1
|
Ding K, Bao Q, He J, Wang J, Wang H. Tetrahydropalmatine improves mitochondrial function in vascular smooth muscle cells of atherosclerosis in vitro by inhibiting Ras homolog gene family A/Rho-associated protein kinase-1 signaling pathway. Open Med (Wars) 2025; 20:20241059. [PMID: 40109328 PMCID: PMC11920760 DOI: 10.1515/med-2024-1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 03/22/2025] Open
Abstract
Background Tetrahydropalmatine (THP) regulates mitochondrial function in vascular smooth muscle cells (VSMCs) to prevent or alleviate atherosclerosis (AS), with unclear specific mechanism. Methods AS models were constructed by oxidized low-density lipoprotein (ox-LDL)-treated VSMCs. Cell counting kit-8 for cell viability, wound scratch assay for cell migration, and flow cytometry for cell cycle, intracellular reactive oxygen species, and mitochondrial membrane potential (MMP) were performed. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels by biochemical kits, oxygen consumption rate (OCR) by seahorse apparatus, apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay (TUNEL) staining, and apoptosis-related expression by western blot were detected. Ras homolog gene family A/Rho-associated protein kinase-1 (RhoA/ROCK1) levels were measured by western blot and ELISA. The RhoA agonist, U46619, was employed to validate mechanism of THP. Results THP suppressed cell cycle progression and cell migration whereas alleviating cell viability and oxidative stress, as reduced MDA and enhanced SOD levels in ox-LDL-incubated VSMCs. THP protected mitochondrial function by higher MMP levels and OCR values. Additionally, THP decreased TUNEL-positive cells, Bax, Caspase-3, RhoA, ROCK1, and osteopontin expression, while increased Bcl-2 and smooth muscle myosin heavy chain levels. Furthermore, U46619 intervention antagonized effects of THP. Conclusion THP improved mitochondrial function in VSMCs of AS by inhibiting RhoA/ROCK1 signaling pathway.
Collapse
Affiliation(s)
- Ke Ding
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Qiying Bao
- Department of Pharmacy, Hangzhou Fuyang Hospital of TCM Orthopedics, Hangzhou, 311499, Zhejiang, China
| | - Jiaqi He
- Traditional Chinese Medicine Dispensary, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Jiahong Wang
- Traditional Chinese Medicine Dispensary, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548, Binwen Road, Hangzhou, 310053, Zhejiang, China
| |
Collapse
|
2
|
Liang WZ, Chia YY, Sun HJ, Sun GC. Exploration of beauvericin's toxic effects and mechanisms in human astrocytes and N-acetylcysteine's protective role. Toxicon 2024; 243:107734. [PMID: 38670497 DOI: 10.1016/j.toxicon.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Beauvericin (BEA) is a newly identified mycotoxin produced by various Fusarium species, and its contamination in food and animal feed is widespread globally. This mycotoxin demonstrates cytotoxic effects by inducing oxidative stress in multiple models. Furthermore, evidence indicates that BEA possesses diverse toxic activities, making it a promising candidate for toxicological research. Recent studies have highlighted the ability of BEA to traverse the blood-brain barrier, suggesting its potential neurotoxicity. However, limited information is available regarding the neurotoxic effects of BEA on human astrocytes. Therefore, this study aimed to assess the neurotoxic effects of BEA on the Gibco® Human Astrocyte (GHA) cell line and elucidate the underlying mechanisms. Additionally, the study aimed to investigate the protective effects of the antioxidant N-acetylcysteine (NAC) against BEA-induced toxicity. The data show that exposure to BEA within the 2.5-15 μM concentration range resulted in concentration-dependent cytotoxicity. BEA-treated cells exhibited significantly increased levels of reactive oxygen species (ROS), while intracellular glutathione (GSH) content was significantly reduced. Western blot analysis of cells treated with BEA revealed altered protein levels of Bax, cleaved caspase-9, and caspase-3, along with an increased Bax/Bcl-2 ratio, indicating the induction of apoptosis. Additionally, BEA exposure triggered antioxidant responses, as evidenced by increased protein expression of Nrf2, HO-1, and NQO1. Significantly, pretreatment with NAC partially attenuated the significant toxic effects of BEA. In conclusion, our findings suggest that BEA-induced cytotoxicity in GHA cells involves oxidative stress-associated apoptosis. Furthermore, NAC demonstrates potential as a protective agent against BEA-induced oxidative damage.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
| | - Yuan-Yi Chia
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Huai-Jhih Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114202, Taiwan.
| |
Collapse
|
3
|
Wang H, Han J, Dmitrii G, Zhang XA. Potential Targets of Natural Products for Improving Cardiac Ischemic Injury: The Role of Nrf2 Signaling Transduction. Molecules 2024; 29:2005. [PMID: 38731496 PMCID: PMC11085255 DOI: 10.3390/molecules29092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| |
Collapse
|
4
|
Zhou W, Yang G, Wen Y, Xiao Q, Sun L, Li Y, Gong Z, Wang Y. Metabolites-Based Network Pharmacology to Preliminarily Verify In Vitro Anti-Inflammatory Effect of Ardisiacrispin B. Int J Mol Sci 2023; 24:17059. [PMID: 38069381 PMCID: PMC10707123 DOI: 10.3390/ijms242317059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Ardisiae Crenatae Radix is an ethnic medicinal herb with good anti-inflammatory activity. Ardisiacrispin B is one of the main components in Ardisiae Crenatae Radix extract, with a content of up to 16.27%, and it may be one of the pharmacological components through which Ardisiae Crenatae Radix exerts anti-inflammatory activity. At present, reports on ardisiacrispin B mainly focus on anti-tumor effects, and there have been no reports on anti-inflammatory activities. As a triterpenoid saponin, due to its large molecular weight and complex structure, the composition of substances that function in the body may include other forms after metabolism, in addition to compounds with original structures. Exploring the anti-inflammatory effects on the prototypes and metabolites of the compound may provide a more comprehensive response to the characteristics of ardisiacrispin B's anti-inflammatory action. In this study, ardisiacrispin B was analyzed for metabolites to explore its metabolic processes in vivo. Subsequently, the anti-inflammatory effects of the prototypes and metabolites were further analyzed through network pharmacology, with the expectation of discovering the signaling metabolic pathways through which they may act. Finally, the anti-inflammatory effects of ardisiacrispin B in vitro and the effects on key signaling pathways at the protein level were explored. The results of this study showed that the isolated compounds were confirmed to be ardisiacrispin B. After the metabolite analysis, a total of 26 metabolites were analyzed, and the metabolism process in rats mainly involves oxidation, dehydration, glucuronide conjugation, and others. Speculation as to the anti-inflammatory molecular mechanisms of the prototypes and metabolites of ardisiacrispin B revealed that it may exert its anti-inflammatory effects mainly by affecting the PI3K-AKT pathway. Further anti-inflammatory mechanisms demonstrated that ardisiacrispin B had a good anti-inflammatory effect on LPS-induced RAW264.7 cells and a strong inhibitory effect on NO, TNF-α, and IL-1β release in cells. Furthermore, it had significant inhibitory effects on the expression of PI3K, P-PI3K, AKT, and P-AKT. This study supplements the gaps in the knowledge on the in vivo metabolic process of ardisiacrispin B and explores its anti-inflammatory mechanism, providing an experimental basis for the development and utilization of pentacyclic triterpenoids.
Collapse
Affiliation(s)
- Wen Zhou
- School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China;
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China; (G.Y.); (Y.W.); (Q.X.); (L.S.)
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Guixiang Yang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China; (G.Y.); (Y.W.); (Q.X.); (L.S.)
| | - Yushuang Wen
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China; (G.Y.); (Y.W.); (Q.X.); (L.S.)
| | - Qian Xiao
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China; (G.Y.); (Y.W.); (Q.X.); (L.S.)
| | - Le Sun
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China; (G.Y.); (Y.W.); (Q.X.); (L.S.)
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China;
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Yonglin Wang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China;
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China; (G.Y.); (Y.W.); (Q.X.); (L.S.)
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
5
|
Li M, Tang D, Xu R, Zhang S, Chen Y, Peng W. Uncovering quality markers of Yiqi-Tongluo capsule against myocardial ischemia and optimization of its extraction process. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1230:123926. [PMID: 37956469 DOI: 10.1016/j.jchromb.2023.123926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Myocardial ischemia (MI), a condition in which the heart is unable to function due to insufficient blood and oxygen supply, is a major cause of death from coronary heart disease (CHD). Yiqi Tongluo capsule (YTC) is a Chinese patent drug which commonly used for treatment of MI in clinic. However, the related active components of YTC for treatment of MI were still uncovered. This paper is aimed to study the quality markers (Q-markers) of YTC and further optimize the extraction process of YTC based on Q-markers, providing research foundation for the further modern pharmaceutical preparations of YTC. We firstly used UPLC-QTOF-MS to analyze the constituents of YTC absorbed in blood, then isoprenaline (ISO) induced H9c2 cell model was used further screen the active constituents with protective effects on cardiomyocytes. After that, the orthogonal table (L9 (34)) was used to optimize the extraction process with three levels of 4 factors (water addition, immersion time, extraction time and decoction times). Finally, the HPLC fingerprint of 15 batches of optimized YTC was established. In our present study, a total of 33 components were identified in YTC, of which 10 components were absorbed in blood. Among the 10 components, 8 compounds had significant protective effects on ISO stimulated H9c2 cells, including Paeoniflorin, Ferulic acid, Calycosin, Senkyunolide A, N-butylphthalide, Z-ligustilide, LevistilideA, and Astragaloside IV, which were considered as the Q-markers of YTC. The optimized extraction process based on Q-marker as follows: soaking 1 h, then adding 8 times water to extract 3 times by decoction, each extraction lasts 1.5 h. The HPLC fingerprint of optimized YTC was established with 15 batches of YTC samples, and the optimized YTC samples has no significant toxicity to the heart, liver, spleen, lungs, and brain tissues of rats.
Collapse
Affiliation(s)
- Meiyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Dandan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Sirong Zhang
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, PR China
| | - Yu Chen
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, PR China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China.
| |
Collapse
|
6
|
Yang WG, Sun A, Zhu R, Liu N, He WJ, Liu LL. Exploration of Artemisinin Against IgA Nephropathy via AKT/Nrf2 Pathway by Bioinformatics and Experimental Validation. Drug Des Devel Ther 2023; 17:1679-1697. [PMID: 37309415 PMCID: PMC10257916 DOI: 10.2147/dddt.s403422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Background Artemisinin (ART) is a safe and effective antimalarial drug. In recent years, antimalarial drugs have demonstrated a good therapeutic efficacy in IgA nephropathy, suggesting that this may become a new treatment option. Purpose We aimed to evaluate the effect and mechanism of artemisinin in IgA nephropathy. Methods In this study, CMap database was used to predict the artemisinin therapeutic effect for IgA nephropathy. A network pharmacology approach was applied to explore the unknown mechanism of artemisinin in IgA nephropathy. We used molecular docking to predict the binding affinity of artemisinin with the targets. A mouse model of IgA nephropathy was established to investigate the therapeutic effect of artemisinin on IgA nephropathy. In vitro, the cell counting Kit-8 assay was used to evaluate the cytotoxicity of artemisinin. Flow cytometry and PCR assays were used to detect the effects of artemisinin on oxidative stress and fibrosis in lipopolysaccharide (LPS)-stimulated mesangial cells. Western blot and immunofluorescence were used to detect the expression of pathway proteins. Results CMap analysis showed artemisinin may reverse the expression levels of differentially expressed genes in IgA nephropathy. Eighty-seven potential targets of artemisinin in the treatment of IgA nephropathy were screened. Among them, 15 hub targets were identified. Enrichment analysis and GSEA analysis indicated that response to reactive oxygen species is the core biological process. AKT1 and EGFR had the highest docking affinity with artemisinin. In vivo, artemisinin could improve renal injury and fibrosis in mice. In vitro, artemisinin attenuated LPS-induced oxidative stress and fibrosis promoted AKT phosphorylation and Nrf2 nuclear translocation. Conclusion Artemisinin reduced the level of fibrosis and oxidative stress with IgA nephropathy through the AKT/Nrf2 pathway, which provided an alternative treatment for IgAN.
Collapse
Affiliation(s)
- Wei-guang Yang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Ao Sun
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Rong Zhu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Nan Liu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Wei-jie He
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| | - Lin-lin Liu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shen Yang, Liao Ning, People’s Republic of China
| |
Collapse
|
7
|
Song Z, Chen R, Wang C, Pan G, Yan A, Xie G, Yang Z, Feng W, Wang Y. Effect and mechanism of Tangzhiqing in improving cardiac function in mice with hyperlipidaemia complicated with myocardial ischaemia. Heliyon 2023; 9:e15645. [PMID: 37159711 PMCID: PMC10163619 DOI: 10.1016/j.heliyon.2023.e15645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Purpose Tangzhiqing formula (TZQ) is a traditional Chinese medicine prescribed to treat lipid metabolism disorders, atherosclerosis, diabetes and diabetic cardiomyopathy. However, some challenges and hurdles remain. TZQ showed promising results in treating diabetes and hyperlipidaemia. However, its effect on and mechanism of action in hyperlipidaemia complicated with myocardial ischaemia (HL-MI) remain unknown. Methods In this study, a network pharmacology-based strategy integrating target prediction was adopted to predict the targets of TZQ relevant to the treatment of HL-MI and to further explore the involved pharmacological mechanisms. Results A total of 104 potential therapeutic targets were obtained, including MMP9, Bcl-2, and Bax, which may be related to the apoptosis and PI3K/AKT signalling pathways. Then, we confirmed these potential targets and pathways with animal experimentation. TZQ reduced lipid levels, increased the expression levels of Bcl-2, decreased Bax, caspase-3 and caspase-9 expression levels, and activated the PI3K/AKT signalling pathway. Conclusion In conclusion, this study provides new insights into the protective mechanisms of TZQ against HL-MI through network pharmacology and pharmacological approaches.
Collapse
Affiliation(s)
- Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Chen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Caijun Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - An Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guinan Xie
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Corresponding author. Tianjin University of Traditional Chinese Medicine, #10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
8
|
Li R, Wang L, Zhang Q, Duan H, Qian D, Yang F, Xia J. Alpiniae oxyphyllae fructus possesses neuroprotective effects on H 2O 2 stimulated PC12 cells via regulation of the PI3K/Akt signaling Pathway. Front Pharmacol 2022; 13:966348. [PMID: 36091821 PMCID: PMC9454318 DOI: 10.3389/fphar.2022.966348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Backgroud: Alzheimer's disease (AD) is a typical neurodegenerative disease, which occurs in the elderly population. Alpiniae oxyphyllae Fructus (AOF) is a traditional Chinese medicine that has potential therapeutic effect on AD, but the mechanism behind it is unclear. Methods: Firstly, the main chemical components of AOF were identified by LC-MS, while the main active ingredients and targets were screened by TCMSP database. At the same time, AD-related target proteins were obtained using Genecards and OMIM databases. PPI was constructed by cross-linking AOF and AD targets, and GO enrichment analysis and KEGG pathway enrichment analysis were performed to identify the relevant biological processes and signaling pathways. Finally, based on the H2O2-stimulated PC12 cell, flow cytometry, WB and immunofluorescence experiments were performed to verify the protective effect of AOF on AD. Results: We identified 38 active ingredients with 662 non-repetitive targets in AOF, of which 49 were potential therapeutic AD targets of AOF. According to the GO and KEGG analysis, these potential targets are mainly related to oxidative stress and apoptosis. The role of AOF in the treatment of AD is mainly related to the PI3K/AKT signaling pathway. Protocatechuic acid and nootkatone might be the main active ingredients of AOF. In subsequent experiments, the results of CCK-8 showed that AOF mitigated PC12 cell damage induced by H2O2. Kits, flow cytometry, and laser confocal microscopy indicated that AOF could decrease ROS and increase the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), while AOF could also increase mitochondrial membrane potential (MMP), thereby inhibiting apoptosis. Finally, immunofluorescence and WB results showed that AOF inhibited the expression of BAX and caspase-3 in PC12 cells, and promoted the expression of Bcl-2. At the same time, the phosphorylation levels of PI3K and Akt proteins were also significantly increased. Conclusion: This study suggests that AOF had the potential to treat AD by suppressing apoptosis induced by oxidative stress via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ruolan Li
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingyu Wang
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Huxinyue Duan
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Qian
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xia
- School of Pharmacy, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Wang X, Tang Y, Xie N, Bai J, Jiang S, Zhang Y, Hou Y, Meng X. Salidroside, a phenyl ethanol glycoside from Rhodiola crenulata, orchestrates hypoxic mitochondrial dynamics homeostasis by stimulating Sirt1/p53/Drp1 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115278. [PMID: 35439546 DOI: 10.1016/j.jep.2022.115278] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhodiola crenulata is clinically used to combat hypobaric hypoxia brain injury at high altitude with the function of invigorating Qi and promoting blood circulation in Tibetan medicine. Salidroside (Sal), an active compound identified from Rhodiola species, has been shown to exert neuroprotective effects against hypoxic brain injury. However, its mitochondrial protective mechanisms remain largely unknown. AIM OF THE STUDY The present study aimed to explore the mitochondrial protection of Sal and the involved mechanisms related to mitochondrial dynamics homeostasis on hypoxia-induced injury of HT22 cells. MATERIALS AND METHODS Hypoxic condition was performed as cells cultured in a tri-gas incubator with 1% O2, 5% CO2 and 94% N2. We firstly investigated the effects of different concentrations of Sal on the viability of normal or hypoxic HT22 cells. Whereafter, the levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), adenosine triphosphate (ATP) and Na+-K+-ATPase were tested by commercial kits. Meanwhile, mitochondrial superoxide, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were determined by specific labeled probes. Mitochondrial morphology was detected by mito-tracker green with confocal microscopy. Additionally, the potential interactions of Sal with Sirt1/p53/Drp1 signaling pathway-related proteins were predicted and tested by molecular docking and localized surface plasmon resonance (LSPR) techniques, respectively. Furthermore, the protein levels of Sirt1, p53, ac-p53, Drp1, p-Drp1(s616), Fis1 and Mfn2 were estimated by western blot analysis. RESULTS Sal alleviated hypoxia-induced oxidative stress in HT22 cells as evidenced by increased cell viability and SOD activity, while decreased LDH release and MDA content. The protected mitochondrial function by Sal treatment was indicated by the increases of ATP level, Na+-K+-ATPase activity and MMP. Miraculously, Sal reduced hypoxia-induced mitochondrial fission, while increased mitochondrial tubular or linear morphology. The results of molecular docking and LSPR confirmed the potential binding of Sal to proteins Sirt1, p53, Fis1 and Mfn2 with affinity values 1.38 × 10-2, 5.26 × 10-3, 6.46 × 10-3 and 7.26 × 10-3 KD, respectively. And western blot analysis further demonstrated that Sal memorably raised the levels of Sirt1 and Mfn2, while decreased the levels of ac-p53, Drp1, p-Drp1 (s616) and Fis1. CONCLUSION Collectively, our data confirm that Sal can maintain mitochondrial dynamics homeostasis by activating the Sirt1/p53/Drp1 signaling pathway.
Collapse
Affiliation(s)
- Xiaobo Wang
- Research Institute of Integrated TCM & Western Medicine, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Shengnan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Xianli Meng
- Research Institute of Integrated TCM & Western Medicine, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|