1
|
Kanoujia J, Raina N, Kishore A, Kaurav M, Tuli HS, Kumar A, Gupta M. Revealing the promising era of silk-based nanotherapeutics: a ray of hope for chronic wound healing treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6617-6641. [PMID: 39888364 DOI: 10.1007/s00210-024-03761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
Chronic wounds significantly contribute to disability and affect the mortality rate in diabetic patients. In addition, pressure ulcers, diabetic foot ulcers, arterial ulcers, and venous ulcers pose a significant health burden due to their associated morbidity and death. The complex healing process, environmental factors, and genetic factors have been identified as the rate-limiting stages of chronic wound healing. Changes in temperature, moisture content, mechanical strain, and genetics can result in slow wound healing, increased susceptibility to bacterial infections, and poor matrix remodelling. These obstacles can be addressed with natural biomaterials exhibiting antimicrobial, collagen synthesis, and granulation tissue formation properties. Recently, silk proteins have gained significant attention as a natural biomaterial owing to good biocompatibility, biodegradability, reduced immunogenicity, ease of sterilization, and promote the wound healing process. The silk components such as sericin and fibroin in combination with nano(platforms) effectively promote wound repair. This review emphasises the potential of sericin and fibroin when combined with nano(platforms) like nanoparticles, nanofibers, and nanoparticles-embedded films, membranes, gels, and nanofibers.
Collapse
Affiliation(s)
- Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Monika Kaurav
- KIET School of Pharmacy, KIET Group of Institution, Ghaziabad, Uttar Pradesh, 201206, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Akhilesh Kumar
- Division of Medicine, ICAR Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
2
|
Schwingenschlögl-Maisetschläger V, Vila XM, Duman I, Okuducu C, Kuess P, Hacker M, Kraule C, Teuschl-Woller A, Pichler V. Sustainable and standardized fabrication, recycling, and sterilization of salt-bed casted silk fibroin sponges. Int J Biol Macromol 2025; 312:144212. [PMID: 40373911 DOI: 10.1016/j.ijbiomac.2025.144212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/17/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Silk fibroin, as a highly versatile biomaterial, is increasingly applied in research, medicine and other sterile applications. The rising usage calls for a robust, standardized and reproducible silk scaffold production and a higher need for silk resources. In this study we standardized the silk fibroin sponges fabrication, set up a quality control protocol, introduced a recycling method to reduce the resources needed and analyzed a sterilization method for translation into preclinical applications. In overall, the development of a fast and efficient quality control protocol led to a reduction in batch-to-batch variabilities. Recycling of silk remnants led to a significant reduction of required silk cocoons of approximately 40 %, with the silk scaffold offering similar product properties as the non-recycled sponges. With the introduction of the recycling trial, we correspond to the requirements for green biomaterials including waste reduction, life cycle introduction and a reduction of environmental impact. Under sterilization conditions, the silk scaffold demonstrated high stability proving that gamma sterilization can be used for bigger batch applications and medical translation. Our establishment of a recycling possibility can pave the way for broader, standardized and "greener" biomedical applications of silk fibroin.
Collapse
Affiliation(s)
- Verena Schwingenschlögl-Maisetschläger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Xavier Monforte Vila
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| | - Irem Duman
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ceren Okuducu
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Department of Obstetrics and Gynaecology, Medical University of Graz, Auenburggerplatz 14, 8036 Graz, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christian Kraule
- DOC medikus GmbH, Novomaticstraße 19, 2352 Gumpoldskirchen, Austria
| | - Andreas Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Yang D, He D, Yang F, Meng X, Zheng K, Lin H, Cheng Y, Tam WC, Li G. Advances in harnessing biological macromolecules for periodontal tissue regeneration: A review. Int J Biol Macromol 2025; 311:144031. [PMID: 40345296 DOI: 10.1016/j.ijbiomac.2025.144031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Periodontitis is a chronic multifactorial inflammatory oral disease that can lead to gingival recession, destruction of the periodontal ligament, alveolar bone loss, and tooth loss. Solutions for periodontal tissue regeneration utilize biological macromolecules, including natural ones (such as collagen (COL), alginate (ALG), chitosan (CS), silk fibroin (SF), hyaluronic acid (HA), etc.), inorganic ones (such as hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP), bioactive glass (BG), etc.), synthetic, composite, and nanomaterials. Carrier materials, including hydrogels, nanofibers, nanoparticles, microneedles, and thin films, are used to effectively deliver therapeutic agents and biological factors such as stem cells, bioactive molecules, and genes, so as to promote the elimination of bacteria and tissue regeneration at the damaged periodontal sites. This review mainly focuses on the latest progress of biological macromolecules and tissue engineering technologies in periodontal regeneration in recent years. It aims to inspire the design and development of innovative biomaterials and delivery systems for novel regenerative periodontal treatments.
Collapse
Affiliation(s)
- Dongyi Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dong He
- Department of Stomatology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Fanlei Yang
- Orthopaedic Institute of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiangyou Meng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Zheng
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Haitao Lin
- Silk Engineering Research Center of Guangxi, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yi Cheng
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Wai Cheong Tam
- Fire Research Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China; Silk Engineering Research Center of Guangxi, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| |
Collapse
|
4
|
Zhang T, Zhang R, Zhang Y, Kannan PR, Li Y, Lv Y, Zhao R, Kong X. Silk-based biomaterials for tissue engineering. Adv Colloid Interface Sci 2025; 338:103413. [PMID: 39879886 DOI: 10.1016/j.cis.2025.103413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Tissue engineering (TE) involves repairing, replacing, regeneration, or improving the function of tissues and organs by combining cells, growth factors and scaffold materials. Among these, scaffold materials play a crucial role. Silk fibroin (SF), a natural biopolymer, has been widely used in the TE field due to its good biodegradability, biocompatibility, and mechanical properties attributed to its chemical composition and structure. This paper reviews the structure, extraction, and modification methods of SF. In addition, it discusses SF's regulation of cell behavior and its various processing modes. Finally, the applications of SF in TE and perspectives on future developments are presented. This review provides comprehensive and alternative rational insights for further biomedical translation in SF medical device design, further revealing the great potential of SF biomaterials.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yunyang Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yao Li
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
5
|
Yankov G, Atanassova V, Karatodorov S, Stefanov R, Shumanov K, Iordanova E, Daskalova A, Angelova L, Filipov E. Investigation of the Nonlinear Optical Properties of Silk Fibroin (SF) Using the Z-Scan Method. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1052. [PMID: 40077278 PMCID: PMC11901207 DOI: 10.3390/ma18051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Silk fibroin (SF), the primary protein in silkworm silk, has emerged as a promising organic nonlinear optical material due to its unique combination of optical transparency, biocompatibility, and environmental sustainability. In this study, we investigate the nonlinear optical properties of SF thin films using the z-scan technique with femtosecond laser pulses (35 fs, 800 nm, 1 kHz). Our results reveal a strong self-defocusing effect (negative nonlinear refractive index) and significant multiphoton absorption, demonstrating SF's tunable nonlinear response. Additionally, optical transmittance measurements confirm SF's partial transparency in the deep UV region, enhancing its potential for second-harmonic generation (SHG) and efficient light frequency conversion. These findings address a key knowledge gap in nonlinear optics, positioning SF as a versatile biopolymer for advanced photonic applications.
Collapse
Affiliation(s)
- Georgi Yankov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Victoria Atanassova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Stefan Karatodorov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Radostin Stefanov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Krum Shumanov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Ekaterina Iordanova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, Blvd., 1784 Sofia, Bulgaria
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (A.D.)
| | - Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (A.D.)
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (A.D.)
| |
Collapse
|
6
|
Wu T, Wu H, Wang Q, He X, Shi P, Yu B, Cong H, Shen Y. Current status and future developments of biopolymer microspheres in the field of pharmaceutical preparation. Adv Colloid Interface Sci 2024; 334:103317. [PMID: 39461111 DOI: 10.1016/j.cis.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Polymer composite microspheres offer several advantages including highly designable structural properties, adjustable micro-nano particle size distribution, easy surface modification, large specific surface area, and high stability. These features make them valuable in various fields such as medicine, sensing, optics, and display technologies, with significant applications in clinical diagnostics, pathological imaging, and drug delivery in the medical field. Currently, microspheres are primarily used in biomedical research as long-acting controlled-release agents and targeted delivery systems, and are widely applied in bone tissue repair, cancer treatment, and wound healing. Different types of polymer microspheres offer distinct advantages and application prospects. Efforts are ongoing to transition successful experimental research to industrial production by expanding various fabrication technologies. This article provides an overview of materials used in microsphere manufacturing, different fabrication methods, modification techniques to enhance their properties and applications, and discusses the role of microspheres in drug delivery engineering.
Collapse
Affiliation(s)
- Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangqiong He
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Pengbao Shi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Wennmann JT, Senger S, Ruoff B, Jehle JA, Suraporn S. Distribution and genetic diversity of Bombyx mori nucleopolyhedrovirus in mass-reared silkworms in Thailand. J Invertebr Pathol 2024; 207:108221. [PMID: 39413965 DOI: 10.1016/j.jip.2024.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Silk is an economically and culturally important product of Thailand that is threatened by the outbreaks of the Bombyx mori nucleopolyhedrovirus (BmNPV) in silkworm rearings. BmNPV infects the larval stages of the silkworm Bombyx mori, causing fatal viral infection and preventing the larvae from reaching the pupal stage. Numerous BmNPV isolates have been described from silk-producing countries from all over the world. In this study, the geographic distribution of BmNPV in Thailand was analyzed by collecting 18 samples from different regions. The BmNPV samples were analyzed by PCR and whole genome sequencing was performed for eight specimens. Their genome size ranged from 125,888 bp to 126,783 bp, comprising 138 open reading frames. Although the sequenced BmNPV genomes could be phylogenetically differentiated, no correlation between geographic and genetic distance was observed, indicating a close relationship between the BmNPV from Thailand.
Collapse
Affiliation(s)
- Jörg T Wennmann
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany.
| | - Sergei Senger
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Birgit Ruoff
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Johannes A Jehle
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Siripuk Suraporn
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand.
| |
Collapse
|
8
|
Rana I, Deepa, Aslam M, Ranjan KR, Singh P, Kumari K. A review on the use of composites of a natural protein, silk fibroin with Mxene/carbonaceous materials in biomedical science. Int J Biol Macromol 2024; 278:135101. [PMID: 39227275 DOI: 10.1016/j.ijbiomac.2024.135101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Silk fibroin (SF), a natural biodegradable and biocompatible protein, has garnered significant attention in biomedical applications due to its impressive properties, including excellent biocompatibility, biodegradability, and mechanical resilience. Nevertheless, its broader usage faces obstacles by its insufficient mechanical strength and electrical conductivity. In order to address these constraints, recent studies have concentrated on combining SF with cutting-edge nanomaterials like MXene and carbon-based materials. This review comprehensively examines the applications and potential of silk fibroin-MXene/carbon-based nanocomposites in biomedical fields. The unique properties of SF, MXene, and carbon-based materials are explored, emphasizing how their combination enhances mechanical strength, conductivity, and biocompatibility. These composites show substantial enhancements in performance for several biomedical applications by utilising the excellent conductivity and mechanical capabilities of MXene and carbonaceous elements. The innovative potential of these nanocomposites is highlighted by critically discussing key applications such as tissue engineering, drug delivery, and biosensing. In addition, the work discusses the latest research progress, difficulties, and future prospects in the sector, providing valuable insights into possible breakthroughs and uses. This review seeks to comprehensively analyse the existing information on silk fibroin-MXene/carbon based nanocomposites in healthcare.
Collapse
Affiliation(s)
- Ishika Rana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201303, India
| | - Deepa
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201303, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
9
|
Siddiqua A, Clutter E, Garklavs O, Kanniyappan H, Wang RR. Electrospun Silk-ICG Composite Fibers and the Application toward Hemorrhage Control. J Funct Biomater 2024; 15:272. [PMID: 39330247 PMCID: PMC11433354 DOI: 10.3390/jfb15090272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
In trauma and surgery, efficient hemorrhage control is crucial to avert fatal blood loss and increase the likelihood of survival. There is a significant demand for novel biomaterials capable of promptly and effectively managing bleeding. This study aimed to develop flexible biocomposite fibrous scaffolds with an electrospinning technique using silk fibroin (SF) and indocyanine green (ICG). The FDA-approved ICG dye has unique photothermal properties. The water permeability, degradability, and biocompatibility of Bombyx mori cocoon-derived SF make it promising for biomedical applications. While as-spun SF-ICG fibers were dissolvable in water, ethanol vapor treatment (EVT) effectively induced secondary structural changes to promote β-sheet formation. This resulted in significantly improved aqueous stability and mechanical strength of the fibers, thereby increasing their fluid uptake capability. The enhanced SF-ICG interaction effectively prevented ICG leaching from the composite fibers, enabling them to generate heat under NIR irradiation due to ICG's photothermal properties. Our results showed that an SF-ICG 0.4% fibrous matrix can uptake 473% water. When water was replaced by bovine blood, a 25 s NIR irradiation induced complete blood coagulation. However, pure silk did not have the same effect. Additionally, NIR irradiation of the SF-ICG fibers successfully stopped the flow of blood in an in vitro model that mimicked a damaged blood vessel. This novel breakthrough offers a biotextile platform poised to enhance patient outcomes across various medical scenarios, representing a significant milestone in functional biomaterials.
Collapse
Affiliation(s)
- Ayesha Siddiqua
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Elwin Clutter
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Olga Garklavs
- Wilbur Wright College, City Colleges of Chicago, Chicago, IL 60634, USA
| | | | - Rong R Wang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
10
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
11
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
12
|
Dos Santos FV, Siqueira RL, de Morais Ramos L, Yoshioka SA, Branciforti MC, Correa DS. Silk fibroin-derived electrospun materials for biomedical applications: A review. Int J Biol Macromol 2024; 254:127641. [PMID: 37913875 DOI: 10.1016/j.ijbiomac.2023.127641] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Francisco Vieira Dos Santos
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Renato Luiz Siqueira
- Materials Engineering Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Lucas de Morais Ramos
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sérgio Akinobu Yoshioka
- Laboratory of Biochemistry and Biomaterials, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Márcia Cristina Branciforti
- Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Chen Y, Lyu R, Wang J, Cheng Q, Yu Y, Yang S, Mao C, Yang M. Metal-Organic Frameworks Nucleated by Silk Fibroin and Modified with Tumor-Targeting Peptides for Targeted Multimodal Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302700. [PMID: 37610511 PMCID: PMC10558676 DOI: 10.1002/advs.202302700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Indexed: 08/24/2023]
Abstract
Multimodal therapy requires effective drug carriers that can deliver multiple drugs to specific locations in a controlled manner. Here, the study presents a novel nanoplatform constructed using zeolitic imidazolate framework-8 (ZIF-8), a nanoscale metal-organic framework nucleated under the mediation of silk fibroin (SF). The nanoplatform is modified with the newly discovered MCF-7 breast tumor-targeting peptide, AREYGTRFSLIGGYR (AR peptide). Indocyanine green (ICG) and doxorubicin (DOX) are loaded onto the nanoplatform with high drug encapsulation efficiency (>95%). ICG enables the resultant nanoparticles (NPs), called AR-ZS/ID-P, to release reactive oxygen species for photodynamic therapy (PDT) and heat for photothermal therapy (PTT) under near-infrared (NIR) irradiation, promoting NIR fluorescence and thermal imaging to guide DOX-induced chemotherapy. Additionally, the controlled release of both ICG and DOX at acidic tumor conditions due to the dissolution of ZIF-8 provides a drug-targeting mechanism in addition to the AR peptide. When intravenously injected, AR-ZS/ID-P NPs specifically target breast tumors and exhibit higher anticancer efficacy than other groups through ICG-enabled PDT and PTT and DOX-derived chemotherapy, without inducing side effects. The results demonstrate that AR-ZS/ID-P NPs are a promising multimodal theranostic nanoplatform with maximal therapeutic efficacy and minimal side effects for targeted and controllable drug delivery.
Collapse
Affiliation(s)
- Yuping Chen
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Ruyin Lyu
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Jie Wang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Qichao Cheng
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Yanfang Yu
- Jiangxi Cash Crops InstituteNanchangJiangxi330202P. R. China
| | - Shuxu Yang
- Department of NeurosurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang University3 East Qingchun RoadHangzhouZhejiang310016P. R. China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongSha TinHong Kong SARP. R. China
- School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| |
Collapse
|
14
|
Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435. [PMID: 37841202 PMCID: PMC10568484 DOI: 10.3389/fchem.2023.1259435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Global Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Bengaluru, Karnataka, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Huang L, Shi J, Zhou W, Zhang Q. Advances in Preparation and Properties of Regenerated Silk Fibroin. Int J Mol Sci 2023; 24:13153. [PMID: 37685960 PMCID: PMC10487664 DOI: 10.3390/ijms241713153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Over the years, silk fibroin (SF) has gained significant attention in various fields, such as biomedicine, tissue engineering, food processing, photochemistry, and biosensing, owing to its remarkable biocompatibility, machinability, and chemical modifiability. The process of obtaining regenerated silk fibroin (RSF) involves degumming, dissolving, dialysis, and centrifugation. RSF can be further fabricated into films, sponges, microspheres, gels, nanofibers, and other forms. It is now understood that the dissolution method selected greatly impacts the molecular weight distribution and structure of RSF, consequently influencing its subsequent processing and application. This study comprehensively explores and summarizes different dissolution methods of SF while examining their effects on the structure and performance of RSF. The findings presented herein aim to provide valuable insights and references for researchers and practitioners interested in utilizing RSF in diverse fields.
Collapse
Affiliation(s)
| | | | | | - Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|