1
|
Morales Junior R, Mizuno T, Paice KM, Pavia KE, Hambrick HR, Tang P, Jones R, Gibson A, Stoneman E, Curry C, Kaplan J, Tang Girdwood S. Identifying optimal dosing strategies for meropenem in the paediatric intensive care unit through modelling and simulation. J Antimicrob Chemother 2024; 79:2668-2677. [PMID: 39092928 PMCID: PMC11442002 DOI: 10.1093/jac/dkae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Meropenem, a β-lactam antibiotic commonly prescribed for severe infections, poses dosing challenges in critically ill patients due to highly variable pharmacokinetics. OBJECTIVES We sought to develop a population pharmacokinetic model of meropenem for critically ill paediatric and young adult patients. PATIENTS AND METHODS Paediatric intensive care unit patients receiving meropenem 20-40 mg/kg every 8 h as a 30 min infusion were prospectively followed for clinical data collection and scavenged opportunistic plasma sampling. Nonlinear mixed effects modelling was conducted using Monolix®. Monte Carlo simulations were performed to provide dosing recommendations against susceptible pathogens (MIC ≤ 2 mg/L). RESULTS Data from 48 patients, aged 1 month to 30 years, with 296 samples, were described using a two-compartment model with first-order elimination. Allometric body weight scaling accounted for body size differences. Creatinine clearance and percentage of fluid balance were identified as covariates on clearance and central volume of distribution, respectively. A maturation function for renal clearance was included. Monte Carlo simulations suggested that for a target of 40% fT > MIC, the most effective dosing regimen is 20 mg/kg every 8 h with a 3 h infusion. If higher PD targets are considered, only continuous infusion regimens ensure target attainment against susceptible pathogens, ranging from 60 mg/kg/day to 120 mg/kg/day. CONCLUSIONS We successfully developed a population pharmacokinetic model of meropenem using real-world data from critically ill paediatric and young adult patients with an opportunistic sampling strategy and provided dosing recommendations based on the patients' renal function and fluid status.
Collapse
Affiliation(s)
- Ronaldo Morales Junior
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Tomoyuki Mizuno
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kelli M Paice
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kathryn E Pavia
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - H Rhodes Hambrick
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Peter Tang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rhonda Jones
- Clinical Quality Improvement Systems, James M. Anderson Center for Health Systems Excellence, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Abigayle Gibson
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Erin Stoneman
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Calise Curry
- Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Kaplan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Sonya Tang Girdwood
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
2
|
Preijers T, Muller AE, Abdulla A, de Winter BCM, Koch BCP, Sassen SDT. Dose Individualisation of Antimicrobials from a Pharmacometric Standpoint: The Current Landscape. Drugs 2024; 84:1167-1178. [PMID: 39240531 PMCID: PMC11512831 DOI: 10.1007/s40265-024-02084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Successful antimicrobial therapy depends on achieving optimal drug concentrations within individual patients. Inter-patient variability in pharmacokinetics (PK) and differences in pathogen susceptibility (reflected in the minimum inhibitory concentration, [MIC]) necessitate personalised approaches. Dose individualisation strategies aim to address this challenge, improving treatment outcomes and minimising the risk of toxicity and antimicrobial resistance. Therapeutic drug monitoring (TDM), with the application of population pharmacokinetic (popPK) models, enables model-informed precision dosing (MIPD). PopPK models mathematically describe drug behaviour across populations and can be combined with patient-specific TDM data to optimise dosing regimens. The integration of machine learning (ML) techniques promises to further enhance dose individualisation by identifying complex patterns within extensive datasets. Implementing these approaches involves challenges, including rigorous model selection and validation to ensure suitability for target populations. Understanding the relationship between drug exposure and clinical outcomes is crucial, as is striking a balance between model complexity and clinical usability. Additionally, regulatory compliance, outcome measurement, and practical considerations for software implementation will be addressed. Emerging technologies, such as real-time biosensors, hold the potential for revolutionising TDM by enabling continuous monitoring, immediate and frequent dose adjustments, and near patient testing. The ongoing integration of TDM, advanced modelling techniques, and ML within the evolving digital health care landscape offers a potential for enhancing antimicrobial therapy. Careful attention to model development, validation, and ethical considerations of the applied techniques is paramount for successfully optimising antimicrobial treatment for the individual patient.
Collapse
Affiliation(s)
- Tim Preijers
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
| | - Anouk E Muller
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands.
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands.
| | - Sebastiaan D T Sassen
- Department of Hospital Pharmacy, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Erasmus MC, Rotterdam, The Netherlands
- Centre for Antimicrobial Treatment Optimization Rotterdam (CATOR), Rotterdam, The Netherlands
| |
Collapse
|
3
|
Cao A, Li Q, Han M, Liu Q, Liang H, Tan L, Guan Y. Physiologically Based Pharmacokinetic Modeling of Vancomycin and its Comparison with Population Pharmacokinetic Model in Neonates. J Clin Pharmacol 2024. [PMID: 39223982 DOI: 10.1002/jcph.6126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Vancomycin has a narrow therapeutic window and a high inter-individual pharmacokinetic variability, especially in neonates with fast maturational and pathophysiological changes, that needs individualized dosing. Physiologically based pharmacokinetic (PBPK) model and population pharmacokinetic (PopPK) model are both useful tools in model-informed precision dosing, while the former is under research in application of vancomycin in neonates. This study aimed to develop a PBPK model of vancomycin in adult and pediatric population, and compared it with published PopPK model (priori or Bayesian method) in predicting vancomycin concentration in 230 neonatal patients (postmenstrual age, PMA, 25-45 weeks). The developed PBPK model showed a good fit between predictions and observations. PBPK model and PopPK model are complementary in different clinical scenarios of vancomycin application. The physiological-change description of PBPK model showed a superior advantage in initial dosing optimization. As for subsequent dose optimization, PopPK Bayesian forecasting performed better than the PBPK estimation in neonates. However, initial precision dosing tools for early neonates (with PMA < 36 weeks) still need further exploitation.
Collapse
Affiliation(s)
- Ailing Cao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiaoxi Li
- Department of Pharmacy, The First People's Hospital of Foshan, Foshan, China
| | - Minzhen Han
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Qian Liu
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Heng Liang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lu Tan
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanping Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Chihara S, Ishigo T, Kazuma S, Matsumoto K, Morita K, Masuda Y. Association between Extended Meropenem Regimen and Achievement of Aggressive PK/PD in Patients Receiving Continuous Renal Replacement Therapy for Septic AKI. Antibiotics (Basel) 2024; 13:755. [PMID: 39200055 PMCID: PMC11350760 DOI: 10.3390/antibiotics13080755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Aggressive pharmacokinetic (PK)/pharmacodynamic (PD) targets have shown better microbiological eradication rates and a lower propensity to develop resistant strains than conservative targets. We investigated whether meropenem blood levels, including aggressive PK/PD, were acceptable in terms of efficacy and safety using a meropenem regimen of 1 g infusion every 8 h over 3 h in patients undergoing continuous renal replacement therapy (CRRT) for septic acute kidney injury (AKI). Aggressive PK/PD targets were defined as the percentage of time that the free concentration (%fT) > 4 × minimal inhibitory concentration (MIC), the toxicity threshold was defined as a trough concentration >45 mg/L, and the percentage of achievement at each MIC was evaluated. The 100% fT > 4 × MIC for a pathogen with an MIC of 0.5 mg/L was 89%, and that for a pathogen with an MIC of 2 mg/L was 56%. The mean steady-state trough concentration of meropenem was 11.9 ± 9.0 mg/L and the maximum steady-state trough concentration was 29.2 mg/L. Simulations using Bayesian estimation showed the probability of achieving 100% fT > 4 × MIC for up to an MIC of 2 mg/L for the administered administration via continuous infusion at 3 g/24 h. We found that an aggressive PK/PD could be achieved up to an MIC of 0.5 mg/L with a meropenem regimen of 1 g infused every 8 h over 3 h for patients receiving CRRT for septic AKI. In addition, the risk of reaching the toxicity range with this regimen is low. In addition, if the MIC was 1-2 mg/L, the simulation results indicated that aggressive PK/PD can be achieved by continuous infusion at 3 g/24 h without increasing the daily dose.
Collapse
Affiliation(s)
- Shinya Chihara
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan; (S.C.); (Y.M.)
- Department of Clinical Engineering, Japan Health Care University Faculty of Health Sciences, Sapporo 062-0053, Japan
| | - Tomoyuki Ishigo
- Department of Pharmacy, Sapporo Medical University Hospital, Sapporo 060-8543, Japan; (T.I.)
| | - Satoshi Kazuma
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan; (S.C.); (Y.M.)
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (K.M.); (K.M.)
| | - Kunihiko Morita
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (K.M.); (K.M.)
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan; (S.C.); (Y.M.)
| |
Collapse
|
5
|
El Hassani M, Liebchen U, Marsot A. Does Sample Size, Sampling Strategy, or Handling of Concentrations Below the Lower Limit of Quantification Matter When Externally Evaluating Population Pharmacokinetic Models? Eur J Drug Metab Pharmacokinet 2024; 49:419-436. [PMID: 38705941 DOI: 10.1007/s13318-024-00897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Precision dosing requires selecting the appropriate population pharmacokinetic model, which can be assessed through external evaluations (EEs). The lack of understanding of how different study design factors influence EE study outcomes makes it challenging to select the most suitable model for clinical use. This study aimed to evaluate the impact of sample size, sampling strategy, and handling of concentrations below the lower limit of quantification (BLQ) on the outcomes of EE for four population pharmacokinetic models using vancomycin and tobramycin as examples. METHODS Three virtual patient populations undergoing vancomycin or tobramycin therapy were simulated with varying sample size and sampling scenarios. The three approaches used to handle BLQ data were to (1) discard them, (2) impute them as LLOQ/2, or (3) use a likelihood-based approach. EEs were performed with NONMEM and R. RESULTS Sample size did not have an important impact on the EE results for a given scenario. Increasing the number of samples per patient did not improve predictive performance for two out of the three evaluated models. Evaluating a model developed with rich sampling did not result in better performance than those developed with regular therapeutic drug monitoring. A likelihood-based method to handle BLQ samples impacted the outcomes of the EE with lower bias for predicted troughs. CONCLUSIONS This study suggests that a large sample size may not be necessary for an EE study, and models selected based on TDM may be more generalizable. The study highlights the need for guidelines for EE of population pharmacokinetic models for clinical use.
Collapse
Affiliation(s)
- Mehdi El Hassani
- Faculté de pharmacie, Université de Montréal, 2940 chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada.
- Laboratoire de suivi thérapeutique pharmacologique et pharmacocinétique, Faculté de pharmacie, Université de Montréal, Montreal, QC, Canada.
| | - Uwe Liebchen
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, 81377, Munich, Germany
| | - Amélie Marsot
- Faculté de pharmacie, Université de Montréal, 2940 chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
- Laboratoire de suivi thérapeutique pharmacologique et pharmacocinétique, Faculté de pharmacie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Tait JR, Anderson D, Nation RL, Creek DJ, Landersdorfer CB. Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2024; 68:e0108123. [PMID: 38376189 PMCID: PMC10989016 DOI: 10.1128/aac.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Extracellular bacterial metabolites have potential as markers of bacterial growth and resistance emergence but have not been evaluated in dynamic in vitro studies. We investigated the dynamic metabolomic footprint of a multidrug-resistant hypermutable Pseudomonas aeruginosa isolate exposed to ceftolozane/tazobactam as continuous infusion (4.5 g/day, 9 g/day) in a hollow-fiber infection model over 7-9 days in biological replicates (n = 5). Bacterial samples were collected at 0, 7, 23, 47, 71, 95, 143, 167, 191, and 215 h, the supernatant quenched, and extracellular metabolites extracted. Metabolites were analyzed via untargeted metabolomics, including hierarchical clustering and correlation with quantified total and resistant bacterial populations. The time-courses of five (of 1,921 detected) metabolites from enriched pathways were mathematically modeled. Absorbed L-arginine and secreted L-ornithine were highly correlated with the total bacterial population (r -0.79 and 0.82, respectively, P<0.0001). Ribose-5-phosphate, sedoheptulose-7-phosphate, and trehalose-6-phosphate correlated with the resistant subpopulation (0.64, 0.64, and 0.67, respectively, P<0.0001) and were likely secreted due to resistant growth overcoming oxidative and osmotic stress induced by ceftolozane/tazobactam. Using pharmacokinetic/pharmacodynamic-based transduction models, these metabolites were successfully modeled based on the total or resistant bacterial populations. The models well described the abundance of each metabolite across the differing time-course profiles of biological replicates, based on bacterial killing and, importantly, resistant regrowth. These proof-of-concept studies suggest that further exploration is warranted to determine the generalizability of these findings. The metabolites modeled here are not exclusive to bacteria. Future studies may use this approach to identify bacteria-specific metabolites correlating with resistance, which would ultimately be extremely useful for clinical translation.
Collapse
Affiliation(s)
- Jessica R. Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Roger L. Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Hyun DG, Seo J, Lee SY, Ahn JH, Hong SB, Lim CM, Koh Y, Huh JW. Extended Versus Intermittent Meropenem Infusion in the Treatment of Nosocomial Pneumonia: A Retrospective Single-Center Study. Antibiotics (Basel) 2023; 12:1542. [PMID: 37887243 PMCID: PMC10604670 DOI: 10.3390/antibiotics12101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/16/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The efficacy of extended meropenem infusions in patients with nosocomial pneumonia is not well defined. Therefore, we compared the clinical outcomes of extended versus intermittent meropenem infusions in the treatment of nosocomial pneumonia. We performed a retrospective analysis of extended versus intermittent meropenem infusions in adult patients who had been treated for nosocomial pneumonia at a medical ICU between 1 May 2018 and 30 April 2020. The primary outcome was mortality at 14 days. Overall, 64 patients who underwent an extended infusion and 97 with an intermittent infusion were included in this study. At 14 days, 10 (15.6%) patients in the extended group and 22 (22.7%) in the intermittent group had died (adjusted hazard ratio (HR), 0.55; 95% confidence interval (CI): 0.23-1.31; p = 0.174). In the subgroup analysis, significant differences in mortality at day 14 were observed in patients following empirical treatment with meropenem (adjusted HR, 0.17; 95% CI: 0.03-0.96; p = 0.045) and in Gram-negative pathogens identified by blood or sputum cultures (adjusted HR, 0.01; 95% CI: 0.01-0.83; p = 0.033). Extended infusion of meropenem compared with intermittent infusion as a treatment option for nosocomial pneumonia may have a potential advantage in specific populations.
Collapse
Affiliation(s)
- Dong-gon Hyun
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Jarim Seo
- Department of Pharmacy, Asan Medical Centre, Seoul 05505, Republic of Korea
| | - Su Yeon Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Jee Hwan Ahn
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| |
Collapse
|
8
|
El Hassani M, Marsot A. External Evaluation of Population Pharmacokinetic Models for Precision Dosing: Current State and Knowledge Gaps. Clin Pharmacokinet 2023; 62:533-540. [PMID: 37004650 DOI: 10.1007/s40262-023-01233-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
Predicting drug exposures using population pharmacokinetic models through Bayesian forecasting software can improve individual pharmacokinetic/pharmacodynamic target attainment. However, selecting the most adapted model to be used is challenging due to the lack of guidance on how to design and interpret external evaluation studies. The confusion around the choice of statistical metrics and acceptability criteria emphasises the need for further research to fill this methodological gap as there is an urgent need for the development of standards and guidelines for external evaluation studies. Herein we discuss the scientific challenges faced by pharmacometric researchers and opportunities for future research with a focus on antibiotics.
Collapse
Affiliation(s)
- Mehdi El Hassani
- Faculté de pharmacie, Université de Montréal, 2940 chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada.
- Laboratoire de suivi thérapeutique pharmacologique et pharmacocinétique, Faculté de pharmacie, Université de Montréal, Montréal, Canada.
| | - Amélie Marsot
- Faculté de pharmacie, Université de Montréal, 2940 chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
- Laboratoire de suivi thérapeutique pharmacologique et pharmacocinétique, Faculté de pharmacie, Université de Montréal, Montréal, Canada
| |
Collapse
|
9
|
Individualised dosing of antibiotics in ICU patients: timing, target and model selection matter. Author's reply. Intensive Care Med 2023; 49:477-478. [PMID: 36808214 DOI: 10.1007/s00134-023-07002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2023] [Indexed: 02/19/2023]
|
10
|
Li L, Sassen SDT, Ewoldt TMJ, Abdulla A, Hunfeld NGM, Muller AE, de Winter BCM, Endeman H, Koch BCP. Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? Antibiotics (Basel) 2023; 12:antibiotics12020383. [PMID: 36830294 PMCID: PMC9951903 DOI: 10.3390/antibiotics12020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The number of pharmacokinetic (PK) models of meropenem is increasing. However, the daily role of these PK models in the clinic remains unclear, especially for critically ill patients. Therefore, we evaluated the published meropenem models on real-world ICU data to assess their suitability for use in clinical practice. All models were built in NONMEM and evaluated using prediction and simulation-based diagnostics for the ability to predict the subsequent meropenem concentrations without plasma concentrations (a priori), and with plasma concentrations (a posteriori), for use in therapeutic drug monitoring (TDM). Eighteen PopPK models were included for evaluation. The a priori fit of the models, without the use of plasma concentrations, was poor, with a prediction error (PE)% of the interquartile range (IQR) exceeding the ±30% threshold. The fit improved when one to three concentrations were used to improve model predictions for TDM purposes. Two models were in the acceptable range with an IQR PE% within ±30%, when two or three concentrations were used. The role of PK models to determine the starting dose of meropenem in this population seems limited. However, certain models might be suitable for TDM-based dose adjustment using two to three plasma concentrations.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sebastiaan D. T. Sassen
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| | - Tim M. J. Ewoldt
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Nicole G. M. Hunfeld
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Anouk E. Muller
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medical Centre, 2597 AX The Hague, The Netherlands
| | - Brenda C. M. de Winter
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
11
|
Evaluation of Empirical Dosing Regimens for Meropenem in Intensive Care Unit Patients Using Population Pharmacokinetic Modeling and Target Attainment Analysis. Antimicrob Agents Chemother 2023; 67:e0131222. [PMID: 36622154 PMCID: PMC9872596 DOI: 10.1128/aac.01312-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the present study, population pharmacokinetic (PK) analysis was performed based on meropenem data from a prospective study conducted in 114 critically ill patients with a wide range of renal functions and various disease conditions. The final model was a one-compartment model with linear elimination, with creatinine clearance and continuous renal replacement therapy affecting clearance, and total bodyweight impacting the volume of distribution. Our model is a valuable addition to the existing meropenem population PK models, and it could be particularly useful during implementation of a therapeutic drug monitoring program combined with Bayesian forecasting. Based on the final model developed, comprehensive Monte Carlo simulations were performed to evaluate the probability of target attainment (PTA) of 16 different dosing regimens. Simulation results showed that 2 g administered every 8 h with 3-h prolonged infusion (PI) and 4 g/day by continuous infusion (CI) appear to be two empirical dosing regimens that are superior to many other regimens when both target attainment and potential toxicity are considered and renal function information is not available. Following a daily CI dose of 6 g or higher, more than 30% of the population with a creatinine clearance of <60 mL/min is predicted to have neurotoxicity. With the availability of institution- and/or unit-specific meropenem susceptibility patterns, as well as an individual patient's renal function, our PTA results may represent useful references for physicians to make dosing decisions.
Collapse
|
12
|
Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: a multicentre randomised clinical trial. Intensive Care Med 2022; 48:1760-1771. [PMID: 36350354 PMCID: PMC9645317 DOI: 10.1007/s00134-022-06921-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Individualising drug dosing using model-informed precision dosing (MIPD) of beta-lactam antibiotics and ciprofloxacin has been proposed as an alternative to standard dosing to optimise antibiotic efficacy in critically ill patients. However, randomised clinical trials (RCT) on clinical outcomes have been lacking. METHODS This multicentre RCT, including patients admitted to the intensive care unit (ICU) who were treated with antibiotics, was conducted in eight hospitals in the Netherlands. Patients were randomised to MIPD with dose and interval adjustments based on monitoring serum drug levels (therapeutic drug monitoring) combined with pharmacometric modelling of beta-lactam antibiotics and ciprofloxacin. The primary outcome was ICU length of stay (LOS). Secondary outcomes were ICU mortality, hospital mortality, 28-day mortality, 6-month mortality, delta sequential organ failure assessment (SOFA) score, adverse events and target attainment. RESULTS In total, 388 (MIPD n = 189; standard dosing n = 199) patients were analysed (median age 64 [IQR 55-71]). We found no significant differences in ICU LOS between MIPD compared to standard dosing (10 MIPD vs 8 standard dosing; IRR = 1.16; 95% CI 0.96-1.41; p = 0.13). There was no significant difference in target attainment before intervention at day 1 (T1) (55.6% MIPD vs 60.9% standard dosing; p = 0.24) or at day 3 (T3) (59.5% vs 60.4%; p = 0.84). There were no significant differences in other secondary outcomes. CONCLUSIONS We could not show a beneficial effect of MIPD of beta-lactam antibiotics and ciprofloxacin on ICU LOS in critically ill patients. Our data highlight the need to identify other approaches to dose optimisation.
Collapse
|