ssGSEA Algorithm. Curr Top Med Chem 2025; 25:318-334. [PMID: 39528455 DOI: 10.2174/0115680266331775241024064136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE NLRP3 inflammasomes are considered to be key factors in the pathogenesis of Acute Liver Failure (ALF). Some Traditional Chinese Medicines (TCMs) have shown protective and therapeutic effects against ALF by inhibiting NLRP3 inflammasomes. However, the inhibitory effects of most TCMs on ALF remain to be further elucidated. This study aimed to screen potential herbs that can treat ALF based on the inhibition of NLRP3 inflammasomes. METHODS Initially, we constructed the target set for 502 herbs. Subsequently, based on the target set and the gene set related to the NLRP3 inflammasome, using the ssGSEA algorithm, we evaluated herb scores and NLRP3 scores in the ALF expression matrix and performed a preliminary herb screening based on score correlations. Through bioinformatics approaches, we identified the key targets for candidate herbs and determined core herbs based on the herb-compound-target network. Furthermore, molecular docking and molecular biology methods validated the screening results of the herbs. RESULTS A total of 18 crucial targets associated with the inhibition of the NLRP3 inflammasome were identified, which included ALDH2, HMOX1, and VEGFA. Subsequently, based on these key targets, a set of 10 primary herbs was chosen, notably Qinghao, Duzhong, and Gouteng. Moreover, the results were verified through molecular docking and molecular dynamic simulation. CONCLUSION Ten key herbs have been identified as potential inhibitors of the NLRP3 inflammasome, offering insights into ALF therapy for drug development.
Collapse
Affiliation(s)
- Haiya Ou
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Susu Qiu
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaopeng Ye
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Lv S, Zhao X, Ma C, Zhao D, Sun T, Fu W, Wei Y, Li W. Advancements in the study of acute lung injury resulting from intestinal ischemia/reperfusion. Front Med (Lausanne) 2024; 11:1399744. [PMID: 38933104 PMCID: PMC11199783 DOI: 10.3389/fmed.2024.1399744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.
Collapse
Affiliation(s)
- Shihua Lv
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Ma
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengming Zhao
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Sun
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenchao Fu
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Wei
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenzhi Li
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Mao J, Chen Y, Zong Q, Liu C, Xie J, Wang Y, Fisher D, Hien NTT, Pronyuk K, Musabaev E, Li Y, Zhao L, Dang Y. Corilagin alleviates atherosclerosis by inhibiting NLRP3 inflammasome activation via the Olfr2 signaling pathway in vitro and in vivo. Front Immunol 2024; 15:1364161. [PMID: 38803504 PMCID: PMC11128681 DOI: 10.3389/fimmu.2024.1364161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Atherosclerosis, a leading cause of global cardiovascular mortality, is characterized by chronic inflammation. Central to this process is the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which significantly influences atherosclerotic progression. Recent research has identified that the olfactory receptor 2 (Olfr2) in vascular macrophages is instrumental in driving atherosclerosis through NLRP3- dependent IL-1 production. Methods To investigate the effects of Corilagin, noted for its anti-inflammatory attributes, on atherosclerotic development and the Olfr2 signaling pathway, our study employed an atherosclerosis model in ApoE-/- mice, fed a high-fat, high-cholesterol diet, alongside cellular models in Ana-1 cells and mouse bone marrow-derived macrophages, stimulated with lipopolysaccharides and oxidized low-density lipoprotein. Results The vivo and vitro experiments indicated that Corilagin could effectively reduce serum lipid levels, alleviate aortic pathological changes, and decrease intimal lipid deposition. Additionally, as results showed, Corilagin was able to cut down expressions of molecules associated with the Olfr2 signaling pathway. Discussion Our findings indicated that Corilagin effectively inhibited NLRP3 inflammasome activation, consequently diminishing inflammation, macrophage polarization, and pyroptosis in the mouse aorta and cellular models via the Olfr2 pathway. This suggests a novel therapeutic mechanism of Corilagin in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jinqian Mao
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiushuo Zong
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuiling Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Xie
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of The Western Cape, Cape Town, South Africa
| | | | - Khrystyna Pronyuk
- Department of Infectious Diseases, O.Bogomolets National Medical University, Kyiv, Ukraine
| | - Erkin Musabaev
- Research Institute of Virology, Ministry of Health, Tashkent, Uzbekistan
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wang F, Huang H, Wei X, Tan P, Wang Z, Hu Z. Targeting cell death pathways in intestinal ischemia-reperfusion injury: a comprehensive review. Cell Death Discov 2024; 10:112. [PMID: 38438362 PMCID: PMC10912430 DOI: 10.1038/s41420-024-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Intestinal ischemia-reperfusion (I/R) is a multifaceted pathological process, and there is a lack of clear treatment for intestinal I/R injury. During intestinal I/R, oxidative stress and inflammation triggered by cells can trigger a variety of cell death mechanisms, including apoptosis, autophagy, pyroptosis, ferroptosis, and necrosis. These cell death processes can send a danger signal for the body to be damaged and prevent intestinal I/R injury. Therefore, identifying key regulatory molecules or markers of these cell death mechanisms when intestinal I/R injury occurs may provide valuable information for the treatment of intestinal I/R injury. This paper reviews the regulatory molecules and potential markers that may be involved in regulating cell death during intestinal I/R and elaborates on the cell death mechanism of intestinal I/R injury at the molecular level to provide a theoretical basis for discovering new molecules or markers regulating cell death during intestinal I/R injury and provides ideas for drug development for the treatment of intestinal I/R injury.
Collapse
Affiliation(s)
- Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
7
|
Wang Y, Li B, Liu G, Han Q, Diao Y, Liu J. Corilagin attenuates intestinal ischemia/reperfusion injury in mice by inhibiting ferritinophagy-mediated ferroptosis through disrupting NCOA4-ferritin interaction. Life Sci 2023; 334:122176. [PMID: 37858718 DOI: 10.1016/j.lfs.2023.122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
AIMS Intestinal ischemia reperfusion (II/R) is a common clinical emergency. Ferroptosis is reported to play a role in II/R injury. Our previous studies revealed that corilagin significantly attenuates intestinal ischemia/reperfusion injuries. However, the underlying molecular mechanism is unclear and requires further study. MATERIALS AND METHODS DAO, GSSG/T-GSH, MDA, and Fe2+ were measured by assay kits, 4-HNE was assessed by IHC, and 15-LOX was measured by ELISA. Mitochondrial damage was observed by TEM and cellular oxidation levels were detected by C11-BODIPY 581/591 and DHE probes. LC3, p62, Beclin1, ACSL4, GPX4, NCOA4, and ferritin expression were examined by WB in vivo and in vitro. IF, co-IF, q-PCR, and constructed NCOA4-knock-down IEC-6 cells were used to evaluate the role of NCOA4 in the effect of corilagin against II/R injury. Temporal and nucleoplasmic variations with or without corilagin were observed by WB. Co-IP and molecular docking were used to investigate the NCOA4-ferritin interaction. KEY FINDINGS Corilagin attenuated II/R-induced ferroptosis both in vitro and in vivo. Further study revealed that the anti-ferroptosis bioactivity of corilagin might be due to the modulation of iron homeostasis via inhibition of ferritinophagy in an NCOA4-dependent manner. SIGNIFICANCE Corilagin might be a potential therapeutic agent for II/R-induced tissue injury.
Collapse
Affiliation(s)
- Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China
| | - Guanting Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Qipeng Han
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China.
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China.
| |
Collapse
|
8
|
Qin J, Xiao X, Li S, Wen N, Qin K, Li H, Wu J, Lu B, Li M, Sun X. Identification of cuproptosis-related biomarkers and analysis of immune infiltration in allograft lung ischemia-reperfusion injury. Front Mol Biosci 2023; 10:1269478. [PMID: 38074089 PMCID: PMC10703368 DOI: 10.3389/fmolb.2023.1269478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/06/2023] [Indexed: 05/25/2025] Open
Abstract
Background: Allograft lung ischemia-reperfusion injury (ALIRI) is a major cause of early primary graft dysfunction and poor long-term survival after lung transplantation (LTx); however, its pathogenesis has not been fully elucidated. Cell death is a mechanism underlying ALIRI. Cuproptosis is a recently discovered form of programmed cell death. To date, no studies have been conducted on the mechanisms by which cuproptosis-related genes (CRGs) regulate ALIRI. Therefore, we explored the potential biomarkers related to cuproptosis to provide new insights into the treatment of ALIRI. Materials and methods: Datasets containing pre- and post-LTx lung biopsy samples and CRGs were obtained from the GEO database and previous studies. We identified differentially expressed CRGs (DE-CRGs) and performed functional analyses. Biomarker genes were selected using three machine learning algorithms. The ROC curve and logistic regression model (LRM) of these biomarkers were constructed. CIBERSORT was used to calculate the number of infiltrating immune cells pre- and post-LTx, and the correlation between these biomarkers and immune cells was analyzed. A competing endogenous RNA network was constructed using these biomarkers. Finally, the biomarkers were verified in a validation set and a rat LTx model using qRT-PCR and Western blotting. Results: Fifteen DE-CRGs were identified. GO analysis revealed that DE-CRGs were significantly enriched in the mitochondrial acetyl-CoA biosynthetic process from pyruvate, protein lipoylation, the tricarboxylic acid (TCA) cycle, and copper-transporting ATPase activity. KEGG enrichment analysis showed that the DE-CRGs were mainly enriched in metabolic pathways, carbon metabolism, and the TCA cycle. NFE2L2, NLRP3, LIPT1, and MTF1 were identified as potential biomarker genes. The AUC of the ROC curve for each biomarker was greater than 0.8, and the LRM provided an excellent classifier with an AUC of 0.96. These biomarkers were validated in another dataset and a rat LTx model, which exhibited good performance. In the CIBERSORT analysis, differentially expressed immune cells were identified, and the biomarkers were associated with the immune cells. Conclusion: NFE2L2, NLRP3, LIPT1, and MTF1 may serve as predictors of cuproptosis and play an important role in the pathogenesis of cuproptosis in ALIRI.
Collapse
Affiliation(s)
- Jianying Qin
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Xiaoyue Xiao
- Department of Pathology, The Fifth Affiliated Hospital of Guangxi Medical University, The First People’s Hospital of Nanning, Nanning, China
| | - Silin Li
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Ning Wen
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Ke Qin
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Haibin Li
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Jihua Wu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Bing Lu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Minghu Li
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| | - Xuyong Sun
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
| |
Collapse
|