1
|
He L, Edi S, Ma J, Kong Z, Dai C, Huang L, Zeng R, Gou K. Prevention and treatment of radiation injury by traditional Chinese medicine: A review. CHINESE HERBAL MEDICINES 2025; 17:220-234. [PMID: 40256708 PMCID: PMC12009072 DOI: 10.1016/j.chmed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 09/12/2024] [Indexed: 04/22/2025] Open
Abstract
Nuclear radiation exposure events and tumor radiotherapy are highly susceptible to a range of psychological, physiological and other health problems, which can seriously affect patients' quality of life. It has been shown that 87.5 % of tumor patients are exposed to varying degrees of radiation injury during radiotherapy. The treatment of radiation injury (RI) in modern medicine is limited to drug therapy, cell therapy, etc. Among them, the most chemical drugs cause many adverse reactions including fatigue, nausea, vomiting, etc., and there are very few drugs dedicated to the treatment of RI. Traditional Chinese medicine (TCM) is a rich natural medicinal resource, which has a wide range of pharmacological activities, multiple targets of action and minimal toxic side effects. Many studies have demonstrated that TCM and its compound preparations have enormous potential in the treatment of radiation induced comprehensive diseases. However, TCM is limited in clinical application due to its slow onset of action, complex active ingredients, and low bioavailability. Therefore, the article reviews the application, molecular mechanisms, and new dosage forms of TCM in the prevention and treatment of RI. On this basis, we will focus on discussing the development advantages and application prospects of the combination of traditional Chinese and Western medicine to achieve highly efficient treatment of RI. This review aims to provide scientific and effective drug delivery strategies and basic theoretical support for the clinical effective treatment of RI with TCM, and further promote the innovative development of TCM.
Collapse
Affiliation(s)
- Lixue He
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Shixing Edi
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Jun Ma
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Zilin Kong
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Chunguang Dai
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation of National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Rui Zeng
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610225, China
| | - Kaijun Gou
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
2
|
Guo Y, Yang P, Wu Z, Zhang S, You F. Mechanisms of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (huang qi) and Angelica sinensis (Oliv.) Diels (dang gui) in Ameliorating Hypoxia and Angiogenesis to Delay Pulmonary Nodule Malignant Transformation. Integr Cancer Ther 2025; 24:15347354241311917. [PMID: 39882753 PMCID: PMC11780663 DOI: 10.1177/15347354241311917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Screening for pulmonary nodules (PN) using low-dose CT has proven effective in reducing lung cancer (LC) mortality. However, current treatments relying on follow-up and surgical excision fail to fully address clinical needs. Pathological angiogenesis plays a pivotal role in supplying oxygen necessary for the progression of PN to LC. The interplay between hypoxia and angiogenesis establishes a vicious cycle, rendering anti-angiogenesis therapy alone insufficient to prevent PN to LC transformation. In traditional Chinese medicine (TCM), PN is referred to as "Feiji," which is mainly attributed to Qi and blood deficiency, correspondingly, the most commonly prescribed medicines are Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (huang qi) (AR) and Angelica sinensis (Oliv.) Diels (dang gui) (ARS). Modern pharmacological studies have demonstrated that AR and ARS possess immune-enhancing, anti-tumor, anti-inflammatory, and anti-angiogenic properties. However, the precise mechanisms through which AR and ARS exert anti-angiogenic effects to delay PN progression to LC remain inadequately understood. This review explores the critical roles of hypoxia and angiogenesis in the transition from PN to LC. It emphasizes that, compared to therapies targeting angiogenic growth factors alone, AR, ARS, and their compound-based prescriptions offer additional benefits. These include ameliorating hypoxia by restoring blood composition, enhancing vascular structure, accelerating circulation, promoting vascular normalization, and blocking or inhibiting various pro-angiogenic expressions and receptor interactions. Collectively, these actions inhibit angiogenesis and delay the PN-to-LC transformation. Finally, this review summarizes recent advancements in related research, identifies existing limitations and gaps in knowledge, and proposes potential strategies and recommendations to address these challenges.
Collapse
Affiliation(s)
- Ying Guo
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People’s Hospital, Chengdu, China
| | - Zihong Wu
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Fengming You
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Yin Z, Ou R, Zhu Y, Liu Z, Huang J, Zhong Q, Li G, Zhang Q, Liu S. Coniferyl ferulate alleviate xylene-caused hematopoietic stem and progenitor cell toxicity by Mgst2. Front Pharmacol 2024; 15:1334445. [PMID: 38523643 PMCID: PMC10957570 DOI: 10.3389/fphar.2024.1334445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 03/26/2024] Open
Abstract
Xylene exposure is known to induce toxicity in hematopoietic stem and progenitor cells (HSPCs), leading to bone marrow suppression and potential leukemogenesis. However, research on the gene expression profiles associated with xylene-induced toxicity in HSPCs, and effective therapeutic interventions, remains scarce. In our study, we employed single-cell RNA sequencing to capture the transcriptomic shifts within bone marrow HSPCs both prior to and following treatment with coniferyl ferulate (CF) in a mouse model of xylene-induced hematotoxicity. Subsequently, we pinpointed CF as a targeted agent using SPR-LC/MS analysis. This enabled us to confirm the link between the gene Mgst2 and specific cellular subtypes. Our data revealed that CF significantly countered the reduction of both monocyte and neutrophil progenitor cells, which are commonly affected by xylene toxicity. Through targeted analysis, we identified Mgst2 as a direct molecular target of CF. Notably, Mgst2 is preferentially expressed in neutrophil progenitor cells and is implicated in mitochondrial metabolic processes. By selectively inhibiting Mgst2 in bone marrow, we observed amelioration of xylene-induced hematotoxic effects. In summary, our findings suggest that coniferyl ferulate can mitigate the detrimental impact of xylene on hematopoietic stem and progenitor cells by targeting Mgst2, particularly within subpopulations of neutrophil progenitors. This discovery not only advances our comprehension of the cellular response of HSPCs to xenobiotic stressors like xylene but also identifies CF and Mgst2 as potential therapeutic targets for alleviating xylene-induced hematotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangchao Li
- *Correspondence: Guangchao Li, ; Qing Zhang, ; Shuang Liu,
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Wang M, Yan M, Tan L, Zhao X, Liu G, Zhang Z, Zhang J, Gao H, Qin W. Non-coding RNAs: targets for Chinese herbal medicine in treating myocardial fibrosis. Front Pharmacol 2024; 15:1337623. [PMID: 38476331 PMCID: PMC10928947 DOI: 10.3389/fphar.2024.1337623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.
Collapse
Affiliation(s)
- Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
5
|
Gao A, Wang M, Tang X, Shi G, Hou K, Fang J, Zhou L, Zhou H, Jiang W, Li Y, Ouyang F. NDP52 SUMOylation contributes to low-dose X-rays-induced cardiac hypertrophy through PINK1/Parkin-mediated mitophagy via MUL1/SUMO2 signalling. J Cell Physiol 2024; 239:79-96. [PMID: 37942585 DOI: 10.1002/jcp.31145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Radiation-induced heart damage caused by low-dose X-rays has a significant impact on tumour patients' prognosis, with cardiac hypertrophy being the most severe noncarcinogenic adverse effect. Our previous study demonstrated that mitophagy activation promoted cardiac hypertrophy, but the underlying mechanisms remained unclear. In the present study, PARL-IN-1 enhanced excessive hypertrophy of cardiomyocytes and exacerbated mitochondrial damage. Isobaric tags for relative and absolute quantification-based quantitative proteomics identified NDP52 as a crucial target mediating cardiac hypertrophy induced by low-dose X-rays. SUMOylation proteomics revealed that the SUMO E3 ligase MUL1 facilitated NDP52 SUMOylation through SUMO2. Co-IP coupled with LC-MS/MS identified a critical lysine residue at position 262 of NDP52 as the key site for SUMO2-mediated SUMOylation of NDP52. The point mutation plasmid NDP52K262R inhibited mitophagy under MUL1 overexpression, as evidenced by inhibition of LC3 interaction with NDP52, PINK1 and LAMP2A. A mitochondrial dissociation study revealed that NDP52K262R inhibited PINK1 targeting to endosomes early endosomal marker (EEA1), late/lysosome endosomal marker (LAMP2A) and recycling endosomal marker (RAB11), and laser confocal microscopy confirmed that NDP52K262R impaired the recruitment of mitochondria to the autophagic pathway through EEA1/RAB11 and ATG3, ATG5, ATG16L1 and STX17, but did not affect mitochondrial delivery to lysosomes via LAMP2A for degradation. In conclusion, our findings suggest that MUL1-mediated SUMOylation of NDP52 plays a crucial role in regulating mitophagy in the context of low-dose X-ray-induced cardiac hypertrophy. Two hundred sixty-second lysine of NDP52 is identified as a key SUMOylation site for low-dose X-ray promoting mitophagy activation and cardiac hypertrophy. Collectively, this study provides novel implications for the development of therapeutic strategies aimed at preventing the progression of cardiac hypertrophy induced by low-dose X-rays.
Collapse
Affiliation(s)
- Anbo Gao
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Mengjie Wang
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Gangqing Shi
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Kai Hou
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jinren Fang
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Linlin Zhou
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hong Zhou
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weimin Jiang
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| |
Collapse
|