1
|
Zhao C, Zhang Y, Huang L, Xiang J, Ye B, Zhu N. PTPN21 inhibits cell apoptosis of acute lymphoblastic leukemia induced by chemotherapeutic agents via GADD45A and JNK signaling pathway. PLoS One 2025; 20:e0322273. [PMID: 40305474 PMCID: PMC12043166 DOI: 10.1371/journal.pone.0322273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL), a hematologic malignancy characterized by the uncontrolled proliferation of immature lymphocytes, often results in unfavorable long-term survival prospects for patients. PTPN21, a protein with established roles in oncogenesis, has been implicated in the pathogenesis of ALL. This study explores the role of PTPN21 in ALL cell apoptosis induced by chemotherapeutic agents. Key findings reveal that elevated PTPN21 levels hinder the apoptosis of ALL cells in response to vincristine (VCR) and daunorubicin (DNR). PTPN21 accomplishes this by inhibiting the GADD45A and JNK signaling pathways, thereby reversing cell cycle arrest in the G2/M phase. Restoring GADD45A reverses the anti-apoptotic effect of PTPN21. These findings suggest that targeting PTPN21 in conjunction with chemotherapy may represent a novel therapeutic strategy for ALL, offering potential implications for improving treatment efficacy and overcoming drug resistance.
Collapse
Affiliation(s)
- Chenze Zhao
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Linlin Huang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jingjing Xiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ni Zhu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Li Q, Ye Z, Wang G, Chen Y, Deng J, Wang D, Wang Y. Natural Products as Novel Therapeutic Agents for Triple-Negative Breast Cancer: Current Evidence, Mechanisms, Challenges, and Opportunities. Molecules 2025; 30:1201. [PMID: 40141978 PMCID: PMC11944566 DOI: 10.3390/molecules30061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
Breast cancer (BC) tops the list of causes for female fatalities globally, with the elusive triple-negative breast cancer (TNBC) constituting 10-20% of all cases. Current clinical strategies for combating TNBC encompass a multifaceted approach, including surgical intervention, radiation therapy, chemotherapy, and advanced targeted drugs and immunotherapies. While these modalities have catalyzed significant advancements in TNBC management, lingering limitations continue to pose formidable challenges. There is an acute need for novel therapeutics in the realm of TNBC treatment. Natural products (NPs) have emerged as a rich reservoir for pharmaceutical innovation, owing to their extraordinary range of structures and physicochemical properties. Scholars have reported diverse evidence of NPs' efficacy against TNBC. This review aims to comprehensively explore the bioactive constituents, specifics and commonalities of chemical structure, and pharmacological mechanisms of NPs, specifically examining their multifaceted roles in impeding TNBC. NPs, which have recently garnered significant interest, are intriguing in terms of their capacity to combat TNBC through multifaceted mechanisms, including the suppression of tumor cell proliferation, the induction of apoptosis, and the inhibition of tumor metastasis. These natural agents primarily encompass a range of compounds, including terpenoids, glycosides, phenolic compounds, and alkaloids. An in-depth exploration has unveiled their involvement in key signaling pathways, including the transforming growth factor-beta (TGF-β), vascular endothelial growth factor A (VEGFA), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Wingless/Int-1 (Wnt) /β-catenin, and mitogen-activated protein kinase (MAPK) pathways. Meanwhile, this review also looks at the challenges and opportunities that arise from harnessing natural compounds to influence TNBC, while outlining the prospective trajectory for future research in the field of NPs.
Collapse
Affiliation(s)
- Qingzhou Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Guilin Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Yuhui Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Jinghong Deng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| | - Yumei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (G.W.); (Y.C.); (J.D.)
| |
Collapse
|
3
|
Bada L, Butt HS, Quezada E, Picos A, Wangensteen H, Inngjerdingen KT, Gil-Longo J, Viña D. Antitumor Activity, Mechanisms of Action and Phytochemical Profiling of Sub-Fractions Obtained from Ulex gallii Planch. (Fabaceae): A Medicinal Plant from Galicia (Spain). Molecules 2025; 30:972. [PMID: 40005281 PMCID: PMC11858089 DOI: 10.3390/molecules30040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
The plant kingdom serves as a valuable resource for cancer drug development. This study explored the antitumor activity of different sub-fractions (hexane, dichloromethane and methanol) of U. gallii (gorse) methanol extract in glioblastoma (U-87MG and U-373MG) and neuroblastoma (SH-SY5Y) cell lines, along with their phytochemical profiles. Cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and cell cycle arrest and apoptosis were assessed through flow cytometry and by measuring reactive oxygen species (ROS) and protein expression levels. D7 and D8 dichloromethane sub-fractions significantly reduced cell viability, triggered early apoptosis in SH-SY5Y and U-87MG cells and specifically increased ROS levels in U-87MG cells. Western blot analyses showed that D7 increased p53, caspase-3, caspase-8 and γH2AX expression in SH-SY5Y and U-87MG cells, while D8 specifically elevated p53 in SH-SY5Y cells and caspase-3 in both cell lines. In U-373 cells, D7 and D8 markedly reduced cell viability, with D8 inducing necrosis. Morphological changes indicative of apoptosis were also observed in all cell lines. Bioinformatic analysis of UHPLC-MS and GC-MS data tentatively identified 20 metabolites in D7 and 15 in D8, primarily flavonoids. HPLC-DAD confirmed isoprunetin and genistein as the most abundant in D7 and D8, respectively, both isolated and identified by NMR spectroscopy. Most of the flavonoids identified have been reported as antitumor agents, suggesting that these compounds may be responsible for the observed pharmacological activity.
Collapse
Affiliation(s)
- Lucía Bada
- Group of Pharmacology of Chronic Diseases (CD Pharma), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.B.); (A.P.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| | - Hussain Shakeel Butt
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (H.S.B.); (H.W.); (K.T.I.)
| | - Elías Quezada
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| | - Aitor Picos
- Group of Pharmacology of Chronic Diseases (CD Pharma), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.B.); (A.P.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (H.S.B.); (H.W.); (K.T.I.)
| | - Kari Tvete Inngjerdingen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (H.S.B.); (H.W.); (K.T.I.)
| | - José Gil-Longo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| | - Dolores Viña
- Group of Pharmacology of Chronic Diseases (CD Pharma), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.B.); (A.P.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (J.G.-L.)
| |
Collapse
|
4
|
Xing Y, Lv X, Chen X, Du J, Hu D, He R, Liang X, Yang Y. Maackiain induces apoptosis and autophagy via ROS-mediated endoplasmic reticulum stress in endometrial cancer. Int Immunopharmacol 2025; 147:113935. [PMID: 39756166 DOI: 10.1016/j.intimp.2024.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Endometrial cancer (EC) is a common gynecological cancer, characterized by increasing incidence and mortality rates. Maackiain (MA), a natural flavonoid compound, has multiple biological activities, but little is known about how it affects EC cells. In the present study, CCK-8, EdU, colony formation, and flow cytometry assays were used to evaluate the effects of MA on EC cell proliferation, apoptosis, and reactive oxygen species (ROS) levels. The effect of MA on autophagy in EC cells were examined through the observation of cell morphology and ultrastructure, and cells were transfected with AdPlus-mCherry-GFP-LC3B for further analysis. Transcriptomic and western blot analyses revealed the underlying mechanism. To evaluate the anti-EC effect of MA in vivo, a xenograft model was established. The results demonstrated that MA inhibited KLE and Ishikawa cell growth in a dose-dependent manner. Furthermore, MA significantly suppressed EC xenograft tumor growth in vivo while exhibiting low toxicity. In addition, EC cells treated with MA exhibited pro-apoptotic and pro-autophagic responses, with the latter exhibiting cytoprotective properties. MA also induced the accumulation of ROS, which promoted endoplasmic reticulum (ER) stress. Notably, the use of the N-acetyl-L-cysteine (NAC) ROS scavenger and the 4-phenylbutyric acid (4-PBA) ER stress inhibitor effectively mitigated the autophagy and apoptosis induced by MA. These results collectively implied that MA triggers autophagy and apoptosis in EC cells through ROS-mediated ER stress, highlighting its potential as a therapeutic agent against EC.
Collapse
Affiliation(s)
- Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Xi Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Dan Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China.
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China.
| |
Collapse
|
5
|
Zeng FF, Chen ZH, Luo FH, Liu CJ, Yang X, Zhang FX, Shi W. Sophorae tonkinensis radix et rhizoma: A comprehensive review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology and detoxification strategy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118784. [PMID: 39244176 DOI: 10.1016/j.jep.2024.118784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophorae tonkinensis Radix et Rhizoma (STR), the dried root and rhizome of Sophora tonkinensis Gagnep., is commonly used in the treatment of tonsillitis and pharyngitis, throat soreness and throat obstruction, swelling and aching of gum, etc. in China or other Asian countries. STR is usually used as the core herb in traditional Chinese medicine preparations, such as "Biyanling Tablets", "Fufang Muji Granules" and "Ganyanling Injections", etc. AIM OF THE REVIEW: This review aimed to provide a comprehensive analysis of STR in terms of botany, traditional use, phytochemistry, ethnopharmacology, pharmacology, pharmacokinetics, toxicology and detoxification strategy, to provide a rational application in future research. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including China National Knowledge Infrastructure (CNKI), SciFinder, Google Scholar, PubMed, Web of Science, and Chinese Masters and Doctoral Dissertations. RESULTS Till now, a total of 333 chemical components have been identified in STR, including 85 alkaloids, 124 flavonoids, 24 triterpenes, 27 triterpene saponins, 34 organic acids, 8 polysaccharides, etc. STR and its main active constituents have cardiovascular protection, anti-tumor activity, anti-inflammatory activity, antipyretic activity, analgesic activity, antibacterial activity, antifungal activity, antiviral activity, and hepatoprotective activity, etc. However, toxic effects of STR on the liver, nerves, heart, and gastrointestinal tract have also been observed. To mitigate these risks, STR needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. The pharmacokinetics of STR in vivo and traditional and clinical prescriptions containing STR have been sorted out. Despite the potential therapeutic benefits of STR, further research is warranted to elucidate its hepatotoxicity, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and mechanisms. CONCLUSION This review serves to emphasize the therapeutic potential of STR and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the toxicological properties of STR, with particular emphasis on its hepatotoxicity and neurotoxicity. Such research endeavors have the potential to standardize the rational application of STR for optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Fen-Fen Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fu-Hui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
6
|
Wang L, Liu X, Lv H, Zhang H, Lin R, Xu S, Zhang C, Lou S, Qiu Z, Sun C, Cui N. Research Progress on Natural Products That Regulate miRNAs in the Treatment of Osteosarcoma. BIOLOGY 2025; 14:61. [PMID: 39857292 PMCID: PMC11759184 DOI: 10.3390/biology14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
miRNAs are small non-coding RNA molecules that play critical roles in the regulation of gene expression and have been closely associated with various diseases, including cancer. These molecules significantly influence the cell cycle of tumor cells and control programmed cell death (apoptosis). Currently, research on miRNAs has become a major focus in developing cancer therapies. Osteosarcoma, a malignant neoplasm predominantly occurring during adolescence and later in life, is characterized by a high propensity for metastasis. This review explores the role of miRNAs in the initiation and progression of cancer, highlighting their potential as predictive biomarkers for disease. It discusses the mechanisms by which natural products modulate miRNA activity to influence apoptosis, ferroptosis, and autophagy in osteosarcoma cells, aiming to identify new strategies for osteosarcoma treatment. Recent studies on how natural products regulate miRNAs to reduce tumor cell resistance to chemotherapy are also reviewed. Furthermore, the review elaborates on how natural products regulate m6A modifications to influence miRNA expression, thereby exerting antitumor effects. In this process, interactions between m6A modifications and miRNAs have been identified, with both jointly influencing tumorigenesis and cancer progression, offering a new perspective in osteosarcoma treatment. These approaches could help uncover novel regulatory mechanisms in osteosarcoma pathways and provide a theoretical foundation for developing new drugs and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Xinyu Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Haoze Lv
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Han Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Rimei Lin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Shan Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Chaojing Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Shilei Lou
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Cong Sun
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Ning Cui
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
7
|
Haider W, Pan W, Wang D, Niaz W, Zaman MK, Ullah R, Ullah S, Rafiq M, Yu B, Cong H. Maackiain: A comprehensive review of its pharmacology, synthesis, pharmacokinetics and toxicity. Chem Biol Interact 2025; 405:111294. [PMID: 39477181 DOI: 10.1016/j.cbi.2024.111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Maackiain is an important component of some herbs in traditional Chinese medicine (TCM), such as Sophora flavescens Aiton, Spatholobus suberectus Dunn and Paeonia lactiflora Pall. Maackiain belongs to the second largest group of isoflavonoids the pterocarpans that is widespread in several plant genera, for example Maackia, Sophora, Caragana, Trifolium and Millettia. Recently, maackiain has attracting more attention because of its numerous pharmacological properties. This review offers the first extensive overview of maackiain natural isolation sources, pharmacological activities, synthesis, toxicity, and pharmacokinetic properties. The literature search published between 1962 and 2023 were reported by collecting the data from Google Scholar, Science Direct, SpringerLink, Web of Science, PubMed, Wiley Online, China National Knowledge Infrastructure, Scopus and structure search in SciFinder. Finding reveals the broad range of pharmacological activities of maackiain, such as anti-inflammatory, sepsis prevention, anti-cancer, anti-allergic, anti-osteolytic, anti-obesity, nephroprotective, antifungal, neuroprotective, anti-leukemic, antimalarial and inflammasome activation. Based on findings of pharmacokinetic studies, it is observed that maackiain possesses a low level of bioavailability and absorption and a rapid rate of elimination, but maackiain absorption rates in the extract were comparatively much higher than pure forms because of higher solubility and may reduce the metabolism by other ingredients present in the extract. Toxicity investigations revealed that maackiain is non-toxic to the majority of cells and selectively cytotoxic. After witnessing the beneficial pharmacological properties of maackiain, it is believed to be an emerging drug candidate for the treatment of inflammation, allergic, nephroprotection in T2D, depression, or Alzheimer's disease and obesity. However, future research topics should likely to include that elucidates its mechanism of toxicity and in vivo proper tracking of its conducts in drug delivery system. Integrating toxicity and efficiency, as well as structure modification, are critical approaches to enhancing its pharmacological properties and oral bioavailability.
Collapse
Affiliation(s)
- Waqas Haider
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wei Pan
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Waqas Niaz
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Kashif Zaman
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Raza Ullah
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shakir Ullah
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles. Qingdao University, Qingdao, 266000, Shandong, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
8
|
Xing Y, Wang W, Cheng Y, Hu D, Du J, He R, Lv X, Yang Y. Network pharmacology and metabolomics elucidate the underlying effects and mechanisms of maackiain against endometrial cancer. Biochem Biophys Res Commun 2025; 742:151119. [PMID: 39657356 DOI: 10.1016/j.bbrc.2024.151119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Endometrial carcinoma (EC), a prevalent gynecological cancer, is characterized by rising incidence and mortality rates, highlighting the need for novel treatments to improve patient outcomes. Maackiain (MA) is a natural compound isolated from common herbal medicines, that has been reported to have anti-cancer effects. However, the underlying roles and mechanisms concerning EC remain unclear. This study focused on deeply exploring the potential roles and mechanisms of MA against EC by network pharmacology, experimentally validated, metabolomics, and molecular docking. A total of 86 potential targets of MA against EC were identified by network pharmacology. In vitro experiments further confirmed network pharmacology' predictions. In addition to suppressing EC cell proliferation, MA also paused the cell cycle at the G2/M phase in a dose-dependent manner. This effect is accompanied by increased p21 and phospho-p53 expression, as well as reduced expression of CDK1 and CCNB1. Furthermore, cell metabolomics analysis revealed that 285 metabolites were changed after MA administration, which majorly affects glycerophospholipid metabolism, nucleotide metabolism, choline metabolism in cancer, and purine metabolism. Combination network pharmacology, metabolomics, and molecular docking, PLA2G10, PDE4D, and PDE5A were found to be potential targets for therapeutic intervention. These findings underlined that MA has anti-EC potential by modulating multiple targets including PLA2G10, PDE4D, and PDE5A, inhibiting EC cell proliferation, inducing G2/M phase arrest, and causing metabolic shifts. This study provides theoretical support for advanced experimental research on its clinical applications.
Collapse
Affiliation(s)
- Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Dan Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
9
|
Chaudhary A, Patil P, Raina P, Kaul-Ghanekar R. Matairesinol repolarizes M2 macrophages to M1 phenotype to induce apoptosis in triple-negative breast cancer cells. Immunopharmacol Immunotoxicol 2024:1-15. [PMID: 39722605 DOI: 10.1080/08923973.2024.2425028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/27/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Triple-Negative Breast Cancer (TNBC), the most challenging subtype of Breast Cancer (BC), currently lacks targeted therapy, presenting a significant therapeutic gap in its management. Tumor Associated Macrophages (TAMs) play a significant role in TNBC progression and could be targeted by repolarizing them from M2 to M1 phenotype. Matairesinol (MAT), a plant lignan, has been shown to exhibit anticancer, anti-inflammatory and immunomodulatory activities. In this study, we explored how MAT-induced repolarization of THP-1-derived M2 macrophages towards the M1 phenotype, which could effectively target the TNBC cell line, MDA-MB-231. METHODS The differential expression of genes in THP-1-derived macrophages at mRNA levels was evaluated by RNAseq assay. An inverted microscope equipped with a CMOS camera was utilized to capture the morphological variations in THP-1 cells and THP-1-derived macrophages. Relative mRNA expression of M1 and M2 specific marker genes was quantified by qRT-PCR. Cell viability and induction of apoptosis were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1 dye) assays, respectively. RESULTS MAT reduced the viability of M2a and M2d macrophages and repolarized them to M1 phenotype. Conditioned medium (CM) from MAT-treated M2a and M2d macrophages significantly reduced the viability of TNBC cells by apoptosis. CONCLUSION Targeting M2 macrophages is an important strategy to regulate cancer progression. Our study provides evidence that MAT may be a promising drug candidate for developing novel anti-TNBC therapy. However, further studies are warranted to thoroughly elucidate the molecular mechanism of action of MAT and evaluate its therapeutic potential in TNBC in vitro and in vivo models.
Collapse
Affiliation(s)
- Amol Chaudhary
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prajakta Patil
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prerna Raina
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Analytical Department (ADT), Lupin Limited, Pune, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Symbiosis Centre for Research and Innovation (SCRI); Symbiosis International Deemed University (SIU), Pune, India
- Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International Deemed University (SIU), Pune, India
| |
Collapse
|
10
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Kumar S, Chaudhri S. Recent update on IGF-1/IGF-1R signaling axis as a promising therapeutic target for triple-negative breast cancer. Pathol Res Pract 2024; 263:155620. [PMID: 39357179 DOI: 10.1016/j.prp.2024.155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Insulin-like growth factor 1/Insulin-like growth factor 1-receptor (IGF-1/IGF-1R) pathway is highly breast cancer subtype context-dependent. Triple-negative breast cancer (TNBC) is an aggressive, highly metastatic cancer showing early recurrence and poor prognosis. High expression of IGF-1 and its receptor IGF-1R, their interaction, autophosphorylation, and activation of intracellular signaling cascades have been significantly associated with TNBC pathophysiology. In the last five to seven years, marvelous work has been done to explore the role of IGF-1/IGF-1R axis in TNBC. In the present review, starting from the general introduction to IGF-1/IGF-1R pathway an up-to-date discussion was focused on its role in TNBC pathophysiology. Further we discussed the up/down stream molecular events of IGF-1/IGF-1R axis, clinical relevance of IGF-1 and IGF-1R levels in TNBC patients, anti-TNBC therapy and possible way-out for IGF-1/IGF-1R axis mediate therapy resistance in TNBC. Combination therapy strategy has been researched to overcome direct IGF-1/IGF-1R pathway inhibition mediated therapy resistance and produced promising results in the management of TNBC. The understanding of up/downstream of the IGF-1/IGF-1R axis provide immense focus on the pathway as a therapeutic target. It is expected within the next decade to determine its potentiality, or lack thereof, for TNBC treatment.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, Punjab 151401, India.
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, Punjab 151401, India
| |
Collapse
|
12
|
Wu S, Li D, Han P, Li L, Zhao J, Zhang H, Zhou X, Li P, Mo Y. MicroRNA‑374a‑5p/ANLN axis promotes malignant progression of Oral squamous cell carcinoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-16. [PMID: 39449219 DOI: 10.1080/15257770.2024.2419555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Recent research has revealed a significant association between Anillin (ANLN) and miR-374a‑5p with the progression of tumors. Additionally, bioinformatics analysis indicated an inverse relationship in transcript expression levels between ANLN and miR-374a-5p. However, the specific mechanisms driving the miR-374a-5p/ANLN signaling axis in oral squamous cell carcinoma (OSCC) have not been thoroughly explored. METHODS ANLN and miR-374a‑5p expression were evaluated within OSCC cell lines and tissues by RT-qPCR. Using bioinformatics databases, it has been demonstrated that the ANLN gene could be a target of miR-374a-5p. MiR-374a‑5p and ANLN correlation could be assessed via the dual-luciferase reporter assay and western blotting techniques. Functional studies were employed to investigate the behavioral patterns of miR-374a‑5p within OSCC cells. RESULTS miR-374a‑5p expression could be remarkably downregulated within both OSCC tissues and cells, coinciding with high ANLN expression. ANLN was a specific target gene for miR-374a‑5p by luciferase function assay. The expression of miR-374a‑5p could serve as a diagnostic biomarker and independently predict a poor prognosis in patients with OSCC, and the counteractive effect of upregulating miR-374a‑5p was observed on the proliferative, migratory, and invasive capabilities of OSCC cells. CONCLUSIONS The findings suggest that the miR-374a‑5p/ANLN signaling axis potentially modulates the advancement of OSCC, and miR-374a‑5p may serve as potential therapeutic targets of oral cancer.
Collapse
Affiliation(s)
- Shu Wu
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Danping Li
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Peipei Han
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Limei Li
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Jun Zhao
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Haishan Zhang
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Xiaohui Zhou
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Ping Li
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, P.R. China
| |
Collapse
|
13
|
Nwe SY, Uttarawichien T, Boonsom T, Thongphichai W, Dasuni Wasana PW, Sritularak B, Payuhakrit W, Sukrong S, Towiwat P. Bioassay-guided isolation of two antiproliferative metabolites from Pterocarpus indicus Willd. against TGF-β-induced prostate stromal cells (WPMY-1) proliferation via PI3K/AKT signaling pathway. Front Pharmacol 2024; 15:1452887. [PMID: 39421674 PMCID: PMC11483373 DOI: 10.3389/fphar.2024.1452887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Benign prostatic hyperplasia (BPH) is the enlargement of the prostate gland, primarily occurring in aging men, in which transforming growth factor-beta (TGF-β) plays a critical role in prostate cell hyperproliferation and leads to uncomfortable urinary symptoms in BPH patients. Pterocarpus indicus Willd. is well known for its ethnopharmacological applications for treating ailments such as diuresis and bladder stones. Methods This study aimed to examine the effect of P. indicus extract (PI extract) on TGF-β-induced WPMY-1 cell proliferation, followed by bioassay-guided fractionation to isolate the active metabolites. Angolensin (Ang) and maackiain (Mac) were isolated from bioassay-guided fractionation. Network analysis was performed to investigate the potential mechanisms. Furthermore, network analysis of the Ang-Mac combination in BPH highlighted the potential top ten pathways, including PI3K/AKT signaling pathway. Accordingly, subsequent investigation focused on evaluating the effect of PI extract, Ang, Mac, and Ang-Mac combination on the expression of PCNA, p53, and PI3K/AKT protein localization and expression. Results and discussion Results revealed inhibition of cell proliferation in TGF-β-induced WPMY-1 cells, correlating with downregulated PCNA expression. While PI extract and Mac induced apoptosis via p53 upregulation, Ang and Ang-Mac combination did not significantly affect apoptosis through the p53 pathway. Additionally, both metabolites exhibited potent inhibition of p-PI3K and p-AKT protein localization and expression in the nucleus of TGF-β-induced WPMY-1 cells. This study suggests that PI extract, Ang, and Mac are promising compounds for treating BPH, as evidenced by in silico and in vitro studies. Additionally, Ang and Mac could be used to standardize PI extract in future investigations.
Collapse
Affiliation(s)
- San Yoon Nwe
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
- Herb Guardian Co., Ltd., Nonthaburi, Thailand
| | - Tamonwan Uttarawichien
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Teerawat Boonsom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Wisuwat Thongphichai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Peththa Wadu Dasuni Wasana
- Animal Models of Chronic Inflammation-associated Diseases for Drug Discovery Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn School of Integrated Innovation, Chulalongkorn University, Bangkok, Thailand
| | - Pasarapa Towiwat
- Animal Models of Chronic Inflammation-associated Diseases for Drug Discovery Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Vimalkumar PS, Sivadas N, Murali VP, Sherin DR, Murali M, Joseph AG, Radhakrishnan KV, Maiti KK. Exploring apoptotic induction of malabaricone A in triple-negative breast cancer cells: an acylphenol phyto-entity isolated from the fruit rind of Myristica malabarica Lam. RSC Med Chem 2024:d4md00391h. [PMID: 39263684 PMCID: PMC11382570 DOI: 10.1039/d4md00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Myristica malabarica Lam., commonly known as Malabar nutmeg or false nutmeg, is used in traditional medicine and as a spice. Our exploration focuses on malabaricones, a distinct group of secondary metabolites isolated from the fruit rind of M. malabarica. We investigated the selective cytotoxicity of malabaricones against the triple-negative breast cancer (TNBC) cell line. In particular, malabaricone A (Mal-A) displays heightened toxicity towards TNBC cells (MDA-MB-231), with an IC50 of 8.81 ± 0.03 μM. In vitro fluorimetric assays confirmed the apoptotic capability of Mal-A and its capacity to induce nuclear fragmentation. Additionally, ultrasensitive surface-enhanced Raman spectroscopy confirms DNA fragmentation during cellular apoptosis. Cell cycle analysis indicates arrest during the sub-G0 phase by downregulating key regulatory proteins involved in cell cycle progression. Increased expression levels of caspase 3, 9, and 8 suggest involvement of both extrinsic and intrinsic apoptotic pathways. Finally, assessment of protein expression patterns within apoptotic pathways reveals upregulation of key apoptotic proteins like Fas/FasL, TNF/TNFR1, and p53, coupled with downregulation of several inhibitors of apoptosis proteins such as XIAP, cIAP-2, and Livin. These findings are further verified with in silico molecular docking. Mal-A reveals a strong affinity towards apoptotic proteins, including TNF, Fas, HTRA, Smac, and XIAP, with docking scores ranging from -5.1 to -7.2 kcal mol-1. Subsequently, molecular dynamics simulation confirms the binding stability. This conclusive in vitro evaluation validates Mal-A as a potent phyto-entity against TNBC. To the best of our knowledge, this study represents the first comprehensive anticancer evaluation of Mal-A in TNBC cells.
Collapse
Affiliation(s)
- Pothiyil S Vimalkumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Neethu Sivadas
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Vishnu Priya Murali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
| | - Daisy R Sherin
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Digital University Kerala Thiruvananthapuram-695317 India
| | - Madhukrishnan Murali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Anuja Gracy Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
15
|
Wang S, Wang K, Li C, Chen J, Kong X. Role of flavonoids in inhibiting triple-negative breast cancer. Front Pharmacol 2024; 15:1411059. [PMID: 39257397 PMCID: PMC11384598 DOI: 10.3389/fphar.2024.1411059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Increasing incidences of metastasis or recurrence (or both) in triple-negative breast cancer (TNBC) are a growing concern worldwide, as these events are intricately linked to higher mortality rates in patients with advanced breast cancer. Flavonoids possess several pharmaceutical advantages with multi-level, multi-target, and coordinated intervention abilities for treating TNBC, making them viable for preventing tumor growth and TNBC metastasis. This review focused on the primary mechanisms by which flavonoids from traditional Chinese medicine extracts inhibit TNBC, including apoptosis, blocking of cell cycle and movement, regulation of extracellular matrix degradation, promotion of anti-angiogenesis, inhibition of aerobic glycolysis, and improvement in tumor microenvironment. This review aims to improve the knowledge of flavonoids as a promising pharmacological intervention for patients with TNBC.
Collapse
Affiliation(s)
- Shuai Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kuanyu Wang
- The Second Department of Surgery, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Cheng Li
- The Second Department of Surgery, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jing Chen
- The Second Department of Surgery, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiangding Kong
- The Second Department of Surgery, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Alsakhen N, Radwan ES, Zafer I, Abed Alfattah H, Shamkh IM, Rehman MT, Shahwan M, Khan KA, Ahmed SA. Computational analysis of bevacizumab binding with protein receptors for its potential anticancer activity. J Biomol Struct Dyn 2024:1-21. [PMID: 38281913 DOI: 10.1080/07391102.2024.2307445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Breast cancer poses a significant global challenge, prompting researchers to explore novel approaches for potential treatments. In this study, we investigated the binding free energy (ΔG) of bevacizumab, an anti-cancer therapy targeting angiogenesis through the inhibition of vascular endothelial growth factor (VEGF), with various proto-oncogenes including CDK4, EGFR, frizzled, IGFR, OmoMYC, and KIT. Our in-silico investigation revealed that hydrogen bonding is pivotal in inducing conformational changes within the DNA structure, impeding its replication and preventing cell death. Molecular docking results revealed the presence of crucial hydrogen bonds and supported the formation of stable bevacizumab complexes. The molecular docking scores for the tested complexes were CDK4 (Score = -7.2 kcal/mol), EGFR (Score = -8.5 kcal/mol), frizzled (Score = -6.9 kcal/mol), IGFR (Score = -7.8 kcal/mol), KIT (Score = -6.5 kcal/mol), and MYC (Score = -8.3 kcal/mol). The binding mode demonstrated vital hydrogen bonds correlated with the observed energy gap. Notably, the calculated binding free energies of the tested compounds are as follows: CDK4 (ΔG = 24275.195 ± 6411.293 kJ/mol), EGFR (ΔG = 363273.625 ± 8731.466 kJ/mol), frizzled (ΔG = 181751.990 ± 28438.515 kJ/mol), IGFR (ΔG = 162414.725 ± 10728.367 kJ/mol), KIT (ΔG = 40162.585 ± 4331.017 kJ/mol), and MYC (ΔG = 434783.463 ± 53989.676 kJ/mol). Furthermore, through extensive 100 ns MD simulations, we observed the formation of a stable bevacizumab complex structure. The simulations confirmed the stability of the bevacizumab complex with the proto-oncogenes. The results of this study highlight the potential of bevacizumab complex as a promising candidate for anticancer treatment. The identification of hydrogen bonding, along with the calculated binding free energies and molecular docking scores, provides valuable insights into the molecular interactions and stability of the bevacizumab complexes. These findings and the extensive MD simulations open new avenues for future research and development of bevacizumab as a targeted therapy for breast cancer and other related malignancies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | | | - Imran Zafer
- Department of Bioinformatics and Computational Biology, Virtual University, Lahore, Pakistan
| | | | - Israa M Shamkh
- Botany and Microbiology department, Faculty of Science, Cairo University, Giza, Egypt
| | - Md Tabish Rehman
- College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Shimaa A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
17
|
Mladenova SG, Todorova MN, Savova MS, Georgiev MI, Mihaylova LV. Maackiain Mimics Caloric Restriction through aak-2-Mediated Lipid Reduction in Caenorhabditis elegans. Int J Mol Sci 2023; 24:17442. [PMID: 38139270 PMCID: PMC10744277 DOI: 10.3390/ijms242417442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity prevalence is becoming a serious global health and economic issue and is a major risk factor for concomitant diseases that worsen the quality and duration of life. Therefore, the urgency of the development of novel therapies is of a particular importance. A previous study of ours revealed that the natural pterocarpan, maackiain (MACK), significantly inhibits adipogenic differentiation in human adipocytes through a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Considering the observed anti-adipogenic potential of MACK, we aimed to further elucidate the molecular mechanisms that drive its biological activity in a Caenorhabditis elegans obesity model. Therefore, in the current study, the anti-obesogenic effect of MACK (25, 50, and 100 μM) was compared to orlistat (ORST, 12 μM) as a reference drug. Additionally, the hybrid combination between the ORST (12 μM) and MACK (100 μM) was assessed for suspected synergistic interaction. Mechanistically, the observed anti-obesogenic effect of MACK was mediated through the upregulation of the key metabolic regulators, namely, the nuclear hormone receptor 49 (nhr-49) that is a functional homologue of the mammalian PPARs and the AMP-activated protein kinase (aak-2/AMPK) in C. elegans. Collectively, our investigation indicates that MACK has the potential to limit lipid accumulation and control obesity that deserves future developments.
Collapse
Affiliation(s)
| | - Monika N. Todorova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
| | - Martina S. Savova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Liliya V. Mihaylova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
18
|
Zeng X, Gong G, Ganesan K, Wen Y, Liu Q, Zhuo J, Wu J, Chen J. Spatholobus suberectus inhibits lipogenesis and tumorigenesis in triple-negative breast cancer via activation of AMPK-ACC and K-Ras-ERK signaling pathway. J Tradit Complement Med 2023; 13:623-638. [PMID: 38020549 PMCID: PMC10658394 DOI: 10.1016/j.jtcme.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aim Triple-negative breast cancer (TNBC) is a highly invasive type of breast cancer with a poor prognosis. Currently, there are no effective management strategies for TNBC. Earlier, our lab reported the percolation of Spatholobus suberectus for the treatment of breast cancer. Lipid metabolic reprogramming is a hallmark of cancer. However, the anti-TNBC efficiency of S. suberectus extract and its causal mechanism for preventing lipogenesis have not been fully recognized. Hence, the present study aimed to investigate the inhibitory role of S. suberectus extract on lipogenesis and tumorigenesis in TNBC in vitro and in vivo by activating AMPK-ACC and K-Ras-ERK signaling pathways using lipidomic and metabolomic techniques. Experimental procedure Dried stems of S. suberectus extract inhibited lipogenesis and tumorigenesis and promoted fatty acid oxidation as demonstrated by the identification of the metabolites and fatty acid markers using proteomic and metabolomic analysis, qPCR, and Western blot. Results and conclusion The results indicated that S. suberectus extract promotes fatty acid oxidation and suppresses lipogenic metabolites and biomarkers, thereby preventing tumorigenesis via the AMPK-ACC and K-Ras-ERK signaling pathways. On the basis of this preclinical evidence, we suggest that this study represents a milestone and complements Chinese medicine. Further studies remain underway in our laboratory to elucidate the active principles of S. suberectus extract. This study suggests that S. suberectus extract could be a promising therapy for TNBC.
Collapse
Affiliation(s)
- Xiaohui Zeng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Guangdong Second Traditional Chinese Medicine Hospital, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Guowei Gong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
| | - Yi Wen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Zhongshan People's Hospital, 106, Zhongshan 2nd Road, Guangdong Province, 510080, China
| | - Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, 518000, China
| | - Juncheng Zhuo
- Guangdong Second Traditional Chinese Medicine Hospital, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
19
|
Huang X, Fei Q, Yu S, Liu S, Zhang L, Chen X, Cao L, Wang Z, Shan M. A comprehensive review: Botany, phytochemistry, traditional uses, pharmacology, and toxicology of Spatholobus suberectus vine stems. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116500. [PMID: 37062528 DOI: 10.1016/j.jep.2023.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spatholobus suberectus vine stem (SSVS) is the dried lianoid stem of the leguminous plant, Spatholobus suberectus Dunn, which is mainly distributed in China and some Southeast Asian countries. Due to its notable effects of promoting blood circulation and tonifying blood, regulating menstruation and relieving pain, this phytomedicine has been used in traditional Chinese medicine for hundreds of years. AIM OF THE STUDY This review is designed to provide a comprehensive profile of SSVS concerning its botany, traditional uses, phytochemistry, quality control, pharmacology, pharmacokinetics, and toxicology and attempts to provide a scientific basis and future directions for further research and development. MATERIALS AND METHODS Related document information was collected with the help of databases such as the Web of Science, Science Direct, PubMed, China National Knowledge Infrastructure (CNKI) and Flora of China. RESULTS SSVS is reported to be traditionally used to treat rheumatic arthralgia, numbness and paralysis, blood deficiency, irregular menstruation and other gynecological diseases. Botanical studies have revealed that there are some confusable varieties in some specific locations with a long history. Additionally, 145 chemical constituents have been isolated and identified from SSVS, including flavonoids, organic acids, terpenoids, lignans, and phenolic glycosides. Pharmacological studies have shown that SSVS has a variety of effects, such as nervous system regulation, and antioxidative, antitumor, antiviral, antidiabetic, and anti-inflammatory effects. However, in regard to the absorption-distribution-metabolism-elimination-toxicity (ADMET) of SSVS, few studies have been carried out, and few articles have been published. CONCLUSION With a long history of traditional uses, a variety of bioactive phytochemicals and a wide range of definite pharmacological activities, SSVS is believed to have great potential in clinical applications and further research, development and exploitation. The precise action mechanisms, rational quality control and quality markers, and explicit ADMET routes should be highlighted in the future, which might provide effective help to safely, effectively and sustainably use this herbal medicine.
Collapse
Affiliation(s)
- Xiaojun Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Qingqing Fei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Shengjin Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xialin Chen
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, PR China
| | - Liang Cao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, PR China
| | - Zhenzhong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, PR China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
20
|
Jiang X, Yin H, Su W, Quan H, Yuan X, Feng X, Li P, He Y, Xiao J, Li R. Trifolirhizin inhibits proliferation, migration and invasion in nasopharyngeal carcinoma cells via PI3K/Akt signaling pathway suppression. Biochem Biophys Res Commun 2023; 667:111-119. [PMID: 37216826 DOI: 10.1016/j.bbrc.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly recurrent and metastatic malignant tumor affecting a large number of individuals in southern China. Traditional Chinese herbal medicine has been found to be a rich source of natural compounds with mild therapeutic effects and minimal side effects, making them increasingly popular for treating various diseases. Trifolirhizin, a natural flavonoid derived from leguminous plants, has gained significant attention for its therapeutic potential. In this study, we confirmed that trifolirhizin could effectively inhibit the proliferation, migration and invasion of nasopharyngeal carcinoma 6-10B and HK1 cells. Furthermore, our findings demonstrated that trifolirhizin achieves this by suppressing the PI3K/Akt signaling pathway. The findings of the present study provides a valuable perspective on the potential therapeutic applications of trifolirhizin for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xing Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Haihui Yin
- Department of Medical Ultrasound, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenqing Su
- Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Haiyan Quan
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, 421001, China
| | - Xinye Yuan
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xu Feng
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Pei Li
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan He
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Junhui Xiao
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Rong Li
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
21
|
Jiang X, Yang X, Shi Y, Long Y, Su W, He W, Wei K, Miao J. Maackiain inhibits proliferation and promotes apoptosis of nasopharyngeal carcinoma cells by inhibiting the MAPK/Ras signaling pathway. Chin J Nat Med 2023; 21:185-196. [PMID: 37003641 DOI: 10.1016/s1875-5364(23)60420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 04/03/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is the third most common malignancy with a high recurrence and metastasis rate in South China. Natural compounds extracted from traditional Chinese herbal medicines have been developed and utilized for the treatment of a variety of cancers with modest properties and slight side effects. Maackiain (MA) is a type of flavonoid that was first isolated from leguminous plants, and it has been reported to relieve various nervous system disorders and exert anti-allergic as well as anti-inflammatory effects. In this study, we demonstrated that MA inhibited proliferation, arrested cell cycle and induced apoptosis in nasopharyngeal carcinoma CNE1 and CNE2 cells in vitro and in vivo. The expression of the related proteins associated with these processes were consistent with the above effects. Moreover, transcriptome sequencing and subsequent Western blot experiments revealed that inhibition of the MAPK/Ras pathway may be responsible to the anti-tumor effect of MA on NPC cells. Therefore, the effects of MA and an activator of this pathway, tertiary butylhydroquinone (TBHQ), alone or combination, were investigated. The results showed TBHQ neutralized the inhibitory effects of MA. These data suggest that MA exerts its anti-tumor effect by inhibiting the MAPK/Ras signaling pathway and it has the potential to become a treatment for patients with NPC.
Collapse
Affiliation(s)
- Xing Jiang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China.
| | - Yanxia Shi
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Yan Long
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Wenqing Su
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Wendong He
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Department of Pharmacy, Guangxi Medical University Affiliated Tumor Hospital, Nanning 530021, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Jianhua Miao
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China.
| |
Collapse
|
22
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|
23
|
Kuo YH, Hung HS, Tsai CW, Chiu SC, Liu SP, Chiang YT, Shyu WC, Lin SZ, Fu RH. A Novel Splice Variant of BCAS1 Inhibits β-Arrestin 2 to Promote the Proliferation and Migration of Glioblastoma Cells, and This Effect Was Blocked by Maackiain. Cancers (Basel) 2022; 14:cancers14163890. [PMID: 36010884 PMCID: PMC9405932 DOI: 10.3390/cancers14163890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-enriched myelin-associated protein 1 (BCAS1) is frequently highly expressed in human cancer, but its detailed function is unclear. Here, we identified a novel splice variant of the BCAS1 gene in glioblastoma multiforme (GBM) named BCAS1-SV1. The expression of BCAS1-SV1 was weak in heathy brain cells but high in GBM cell lines. The overexpression of BCAS1-SV1 significantly increased the proliferation and migration of GBM cells, whereas the RNA-interference-mediated knockdown of BCAS1-SV1 reduced proliferation and migration. Moreover, using a yeast-two hybrid assay, immunoprecipitation, and immunofluorescence staining, we confirmed that β-arrestin 2 is an interaction partner of BCAS1-SV1 but not BCAS1. The downregulation of β-arrestin 2 directly enhanced the malignancy of GBM and abrogated the effects of BCAS1-SV1 on GBM cells. Finally, we used a yeast two-hybrid-based growth assay to identify that maackiain (MK) is a potential inhibitor of the interaction between BCAS1-SV1 and β-arrestin 2. MK treatment lessened the proliferation and migration of GBM cells and prolonged the lifespan of tumor-bearing mice in subcutaneous xenograft and intracranial U87-luc xenograft models. This study provides the first evidence that the gain-of-function BCAS1-SV1 splice variant promotes the development of GBM by suppressing the β-arrestin 2 pathway and opens up a new therapeutic perspective in GBM.
Collapse
Affiliation(s)
- Yun-Hua Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-422052121-7826
| |
Collapse
|
24
|
Maackiain Prevents Amyloid-Beta–Induced Cellular Injury via Priming PKC-Nrf2 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4243210. [PMID: 35782063 PMCID: PMC9242816 DOI: 10.1155/2022/4243210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Amyloid-beta (Aβ) peptide induces neurotoxicity through oxidative stress and inflammatory response. Brain deposition of a large amount of amyloid-beta (Aβ), in particular Aβ42, promotes the development of Alzheimer’s disease (AD). Maackiain is extracted from traditional Chinese medicine peony root and possesses antioxidative, antiosteoporosis, antitumor, and immunoregulatory effects. Whether Maackiain can reduce neurotoxicity caused by Aβ accumulation remains elusive. Herein, we found that Maackiain downregulated Aβ42-induced cell injury and apoptosis in PC12 cells. Moreover, Maackiain prevented Aβ42 stimulation-induced generation of oxidative stress and reduced Aβ42-caused impairment of mitochondrial membrane potential in PC12 cells. Maackiain increased the superoxide dismutase activity and decreased malondialdehyde content that was induced by Aβ42. Mechanistic studies showed that Maackiain increased intranuclear Nrf2 expression. Consistently, Nrf2 silencing by RNA interference weakened the protective role of Maackiain against Aβ exposure. In addition, calphostin C, a specific antagonist of protein kinase C, attenuated the promoting effects of Maackiain on Nrf2 nuclear translocation. Moreover, calphostin C attenuated the antioxidant and anti-inflammatory capabilities of Maackiain in PC12 cells. Collectively, Maackiain promoted Nrf2 activation through the PKC signaling pathway, thus preventing PC12 cells from Aβ-induced oxidative stress and cell injury, suggesting that Maackiain is a potential drug for AD treatment.
Collapse
|
25
|
Evaluation of Inhibitory Activities of Sophora flavescens and Angelica gigas Nakai Root Extracts against Monoamine Oxidases, Cholinesterases, and β-Secretase. Processes (Basel) 2022. [DOI: 10.3390/pr10050880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this study, Sophora flavescens (SF) from Yeongcheon (YSF) and Mt. Jiri (JiSF), and Angelica gias (AG) from Yeongcheon (YAG), Mt. Jiri (JiAG), and Jecheon (JeAG) were extracted using three concentrations of ethanol, 95% (95Et), 70% (70Et), and 50% (50Et), and hot water (DW) to evaluate the inhibitions of monoamine oxidases (MAOs; MAO-A and B), cholinesterases (ChEs; AChE and BChE) and β-secretase (BACE1) for targeting depression and neurodegenerative diseases. There were no significant differences in constituent compounds depending on herbal origins, except that YSF-95Et and JiSF-95Et showed a distinct non-polar spot upper maackiain position, and JiAG and JeAG showed a higher amount of decursin than YAG. Ethanolic YAG and JeAG extracts showed the highest MAO-A inhibition, and YSF-95Et mostly inhibited MAO-B. JiSF-95Et showed the highest AChE inhibition and YSF-70Et, JiSF-95Et, and -70Et showed the highest BChE inhibition. Interestingly, ethanolic AG extracts showed extremely potent BACE1 inhibition, especially for JiAG-95Et and JeAG-50Et, whereas there have been no reports about BACE1 inhibition of decursin, the major compound, or AG extracts in other studies. All extracts were nontoxic to MDCK and SH-SY5Y with a low toxicity to HL-60. The results showed a different pattern of inhibitory activities of the extracts toward target enzymes depending on the origins, and multi-target abilities, especially for MAO-B and BChE by YSF-95Et, for AChE and BChE by JiSF-95Et, and for MAO-B and BACE1 by JiAG-95Et. It is suggested that those extracts are potential candidates for finding novel compounds with multi-target inhibitory activities, and herbal origin is an important factor to be considered in selection of the plants.
Collapse
|