1
|
Yang F, Gao Y, Xie S, Yang W, Wang Q, Ye W, Sun L, Zhou J, Feng X. Dietary phytosterol supplementation mitigates renal fibrosis via activating mitophagy and modulating the gut microbiota. Food Funct 2025; 16:2316-2334. [PMID: 39989003 DOI: 10.1039/d4fo06043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, primarily driven by renal fibrosis, with limited treatment options. Addressing this condition necessitates either targeted medical treatments or dietary interventions. Phytosterols (PS) are cholesterol-like bioactive compounds in various plant-based foods with antioxidant and anti-inflammatory effects. A CKD mouse model was established using folic acid (FA) and treated with dietary supplements of two PS, stigmasterol (Stig) and β-sitosterol (β-Sito). The effects and mechanisms of PS were investigated through biochemical indices, pathology, transcriptomics, and 16S rDNA sequencing. The results indicated that high-dose PS are more effective than low-dose PS and Losartan potassium (LP) in reducing renal fibrosis, restoring function, and modulating oxidative stress and inflammation, with no significant differences between high-dose Stig and β-Sito treatments. Gene Ontology (GO) enrichment analysis revealed that PS were significantly enriched in pathways related to the mitochondrial outer membrane, ubiquitin-protein ligase binding, and other cellular components and molecular processes. PS reduced the expression of TGF-β/Smad and cGAS/Sting1/TBK1 and activated PINK1/Parkin pathway proteins, thereby mitigating renal fibrosis in mice. CKD is often associated with imbalanced gut microbiota and compromised intestinal barriers. Our observations indicated that PS restored the intestinal barrier, altered the composition of the gut microbiota, and improved renal function in CKD mice. The present findings indicate that both Stig and β-Sito activate mitophagy via the PINK1/Parkin pathway and modulate the gut microbiota, thereby alleviating renal fibrosis. The findings provide solid and significant implications for developing effective application of PS supplementation in the management of CKD, presenting novel concepts and approaches for research and clinical treatment.
Collapse
Affiliation(s)
- Fan Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Yingjie Gao
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Siyi Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Wenjing Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Qiyan Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Wenqian Ye
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Lu Sun
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Jiangtao Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - XiuE Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi province, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi province, China
| |
Collapse
|
2
|
Yu JX, Chen X, Zang SG, Chen X, Wu YY, Wu LP, Xuan SH. Gut microbiota microbial metabolites in diabetic nephropathy patients: far to go. Front Cell Infect Microbiol 2024; 14:1359432. [PMID: 38779567 PMCID: PMC11109448 DOI: 10.3389/fcimb.2024.1359432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the main complications of diabetes and a major cause of end-stage renal disease, which has a severe impact on the quality of life of patients. Strict control of blood sugar and blood pressure, including the use of renin-angiotensin-aldosterone system inhibitors, can delay the progression of diabetic nephropathy but cannot prevent it from eventually developing into end-stage renal disease. In recent years, many studies have shown a close relationship between gut microbiota imbalance and the occurrence and development of DN. This review discusses the latest research findings on the correlation between gut microbiota and microbial metabolites in DN, including the manifestations of the gut microbiota and microbial metabolites in DN patients, the application of the gut microbiota and microbial metabolites in the diagnosis of DN, their role in disease progression, and so on, to elucidate the role of the gut microbiota and microbial metabolites in the occurrence and prevention of DN and provide a theoretical basis and methods for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-Pei Wu
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| | - Shi-Hai Xuan
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| |
Collapse
|
3
|
Sun X, Zhou X, He W, Sun W, Xu Z. Co-Housing and Fecal Microbiota Transplantation: Technical Support for TCM Herbal Treatment of Extra-Intestinal Diseases Based on Gut Microbial Ecosystem Remodeling. Drug Des Devel Ther 2023; 17:3803-3831. [PMID: 38155743 PMCID: PMC10753978 DOI: 10.2147/dddt.s443462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Dysregulation of the gut microbial ecosystem (GME) (eg, alterations in the gut microbiota, gut-derived metabolites, and gut barrier) may contribute to the onset and progression of extra-intestinal diseases. Previous studies have found that Traditional Chinese Medicine herbs (TCMs) play an important role in manipulating the GME, but a prominent obstacle in current TCM research is the causal relationship between GME and disease amelioration. Encouragingly, co-housing and fecal microbiota transplantation (FMT) provide evidence-based support for TCMs to treat extra-intestinal diseases by targeting GME. In this review, we documented the principles, operational procedures, applications and limitations of the key technologies (ie, co-housing and FMT); furthermore, we provided evidence that TCM works through the GME, especially the gut microbiota (eg, SCFA- and BSH-producing bacteria), the gut-derived metabolites (eg, IS, pCS, and SCFAs), and intestinal barrier to alleviate extra-intestinal diseases. This will be beneficial in constructing microecological pathways for TCM treatment of extra-intestinal diseases in the future.
Collapse
Affiliation(s)
- Xian Sun
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Xi Zhou
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Weiming He
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Zheng Xu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| |
Collapse
|
4
|
Wang X, Sun Z, Yang T, Lin F, Ye S, Yan J, Li T, Chen J. Sodium butyrate facilitates CRHR2 expression to alleviate HPA axis hyperactivity in autism-like rats induced by prenatal lipopolysaccharides through histone deacetylase inhibition. mSystems 2023; 8:e0041523. [PMID: 37358267 PMCID: PMC10469781 DOI: 10.1128/msystems.00415-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 06/27/2023] Open
Abstract
Short-chain fatty acids (SCFAs, especially butyric acid) have been demonstrated to play a promising role in the development of autism spectrum disorders (ASD). Recently, the hypothalamic-pituitary-adrenal (HPA) axis is also suggested to increase the risk of ASD. However, the mechanism underlying SCFAs and HPA axis in ASD development remains unknown. Here, we show that children with ASD exhibited lower SCFA concentrations and higher cortisol levels, which were recaptured in prenatal lipopolysaccharide (LPS)-exposed rat model of ASD. These offspring also showed decreased SCFA-producing bacteria and histone acetylation activity as well as impaired corticotropin-releasing hormone receptor 2 (CRHR2) expression. Sodium butyrate (NaB), which can act as histone deacetylases inhibitors, significantly increased histone acetylation at the CRHR2 promoter in vitro and normalized the corticosterone as well as CRHR2 expression level in vivo. Behavioral assays indicated ameliorative effects of NaB on anxiety and social deficit in LPS-exposed offspring. Our results imply that NaB treatment can improve ASD-like symptoms via epigenetic regulation of the HPA axis in offspring; thus, it may provide new insight into the SCFA treatment of neurodevelopmental disorders like ASD. IMPORTANCE Growing evidence suggests that microbiota can affect brain function and behavior through the "microbiome-gut-brain'' axis, but its mechanism remains poorly understood. Here, we show that both children with autism and LPS-exposed rat model of autism exhibited lower SCFA concentrations and overactivation of HPA axis. SCFA-producing bacteria, Lactobacillus, might be the key differential microbiota between the control and LPS-exposed offspring. Interestingly, NaB treatment contributed to the regulation of HPA axis (such as corticosterone as well as CRHR2) and improvement of anxiety and social deficit behaviors in LPS-exposed offspring. The potential underlying mechanism of the ameliorative effect of NaB may be mediated via increasing histone acetylation to the CRHR2 promoter. These results enhance our understanding of the relationship between the SCFAs and the HPA axis in the development of ASD. And gut microbiota-derived SCFAs may serve as a potential therapeutic agent to neurodevelopmental disorders like ASD.
Collapse
Affiliation(s)
- Xinyuan Wang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Zhujun Sun
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Fang Lin
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Shasha Ye
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Junyan Yan
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Tingyu Li
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| |
Collapse
|
5
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients 2023; 15:nu15030607. [PMID: 36771313 PMCID: PMC9921390 DOI: 10.3390/nu15030607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbiota is the largest and most complex microflora in the human body, which plays a crucial role in human health and disease. Over the past 20 years, the bidirectional communication between gut microbiota and extra-intestinal organs has been extensively studied. A better comprehension of the alternative mechanisms for physiological and pathophysiological processes could pave the way for health. Cardiovascular disease (CVD) is one of the most common diseases that seriously threatens human health. Although previous studies have shown that cardiovascular diseases, such as heart failure, hypertension, and coronary atherosclerosis, are closely related to gut microbiota, limited understanding of the complex pathogenesis leads to poor effectiveness of clinical treatment. Dysregulation of inflammation always accounts for the damaged gastrointestinal function and deranged interaction with the cardiovascular system. This review focuses on the characteristics of gut microbiota in CVD and the significance of inflammation regulation during the whole process. In addition, strategies to prevent and treat CVD through proper regulation of gut microbiota and its metabolites are also discussed.
Collapse
|
7
|
Mu J, Guo Z, Wang X, Wang X, Fu Y, Li X, Zhu F, Hu G, Ma X. Seaweed polysaccharide relieves hexavalent chromium-induced gut microbial homeostasis. Front Microbiol 2023; 13:1100988. [PMID: 36726569 PMCID: PMC9884827 DOI: 10.3389/fmicb.2022.1100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Heavy metals released in the environment pose a huge threat to soil and water quality, food safety and public health. Additionally, humans and other mammals may also be directly exposed to heavy metals or exposed to heavy metals through the food chain, which seriously threatens the health of animals and humans. Chromium, especially hexavalent chromium [Cr (VI)], as a common heavy metal, has been shown to cause serious environmental pollution as well as intestinal damage. Thus, increasing research is devoted to finding drugs to mitigate the negative health effects of hexavalent chromium exposure. Seaweed polysaccharides have been demonstrated to have many pharmacological effects, but whether it can alleviate gut microbial dysbiosis caused by hexavalent chromium exposure has not been well characterized. Here, we hypothesized that seaweed polysaccharides could alleviate hexavalent chromium exposure-induced poor health in mice. Mice in Cr and seaweed polysaccharide treatment group was compulsively receive K2Cr2O7. At the end of the experiment, all mice were euthanized, and colon contents were collected for DNA sequencing analysis. Results showed that seaweed polysaccharide administration can restore the gut microbial dysbiosis and the reduction of gut microbial diversity caused by hexavalent chromium exposure in mice. Hexavalent chromium exposure also caused significant changes in the gut microbial composition of mice, including an increase in some pathogenic bacteria and a decrease in beneficial bacteria. However, seaweed polysaccharides administration could ameliorate the composition of gut microbiota. In conclusion, this study showed that seaweed polysaccharides can restore the negative effects of hexavalent chromium exposure in mice, including gut microbial dysbiosis. Meanwhile, this research also lays the foundation for the application of seaweed polysaccharides.
Collapse
Affiliation(s)
- Jinghao Mu
- Department of Urology, Chinese PLA General Hospital, Beijing, China,Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenhuan Guo
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,*Correspondence: Zhenhuan Guo, ✉
| | - Xiujun Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xuefei Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yunxing Fu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xianghui Li
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Fuli Zhu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Guangyuan Hu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xia Ma
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,Xia Ma, ✉
| |
Collapse
|
8
|
Traditional Chinese Medicine: An Exogenous Regulator of Crosstalk between the Gut Microbial Ecosystem and CKD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7940684. [DOI: 10.1155/2022/7940684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) is often accompanied by an imbalance in the gut microbial ecosystem. Notably, the imbalanced gut microbiota and impaired intestinal barrier are the keys to the crosstalk between the gut microbial ecosystem and CKD, which was the central point of previous studies. Traditional Chinese medicine (TCM) has shown considerable efficacy in the treatment of CKD. However, the therapeutic mechanisms have not been fully elucidated. In this review, we explored therapeutic mechanisms by which TCM improved CKD via the gut microbial ecosystem. In particular, we focused on the restored gut microbiota (i.e., short-chain fatty acid- and uremic toxin-producing bacteria), improved gut-derived metabolites (i.e., short-chain fatty acid, indoxyl sulfate, p-Cresyl sulfate, and trimethylamine-N-oxide), and intestinal barrier (i.e., permeability and microbial translocation) as therapeutic mechanisms. The results found that the metabolic pattern of gut microbiota and the intestinal barrier were improved through TCM treatment. Moreover, the microbiota-transfer study confirmed that part of the protective effect of TCM was dependent on gut microbiota, especially SCFA-producing bacteria. In conclusion, TCM may be an important exogenous regulator of crosstalk between the gut microbial ecosystem and CKD, which was partly attributable to the mediation of microbiota-targeted intervention.
Collapse
|