1
|
Mahalingam G, Rachamalla HK, Arjunan P, Karuppusamy KV, Periyasami Y, Mohan A, Subramaniyam K, M S, Rajendran V, Moorthy M, Varghese GM, Mohankumar KM, Thangavel S, Srivastava A, Marepally S. SMART-lipid nanoparticles enabled mRNA vaccine elicits cross-reactive humoral responses against the omicron sub-variants. Mol Ther 2024; 32:1284-1297. [PMID: 38414245 PMCID: PMC11081802 DOI: 10.1016/j.ymthe.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated the development of broad cross-reactive vaccines. Recent findings suggest that enhanced antigen presentation could lead to cross-reactive humoral responses against the emerging variants. Toward enhancing the antigen presentation to dendritic cells (DCs), we developed a novel shikimoylated mannose receptor targeting lipid nanoparticle (SMART-LNP) system that could effectively deliver mRNAs into DCs. To improve the translation of mRNA, we developed spike domain-based trimeric S1 (TS1) mRNA with optimized codon sequence, base modification, and engineered 5' and 3' UTRs. In a mouse model, SMART-LNP-TS1 vaccine could elicit robust broad cross-reactive IgGs against Omicron sub-variants, and induced interferon-γ-producing T cells against SARS-CoV-2 virus compared with non-targeted LNP-TS1 vaccine. Further, T cells analysis revealed that SMART-LNP-TS1 vaccine induced long-lived memory T cell subsets, T helper 1 (Th1)-dominant and cytotoxic T cells immune responses against the SARS-CoV-2 virus. Importantly, SMART-LNP-TS1 vaccine produced strong Th1-predominant humoral and cellular immune responses. Overall, SMART-LNPs can be explored for precise antigenic mRNA delivery and robust immune responses. This platform technology can be explored further as a next-generation delivery system for mRNA-based immune therapies.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Hari Krishnareddy Rachamalla
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Karthik V Karuppusamy
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Aruna Mohan
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Kanimozhi Subramaniyam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Salma M
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Vigneshwar Rajendran
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College and Hospital, Vellore, TN 632002, India
| | - George M Varghese
- Department of Infectious Diseases, Christian Medical College and Hospital, Vellore, TN 632002, India
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India.
| |
Collapse
|
2
|
Mahalingam G, Arjunan P, Periyasami Y, Dhyani AK, Devaraju N, Rajendiran V, Christopher AC, Kt RD, Dhanasingh I, Thangavel S, Murugesan M, Moorthy M, Srivastava A, Marepally S. Correlating the differences in the receptor binding domain of SARS-CoV-2 spike variants on their interactions with human ACE2 receptor. Sci Rep 2023; 13:8743. [PMID: 37253762 DOI: 10.1038/s41598-023-35070-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Spike glycoprotein of SARS-CoV-2 variants plays a critical role in infection and transmission through its interaction with human angiotensin converting enzyme 2 (hACE2) receptors. Prior findings using molecular docking and biomolecular studies reported varied findings on the difference in the interactions among the spike variants with the hACE2 receptors. Hence, it is a prerequisite to understand these interactions in a more precise manner. To this end, firstly, we performed ELISA with trimeric spike glycoproteins of SARS-CoV-2 variants including Wuhan Hu-1(Wild), Delta, C.1.2 and Omicron. Further, to study the interactions in a more specific manner by mimicking the natural infection, we developed hACE2 receptors expressing HEK-293T cell line, evaluated their binding efficiencies and competitive binding of spike variants with D614G spike pseudotyped virus. In line with the existing findings, we observed that Omicron had higher binding efficiency compared to Delta in both ELISA and Cellular models. Intriguingly, we found that cellular models could differentiate the subtle differences between the closely related C.1.2 and Delta in their binding to hACE2 receptors. Our study using the cellular model provides a precise method to evaluate the binding interactions between spike sub-lineages to hACE2 receptors.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Ajay Kumar Dhyani
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Nivedita Devaraju
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Abisha Crystal Christopher
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Ramya Devi Kt
- Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Immanuel Dhanasingh
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Mohankumar Murugesan
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India.
| |
Collapse
|
3
|
Lohchania B, Christopher AC, Arjunan P, Mahalingam G, Kathirvelu D, Prasannan A, Venkatesan V, Taneja P, KM MK, Thangavel S, Marepally S. Diosgenin enhances liposome-enabled nucleic acid delivery and CRISPR/Cas9-mediated gene editing by modulating endocytic pathways. Front Bioeng Biotechnol 2023; 10:1031049. [PMID: 36698628 PMCID: PMC9868636 DOI: 10.3389/fbioe.2022.1031049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
The CRISPR/Cas9 system holds great promise in treating genetic diseases, owing to its safe and precise genome editing. However, the major challenges to implementing the technology in clinics lie in transiently limiting the expression of genome editing factors and achieving therapeutically relevant frequencies with fidelity. Recent findings revealed that non-viral vectors could be a potential alternative delivery system to overcome these limitations. In our previous research, we demonstrated that liposomal formulations with amide linker-based cationic lipids and cholesterol were found to be effective in delivering a variety of nucleic acids. In the current study, we screened steroidal sapogenins as an alternative co-lipid to cholesterol in cationic liposomal formulations and found that liposomes with diosgenin (AD, Amide lipid: Diosgenin) further improved nucleic acid delivery efficacy, in particular, delivering Cas9 pDNA and mRNA for efficient genome editing at multiple loci, including AAVS1 and HBB, when compared to amide cholesterol. Mechanistic insights into the endocytosis of lipoplexes revealed that diosgenin facilitated the lipoplexes' cholesterol-independent and clathrin-mediated endocytosis, which in turn leads to increased intracellular delivery. Our study identifies diosgenin-doped liposomes as an efficient tool to deliver CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Brijesh Lohchania
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,Sharda University, Greater Noida, India
| | - Abisha Crystal Christopher
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,Thiruvalluvar University, Vellore, India
| | - Porkizhi Arjunan
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,Manipal Academy of Higher Education, Manipal University, Manipal, India
| | | | - Durga Kathirvelu
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Aishwarya Prasannan
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,Manipal Academy of Higher Education, Manipal University, Manipal, India
| | | | - Mohan Kumar KM
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,*Correspondence: Saravanabhavan Thangavel, ; Srujan Marepally,
| | - Srujan Marepally
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India,*Correspondence: Saravanabhavan Thangavel, ; Srujan Marepally,
| |
Collapse
|