1
|
Zupec J, Munger R, Scaletta A, Quinn DH. Use of glucagon-like peptide-1 receptor agonists and incretin mimetics for type 2 diabetes and obesity: A narrative review. Nutr Clin Pract 2025; 40:327-349. [PMID: 39961620 DOI: 10.1002/ncp.11279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Incretin mimetics, including glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide agonists, have become first-line treatment options for the treatment of type 2 diabetes and obesity. Their therapeutic status is attributed to their high level of efficacy as well as positive impact on related comorbidities, such as sleep apnea and heart failure. Multiple incretin mimetics are currently available with different durations of drug action, dosing frequencies, and delivery devices. Patients may benefit from education on the proper drug administration, anticipated adverse effects, and nutrition considerations with treatment. Practitioners must monitor progress and support the patient to achieve maintenance doses for optimal weight reduction and diabetes-related outcomes. This review aims to present the current literature supporting US Food and Drug Administration-approved indications of incretin mimetics, equip healthcare professionals to optimize care for patients who are prescribed these agents, and provide insights into potential future applications, which may include dual- or triple-mechanism agents that are injected or administered orally. Additional studies are anticipated with existing and future incretin mimetics for the treatment of type 2 diabetes, obesity, and related comorbidities in a rapidly developing therapeutic pipeline.
Collapse
Affiliation(s)
- Jason Zupec
- Department of Pharmacy Practice, Philadelphia College of Pharmacy at Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Rebecca Munger
- Department of Pharmacy Practice, Philadelphia College of Pharmacy at Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Alice Scaletta
- Department of Pharmacy Practice, Philadelphia College of Pharmacy at Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Diane H Quinn
- Department of Pharmacy Practice, Philadelphia College of Pharmacy at Saint Joseph's University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Jiang W, Ding K, Yang M, Hu Z, Yue R. Exploring the Potential Effect of GLP1R Agonism on Common Aging-Related Diseases via Glucose Reduction: A Mendelian Randomization Study. J Gerontol A Biol Sci Med Sci 2025; 80:glaf007. [PMID: 39797952 DOI: 10.1093/gerona/glaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP1RAs) are widely used in managing type 2 diabetes mellitus and weight control. Their potential in treating aging-related diseases has been gaining attention in recent years. However, the long-term effects of GLP1RAs on these diseases have yet to be fully revealed. METHODS Using a genetic variant in the GLP1R gene to model the long-term effects of GLP1RAs, this Mendelian randomization (MR) study systematically explored potential causal associations between GLP1R agonism and 12 aging-related diseases and indicators. Genetic summary data sets used in this study were obtained from previous genome-wide association studies. RESULTS The primary MR analysis results suggested that GLP1R agonism was potentially positively causally associated with appendicular lean mass (Beta = 0.246, 95% confidence interval [CI] = 0.096-0.396), whole-body fat-free mass (Beta = 0.202, 95% CI = 0.048-0.355), and lung function (forced vital capacity [FVC]; Beta = 0.179, 95% CI = 0.152-0.205; p < .05). Additionally, a potential negative causal association was observed with myocardial infarction (odds ratio = 0.430, 95% CI = 0.249-0.745; p < .05). CONCLUSIONS The present MR study provides exploratory evidence suggesting potential causal associations between GLP1R agonism and appendicular lean mass, whole-body fat-free mass, lung function (FVC), and myocardial infarction. Given the exploratory nature of these findings and the limitations of the MR methodology, further research is needed to validate these results and investigate the underlying biological mechanisms.
Collapse
Affiliation(s)
- Wei Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaixi Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Boeckhaus J, Mabillard H, Sayer JA. GLP-1 receptor agonists-another promising therapy for Alport syndrome? JOURNAL OF RARE DISEASES (BERLIN, GERMANY) 2025; 4:5. [PMID: 40026358 PMCID: PMC11870915 DOI: 10.1007/s44162-024-00065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 03/05/2025]
Abstract
Alport syndrome (AS) is a progressive monogenic glomerular kidney disease characterised by kidney function decline, hearing loss, and ocular abnormalities, often leading to early-onset kidney failure (KF). While current therapies, such as renin-angiotensin system inhibitors (RASi), offer some benefits, many patients still experience KF at a young age, highlighting the need for additional treatment options. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have emerged as promising agents with demonstrated cardiovascular and nephroprotective effects in type 2 diabetes (T2D) and chronic kidney disease (CKD) patients. Evidence from several major clinical trials has shown that GLP-1 RAs can reduce cardiovascular events and slow CKD progression by reducing albuminuria. Their potential mechanisms of action include anti-inflammatory, anti-fibrotic, and antioxidative effects, making them particularly relevant for the treatment of AS, where inflammation and fibrosis play crucial roles in disease progression. This review explores the therapeutic potential of GLP-1 RAs in AS, summarising pre-clinical and clinical data and elucidating the pathways through which GLP-1 RAs might offer renoprotective benefits. We advocate for further research into their application in AS and recommend the inclusion of AS patients in future clinical trials to better understand their impact on disease progression and patient outcomes.
Collapse
Affiliation(s)
- Jan Boeckhaus
- Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Holly Mabillard
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle Upon Tyne, UK
| | - John A. Sayer
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Kistkins S, Moser O, Ankudovičs V, Blizņuks D, Mihailovs T, Lobanovs S, Sourij H, Pfeiffer AFH, Pīrāgs V. From classical dualistic antagonism to hormone synergy: potential of overlapping action of glucagon, insulin and GLP-1 for the treatment of diabesity. Endocr Connect 2024; 13:e230529. [PMID: 38579770 PMCID: PMC11046332 DOI: 10.1530/ec-23-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
The increasing prevalence of 'diabesity', a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behaviour, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycaemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including potential withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of 'anti-diabesity' treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.
Collapse
Affiliation(s)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany
| | | | - Dmitrijs Blizņuks
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | - Timurs Mihailovs
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | | | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetolgoy, Medical University of Graz, Graz, Austria
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm, Berlin, Germany
| | - Valdis Pīrāgs
- Pauls Stradiņš Clinical University Hospital, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
5
|
Gallo G, Volpe M. Potential Mechanisms of the Protective Effects of the Cardiometabolic Drugs Type-2 Sodium-Glucose Transporter Inhibitors and Glucagon-like Peptide-1 Receptor Agonists in Heart Failure. Int J Mol Sci 2024; 25:2484. [PMID: 38473732 DOI: 10.3390/ijms25052484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Different multifactorial pathophysiological processes are involved in the development of heart failure (HF), including neurohormonal dysfunction, the hypertrophy of cardiomyocytes, interstitial fibrosis, microvascular endothelial inflammation, pro-thrombotic states, oxidative stress, decreased nitric oxide (NO) bioavailability, energetic dysfunction, epicardial coronary artery lesions, coronary microvascular rarefaction and, finally, cardiac remodeling. While different pharmacological strategies have shown significant cardiovascular benefits in HF with reduced ejection fraction (HFrEF), there is a residual unmet need to fill the gap in terms of knowledge of mechanisms and efficacy in the outcomes of neurohormonal agents in HF with preserved ejection fraction (HFpEF). Recently, type-2 sodium-glucose transporter inhibitors (SGLT2i) have been shown to contribute to a significant reduction in the composite outcome of HF hospitalizations and cardiovascular mortality across the entire spectrum of ejection fraction. Moreover, glucagon-like peptide-1 receptor agonists (GLP1-RA) have demonstrated significant benefits in patients with high cardiovascular risk, excess body weight or obesity and HF, in particular HFpEF. In this review, we will discuss the biological pathways potentially involved in the action of SGLT2i and GLP1-RA, which may explain their effective roles in the treatment of HF, as well as the potential implications of the use of these agents, also in combination therapies with neurohormonal agents, in the clinical practice.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Massimo Volpe
- IRCCS San Raffaele Roma, Via della Pisana 235, 00163 Rome, Italy
| |
Collapse
|
6
|
Karakasis P, Patoulias D, Kassimis G, Koufakis T, Klisic A, Doumas M, Fragakis N, Rizzo M. Therapeutic Potential of Sodium-glucose Co-transporter-2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists for Patients with Acute Coronary Syndrome: A Review of Clinical Evidence. Curr Pharm Des 2024; 30:2109-2119. [PMID: 38910481 PMCID: PMC11475097 DOI: 10.2174/0113816128304097240529053538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024]
Abstract
Atherosclerotic Cardiovascular Disease (ASCVD) is still one of the leading causes of death globally, with Coronary Artery Disease (CAD) being the most prevalent form of ASCVD. Patients with type 2 Diabetes Mellitus (DM) experience an increased risk for ASCVD during the disease course, with CAD being the most common cause of death among affected individuals, resulting in shorter life expectancy and increased morbidity among survivors. Recently, 2 novel classes of anti-diabetic drugs, namely Sodium-Glucose Co-Transporter- 2 (SGLT-2) inhibitors and Glucagon-Like Peptide-1 (GLP-1) receptor agonists, have shown impressive cardio-renal benefits for patients with type 2 DM, while they might decrease cardio-renal risk even in the absence of baseline DM. However, there is no evidence to date regarding their safety and efficacy in the setting of an acute coronary syndrome (ACS) event, regardless of concomitant DM. This study aims to provide a detailed, updated presentation of currently available clinical evidence concerning the potential role of SGLT-2 inhibitors and GLP-1 receptor agonists in the setting of an ACS, and to highlight whether those drug classes could be utilized as adjuncts to standard-of-care treatment in this specific patient population, along with a presentation of the potential short- and long-term cardiovascular benefits.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, General Hospital “Hippokration”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, General Hospital “Hippokration”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Kassimis
- Second Department of Cardiology, General Hospital “Hippokration”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, General Hospital “Hippokration”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aleksandra Klisic
- Faculty of Medicine, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, General Hospital “Hippokration”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Fragakis
- Second Department of Cardiology, General Hospital “Hippokration”, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care (Promise), School of Medicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Biagioli M, Marchianò S, Di Giorgio C, Bordoni M, Urbani G, Bellini R, Massa C, Sami Ullah Khan R, Roselli R, Chiara Monti M, Morretta E, Giordano A, Vellecco V, Bucci M, Jilani Iqbal A, Saviano A, Ab Mansour A, Ricci P, Distrutti E, Zampella A, Cieri E, Cirino G, Fiorucci S. Activation of GPBAR1 attenuates vascular inflammation and atherosclerosis in a mouse model of NAFLD-related cardiovascular disease. Biochem Pharmacol 2023; 218:115900. [PMID: 37926268 DOI: 10.1016/j.bcp.2023.115900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
While patients with nonalcoholic fatty liver disease (NAFLD) are at increased risk to develop clinically meaningful cardiovascular diseases (CVD), there are no approved drug designed to target the liver and CVD component of NAFLD. GPBAR1, also known as TGR5, is a G protein coupled receptor for secondary bile acids. In this study we have investigated the effect of GPBAR1 activation by BAR501, a selective GPBAR1 agonist, in Apolipoprotein E deficient (ApoE-/-) mice fed a high fat diet and fructose (Western diet), a validated model of NAFLD-associated atherosclerosis. Using aortic samples from patients who underwent surgery for abdominal aneurism, and ex vivo experiments with endothelial cells and human macrophages, we were able to co-localize the expression of GPBAR1 in CD14+ and PECAM1+ cells. Similar findings were observed in the aortic plaques from ApoE-/- mice. Treating ApoE-/- mice with BAR501, 30 mg/kg for 14 weeks, attenuated the body weight gain while ameliorated the insulin sensitivity by increasing the plasma concentrations of GLP-1 and FGF15. Activation of GPBAR1 reduced the aorta thickness and severity of atherosclerotic lesions and decreased the amount of plaques macrophages. Treating ApoE-/- mice reshaped the aortic transcriptome promoting the expression of anti-inflammatory genes, including IL-10, as also confirmed by tSNE analysis of spleen-derived macrophages. Feeding ApoE-/- mice with BAR501 redirected the bile acid synthesis and the composition of the intestinal microbiota. In conclusion, GPBAR1 agonism attenuates systemic inflammation and improve metabolic profile in a genetic/dietetic model of atherosclerosis. BAR501 might be of utility in the treatment for NAFLD-related CVD.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Antonino Giordano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Anella Saviano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adel Ab Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Enrico Cieri
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
8
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
9
|
Bernardini F, Nusca A, Coletti F, La Porta Y, Piscione M, Vespasiano F, Mangiacapra F, Ricottini E, Melfi R, Cavallari I, Ussia GP, Grigioni F. Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease. Pharmaceutics 2023; 15:1858. [PMID: 37514043 PMCID: PMC10386670 DOI: 10.3390/pharmaceutics15071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is the leading cause of death worldwide, especially in patients with type 2 diabetes mellitus (T2D). GLP-1 receptor agonists and DPP-4 inhibitors were demonstrated to play a markedly protective role for the cardiovascular system beyond their glycemic control. Several cardiovascular outcome trials (CVOT) reported the association between using these agents and a significant reduction in cardiovascular events in patients with T2D and a high cardiovascular risk profile. Moreover, recent evidence highlights a favorable benefit/risk profile in myocardial infarction and percutaneous coronary revascularization settings. These clinical effects result from their actions on multiple molecular mechanisms involving the immune system, platelets, and endothelial and vascular smooth muscle cells. This comprehensive review specifically concentrates on these cellular and molecular processes mediating the cardiovascular effects of incretins-like molecules, aiming to improve clinicians' knowledge and stimulate a more extensive use of these drugs in clinical practice as helpful cardiovascular preventive strategies.
Collapse
Affiliation(s)
- Federico Bernardini
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Annunziata Nusca
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Federica Coletti
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Ylenia La Porta
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Mariagrazia Piscione
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Francesca Vespasiano
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Fabio Mangiacapra
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Elisabetta Ricottini
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Rosetta Melfi
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Ilaria Cavallari
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Gian Paolo Ussia
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Francesco Grigioni
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| |
Collapse
|
10
|
Xiao SL, Bober E, Kassianides X, Medici F, Xiao HB. Diabetic cardiomyopathy: an educational review. THE BRITISH JOURNAL OF CARDIOLOGY 2023; 30:18. [PMID: 38911684 PMCID: PMC11190836 DOI: 10.5837/bjc.2023.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
This educational review provides information about the epidemiology of diabetes and heart failure (diabetic cardiomyopathy) and the challenges in diagnosis and screening. Details on how to investigate patients with imaging and other modalities are discussed, as well as an update regarding the efficacy and safety of novel agents for treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Su-Lee Xiao
- Specialist Registrar (ST5) Geriatric Medicine Charing Cross Hospital, Fulham Palace Road, London W6 8RF
| | - Emilia Bober
- Foundation Year 1 Doctor Northwick Park Hospital, Watford Road, Harrow, Middlesex, HA1 3UJ
| | - Xenophon Kassianides
- Specialty Registar in General Practice Hull University Teaching Hospitals NHS Trust and the Hull York Medical School, Anlaby Road, Hull, HU3 2JZ
| | | | - Han B Xiao
- Consultant Cardiologist Homerton Hospital, Homerton Row, London, E9 6SR
| |
Collapse
|
11
|
Sakai R, Sekimoto T, Koba S, Mori H, Matsukawa N, Arai T, Yokota Y, Sato S, Tanaka H, Masaki R, Oishi Y, Ogura K, Arai K, Nomura K, Sakai K, Tsujita H, Kondo S, Tsukamoto S, Suzuki H, Shinke T. Impact of triglyceride-rich lipoproteins on early in-stent neoatherosclerosis formation in patients undergoing statin treatment. J Clin Lipidol 2023; 17:281-290. [PMID: 36828767 DOI: 10.1016/j.jacl.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Neoatherosclerosis (NA), which refers to neointimal atherosclerosis within a stent, is considered one of the underlying causes of late-phase stent failure following a newer generation drug-eluting stent (DES) placement procedure. Even contemporary guideline-directed medical therapy may be insufficient to prevent NA. OBJECTIVE This study aimed to investigate how intricately lipid markers are associated with NA formation in the early phase of treatment with well-maintained low-density lipoprotein cholesterol (LDL-C) levels. METHODS We enrolled 114 consecutive patients undergoing statin treatment and percutaneous coronary intervention (PCI) with current-generation DES for coronary artery disease. At a median 12 months after PCI, optical coherence tomography (OCT) was performed. Various lipid markers, including LDL-C, triglyceride (TG), triglyceride-rich lipoprotein cholesterol (TRL-C), non-high-density lipoprotein cholesterol (non-HDL-C), malondialdehyde-modified LDL (MDA-LDL), and several apolipoproteins, were also evaluated. RESULTS NA was observed in 17 (14.9%) patients. The LDL-C level was equivalent in patients with or without NA (77.2 vs. 69.8 mg/dL; p=0.15). However, the levels of TG, apolipoprotein C3 (apoC3), TRL-C, non-HDL-C, and apolipoprotein B (apoB), and MDA-LDL were significantly higher in the patients with NA. Furthermore, multivariate logistic regression adjusting for HbA1c and stent duration revealed apoC3, TRL-C, non-HDL-C, apoB, and MDA-LDL levels as risk factors for NA. However, when apoB was included as a covariate, other factors became nonsignificant. CONCLUSIONS Abnormal triglyceride-rich lipoprotein metabolism and high atherogenic apoB-containing lipoprotein particle numbers are associated with the formation of NA in patients undergoing statin treatment at a median 12 months post-PCI.
Collapse
Affiliation(s)
- Rikuo Sakai
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Teruo Sekimoto
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan.
| | - Shinji Koba
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan; Department of Perioperative Medicine, Division of General Medicine, Showa University School of Dentistry, Tokyo, Japan
| | - Hiroyoshi Mori
- Department of Medicine, Division of Cardiology, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Naoki Matsukawa
- Department of Legal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taito Arai
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Yuya Yokota
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Shunya Sato
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Hideaki Tanaka
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Ryota Masaki
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Yosuke Oishi
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Kunihiro Ogura
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Ken Arai
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Kosuke Nomura
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Koshiro Sakai
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Hiroaki Tsujita
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Seita Kondo
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Shigeto Tsukamoto
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Medicine, Division of Cardiology, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Toshiro Shinke
- Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Kupai K, Várkonyi T, Török S, Gáti V, Czimmerer Z, Puskás LG, Szebeni GJ. Recent Progress in the Diagnosis and Management of Type 2 Diabetes Mellitus in the Era of COVID-19 and Single Cell Multi-Omics Technologies. Life (Basel) 2022; 12:1205. [PMID: 36013384 PMCID: PMC9409806 DOI: 10.3390/life12081205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the world's leading causes of death and life-threatening conditions. Therefore, we review the complex vicious circle of causes responsible for T2DM and risk factors such as the western diet, obesity, genetic predisposition, environmental factors, and SARS-CoV-2 infection. The prevalence and economic burden of T2DM on societal and healthcare systems are dissected. Recent progress on the diagnosis and clinical management of T2DM, including both non-pharmacological and latest pharmacological treatment regimens, are summarized. The treatment of T2DM is becoming more complex as new medications are approved. This review is focused on the non-insulin treatments of T2DM to reach optimal therapy beyond glycemic management. We review experimental and clinical findings of SARS-CoV-2 risks that are attributable to T2DM patients. Finally, we shed light on the recent single-cell-based technologies and multi-omics approaches that have reached breakthroughs in the understanding of the pathomechanism of T2DM.
Collapse
Affiliation(s)
- Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Department of Internal Medicine, University of Szeged, Korányi fasor 8, 6720 Szeged, Hungary
| | - Tamás Várkonyi
- Department of Internal Medicine, University of Szeged, Korányi fasor 8, 6720 Szeged, Hungary
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Viktória Gáti
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Zsolt Czimmerer
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem tér 1, 4032 Debrecen, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- Avidin Ltd., Alsó kikötő sor 11/D, 6726 Szeged, Hungary
| | - Gábor J. Szebeni
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- CS-Smartlab Devices Ltd., Ady E. u. 14, 7761 Kozármisleny, Hungary
| |
Collapse
|
13
|
Frimann TM, Ko SK, Harris P, Bukrinski JT, Peters GHJ. In-silico study of the interactions between acylated glucagon like-peptide-1 analogues and the native receptor. J Biomol Struct Dyn 2022:1-15. [PMID: 35612899 DOI: 10.1080/07391102.2022.2078409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have performed a series of multiple molecular dynamics (MD) simulations of glucagon-like peptide-1 (GLP-1) and acylated GLP-1 analogues in complex with the endogenous receptor (GLP-1R) to obtain a molecular understanding of how fatty acid (FA) chain structure, acylation position on the peptide, and presence of a linker affect the binding. MD simulations were analysed to extract heatmaps of receptor-peptide interaction patterns and to determine the free energy of binding using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach. The extracted free energies from MM-PBSA calculations are in qualitative agreement with experimentally determined potencies. Furthermore, the interaction patterns seen in the receptor-GLP-1 complex simulations resemble previously reported binding interactions validating the simulations. Analysing the receptor-GLP-1 analogue complex simulations, we found that the major differences between the systems stem from FA interactions and positioning of acylation in the peptide. Hydrophobic interactions between the FA chain and a hydrophobic patch on the extracellular domain contribute significantly to the binding affinity. Acylation on Lys26 resulted in noticeably more interactions between the FA chain and the extracellular domain hydrophobic patch than found for acylation on Lys34 and Lys38, respectively. The presence of a charged linker between the peptide and FA chain can potentially stabilise the complex by forming hydrogen bonds to arginine residues in the linker region between the extracellular domain and the transmembrane domain. A molecular understanding of the fatty acid structure and its effect on binding provides important insights into designing acylated agonists for GLP-1R.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tine Maja Frimann
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Suk Kyu Ko
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark.,Department of Chemistry, H.C. Ørsted Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|