1
|
Kim IY, Lee HL, Choi HJ, Ju YH, Heo YM, Na HR, Lee DY, Jeong WM, Heo HJ. A Combined Extract from Dioscorea bulbifera and Zingiber officinale Mitigates PM 2.5-Induced Respiratory Damage by NF-κB/TGF-β1 Pathway. Antioxidants (Basel) 2024; 13:1572. [PMID: 39765899 PMCID: PMC11673267 DOI: 10.3390/antiox13121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
This research evaluated the protective role of a combined extract of Dioscorea bulbifera and Zingiber officinale (DBZO) against respiratory dysfunction caused by particulate matter (PM2.5) exposure in BALB/c mice. The bioactive compounds identified in the DBZO are catechin, astragalin, 6-gingerol, 8-gingerol, and 6-shogaol. DBZO ameliorated cell viability and reactive oxygen species (ROS) production in PM2.5-stimulated A549 and RPMI 2650 cells. In addition, it significantly alleviated respiratory dysfunction in BALB/c mice exposed to PM2.5. DBZO improved the antioxidant systems in lung tissues by modulating malondialdehyde (MDA) content, as well as levels of reduced glutathione (GSH) and superoxide dismutase (SOD). Likewise, DBZO restored mitochondrial dysfunction by improving ROS levels, mitochondrial membrane potential, and ATP production. Moreover, DBZO modulated the levels of neutrophils, eosinophils, monocytes, and lymphocytes (specifically CD4+, CD8+, and CD4+IL-4+ T cells) in blood and IgE levels in serum. DBZO was shown to regulate the c-Jun N-terminal kinase (JNK) pathway, nuclear factor kappa B (NF-κB) pathway, and transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) pathway. Histopathological observation indicated that DBZO mitigates the increase in alveolar septal thickness. These findings indicate that DBZO is a promising natural agent for improving respiratory health.
Collapse
Affiliation(s)
- In Young Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.K.); (H.L.L.); (H.J.C.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.K.); (H.L.L.); (H.J.C.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Hye Ji Choi
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.K.); (H.L.L.); (H.J.C.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Yeong Hyeon Ju
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.K.); (H.L.L.); (H.J.C.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Yu Mi Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.K.); (H.L.L.); (H.J.C.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Hwa Rang Na
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.K.); (H.L.L.); (H.J.C.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| | - Dong Yeol Lee
- Research & Development Team, Gyeongnam Anti-Aging Research Institute, Sancheong 52215, Republic of Korea; (D.Y.L.); (W.M.J.)
| | - Won Min Jeong
- Research & Development Team, Gyeongnam Anti-Aging Research Institute, Sancheong 52215, Republic of Korea; (D.Y.L.); (W.M.J.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (I.Y.K.); (H.L.L.); (H.J.C.); (Y.H.J.); (Y.M.H.); (H.R.N.)
| |
Collapse
|
2
|
Rahmani S, Roohbakhsh A, Pourbarkhordar V, Karimi G. The Cardiovascular Protective Function of Natural Compounds Through AMPK/SIRT1/PGC-1α Signaling Pathway. Food Sci Nutr 2024; 12:9998-10009. [PMID: 39723061 PMCID: PMC11666815 DOI: 10.1002/fsn3.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 12/28/2024] Open
Abstract
Cardiovascular disease (CVD) poses a major risk to human health and exert a heavy burden on individuals, society, and healthcare systems. Therefore, it is critical to identify CVD's underlying mechanism(s) and target them using effective agents. Natural compounds have shown promise as antioxidants with cardioprotective functions against CVD injuries due to their antioxidative solid capacity and high safety profile. Several CVDs, such as heart failure, ischemia/reperfusion, atherosclerosis, and cardiomyopathies, are closely linked to mitochondrial dysfunction. It is well established that activating the AMPK/SIRT1/PGC-1α pathway during CVD promotes mitochondrial function. Therefore, targeting the AMPK/SIRT1/PGC-1α pathway provides a foundation for novel therapeutic strategies to combat CVD. A key goal of our search was to find natural compounds that target this biological pathway and have beneficial effects on CVD.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| | - Vahid Pourbarkhordar
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Yu Q, Li J, Cui M, Mei C, He Q, Du X. 6-Gingerol attenuates hepatic ischemia/reperfusion injury through regulating MKP5-mediated P38/JNK pathway. Sci Rep 2024; 14:7747. [PMID: 38565569 PMCID: PMC10987508 DOI: 10.1038/s41598-024-58392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
6-Gingerol, the main bioactive compound of ginger, has antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. However, it is unclear whether 6-Gingerol has protective effects against hepatic ischemia/reperfusion (I/R) injury. In this study, the mouse liver I/R injury model and the mouse AML12 cell hypoxia/reoxygenation (H/R) model were established by pretreatment with 6-Gingerol at different concentrations to explore the potential effects of 6-Gingerol. Serum transaminase levels, liver necrotic area, cell viability, inflammatory response, and cell apoptosis were used to assess the effect of 6-Gingerol on hepatic I/R or cell H/R injury. Quantitative polymerase chain reaction (qPCR) and Western blotting were used to detect the mRNA and protein expression. The results show that 6-Gingerol decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels, liver necrosis, inflammatory cytokines IL-1β, IL-6, MCP-1, TNF-α expression, Ly6g+ inflammatory cell infiltration, protein phosphorylation of NF-κB signaling pathway, Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) positive cells, cell apoptosis rate, the protein expression of pro-apoptotic protein BAX and C-Caspase3, increased cell viability, and expression of anti-apoptotic protein BCL-2. Moreover, 6-Gingerol could increase the mRNA and protein expression of mitogen activated protein kinase phosphatase 5 (MKP5) and inhibit the activation of P38/JNK signaling pathway. In MKP5 knockout (KO) mice, the protective effect of 6-gingerol and the inhibition of P38/JNK pathway were significantly weakened. Therefore, our results suggest that 6-Gingerol exerts anti-inflammatory and anti-apoptotic effects to attenuate hepatic I/R injury by regulating the MKP5-mediated P38/JNK signaling pathway.
Collapse
Affiliation(s)
- Qiwen Yu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiye Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mengwei Cui
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chaopeng Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qianqian He
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoxiao Du
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Wang Q, Ma L, Sun B, Zhang A. Reduced Peripheral Blood Mitochondrial DNA Copy Number as Identification Biomarker of Suspected Arsenic-Induced Liver Damage. Biol Trace Elem Res 2023; 201:5083-5097. [PMID: 36720785 DOI: 10.1007/s12011-023-03584-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
Arsenic (As) can cause liver damage and liver cancer and is capable of seriously affecting human health. Therefore, it is important to identify biomarkers of arsenic-induced liver damage. Mitochondria are key targets of hepatotoxicity caused by arsenic. The mitochondrial DNA copy number (mtDNAcn) is the number of mitochondrial DNA (mtDNA) copies in the genome. mtDNA is vulnerable to exogenous chemical attacks, thus causing mtDNAcn to change after exposure to environmental pollutants. Therefore, mtDNAcn can serve as a potential marker to identify and assess the risk of diseases caused by exposure to environmental pollutants. In this study, we selected 272 arsenicosis patients (155 cases without liver damage and 117 cases with liver damage) and 218 participants not exposed to arsenic (155 cases without liver damage and 63 cases with liver damage) as subjects to investigate the correlation between peripheral blood mtDNAcn and arsenic-induced liver damage, as well as the ability of peripheral blood mtDNAcn to identify and assess the risk of arsenic-induced liver damage. Peripheral blood mtDNAcn in patients with arsenic-induced liver damage is significantly decreased and negatively correlated with serum ALT, AST, and GGT levels. The decrease of peripheral blood mtDNAcn was associated with an increased risk of arsenic-induced liver damage. The receiver operating characteristic (ROC) curve analysis indicated that peripheral blood mtDNAcn could specifically identify patients with liver damage in the arsenicosis group. The decision tree C5.0 model was established to identify arsenicosis in all patients with liver damage. Peripheral blood mtDNAcn was included in the model and played the most important role in the identification of arsenic-induced liver damage. This study provided a basis for the identification and evaluation of arsenic-induced liver damage by peripheral blood mtDNAcn, indicating that peripheral blood mtDNAcn is expected to be a potential biomarker of arsenic-induced liver damage, and provides clues for exploring the mechanism of arsenic-induced liver damage from mitochondria damage.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Deng X, Xiong H, Hu Q, Chen Y, Zhang W, Ma X, Zhao Y. Deciphering the toxicity-effect relationship and action patterns of traditional Chinese medicines from a smart data perspective: a comprehensive review. Front Pharmacol 2023; 14:1278014. [PMID: 37915415 PMCID: PMC10617680 DOI: 10.3389/fphar.2023.1278014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
In Chinese medicine, the primary considerations revolve around toxicity and effect. The clinical goal is to achieve maximize effect while minimizing toxicity. Nevertheless, both clinical and experimental research has revealed a distinct relationship between these two patterns of action in toxic Traditional Chinese Medicines (TCM). These TCM often exhibit characteristic "double-sided" or "multi-faceted" features under varying pathological conditions, transitioning between effective and toxic roles. This complexity adds a layer of challenge to unraveling the ultimate objectives of Traditional Chinese medicine. To address this complexity, various hypotheses have been proposed to explain the toxicity and effect of Traditional Chinese Medicines. These hypotheses encompass the magic shrapnel theory for effect, the adverse outcome pathway framework, and the indirect toxic theory for toxicity. This review primarily focuses on high-, medium-, and low-toxicity Traditional Chinese Medicines as listed in Chinese Pharmacopoeia. It aims to elucidate the essential intrinsic mechanisms and elements contributing to their toxicity and effectiveness. The critical factors influencing the mechanisms of toxicity and effect are the optimal dosage and duration of TCM administration. However, unraveling the toxic-effect relationships in TCM presents a formidable challenge due to its multi-target and multi-pathway mechanisms of action. We propose the integration of multi-omics technology to comprehensively analyze the fundamental metabolites, mechanisms of action, and toxic effects of TCM. This comprehensive approach can provide valuable insights into the intricate relationship between the effect and toxicity of these TCM.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Sun H, Chen D, Xin W, Ren L, LI Q, Han X. Targeting ferroptosis as a promising therapeutic strategy to treat cardiomyopathy. Front Pharmacol 2023; 14:1146651. [PMID: 37138856 PMCID: PMC10150641 DOI: 10.3389/fphar.2023.1146651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Cardiomyopathies are a clinically heterogeneous group of cardiac diseases characterized by heart muscle damage, resulting in myocardium disorders, diminished cardiac function, heart failure, and even sudden cardiac death. The molecular mechanisms underlying the damage to cardiomyocytes remain unclear. Emerging studies have demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by iron dyshomeostasis and lipid peroxidation, contributes to the development of ischemic cardiomyopathy, diabetic cardiomyopathy, doxorubicin-induced cardiomyopathy, and septic cardiomyopathy. Numerous compounds have exerted potential therapeutic effects on cardiomyopathies by inhibiting ferroptosis. In this review, we summarize the core mechanism by which ferroptosis leads to the development of these cardiomyopathies. We emphasize the emerging types of therapeutic compounds that can inhibit ferroptosis and delineate their beneficial effects in treating cardiomyopathies. This review suggests that inhibiting ferroptosis pharmacologically may be a potential therapeutic strategy for cardiomyopathy treatment.
Collapse
Affiliation(s)
- Huiyan Sun
- Health Science Center, Chifeng University, Chifeng, China
- Key Laboratory of Human Genetic Diseases in Inner Mongolia, Chifeng, China
| | - Dandan Chen
- Department of Endocrinology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Wenjing Xin
- Chifeng Clinical Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Lixue Ren
- Chifeng Clinical Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Qiang LI
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
- *Correspondence: Qiang LI, ; Xuchen Han,
| | - Xuchen Han
- Department of Cardiology, The Affiliated Hospital of Chifeng University, Chifeng, China
- *Correspondence: Qiang LI, ; Xuchen Han,
| |
Collapse
|
7
|
Ganjikunta VS, Maddula RR, Bhasha S, Sahukari R, Kondeti Ramudu S, Chenji V, Kesireddy SR, Zheng Z, Korivi M. Cardioprotective Effects of 6-Gingerol against Alcohol-Induced ROS-Mediated Tissue Injury and Apoptosis in Rats. Molecules 2022; 27:8606. [PMID: 36500700 PMCID: PMC9738005 DOI: 10.3390/molecules27238606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The present study investigated the cardioprotective properties of 6-gingerol against alcohol-induced ROS-mediated cardiac tissue damage in rats. Experiments were conducted on 4 groups of rats, orally treated with control, 6-gingerol (10 mg/kg body weight), alcohol (6 g/kg body weight) and combination of 6-gingerol plus alcohol for two-month. In the results, we found 6-ginger treatment to alcohol-fed rats substantially suppressed ROS production in cardiac tissue. Alcohol-induced elevated 8-OHDG and protein carbonyls which represent oxidative modification of DNA and proteins were completely reversed by 6-gingerol. This was further endorsed by restored superoxide dismutase and catalase activities with 6-gingerol against alcohol-induced loss. The elevated cardiac biomarkers (CK-MB, cTn-T, cTn-I) and dyslipidemia in alcohol-intoxicated rats was significantly reversed by 6-gingerol. Furthermore, alcohol-induced apoptosis characterized by overexpression of cytochrome C, caspase-8 and caspase-9 was diminished with 6-gingerol treatment. Transmission electron microscope images conferred the cardioprotective properties of 6-gingerol as we have seen less structural derangements in mitochondria and reappearance of myofilaments. Our findings conclude that 6-ginger effectively protect alcohol-induced ROS-mediated cardiac tissue damage, which may be due to its potent antioxidant efficacy. Therefore, 6-gingerol could be a potential therapeutic molecule that can be used in the treatment of alcohol-induced myocardial injury.
Collapse
Affiliation(s)
| | - Ramana Reddy Maddula
- Division of Molecular Biology and Ethanopharmacology, Sri Venkateswara University, Tirupati 517 502, India
| | - Shanmugam Bhasha
- Division of Molecular Biology and Ethanopharmacology, Sri Venkateswara University, Tirupati 517 502, India
| | - Ravi Sahukari
- Division of Molecular Biology and Ethanopharmacology, Sri Venkateswara University, Tirupati 517 502, India
| | | | - Venkatrayulu Chenji
- Department of Marine Biology, Vikarama Simhapuri University, Nellore 524320, India
| | - Sathyavelu Reddy Kesireddy
- Division of Molecular Biology and Ethanopharmacology, Sri Venkateswara University, Tirupati 517 502, India
| | - Zhe Zheng
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
8
|
Yücel Ç, Karatoprak GŞ, Açıkara ÖB, Akkol EK, Barak TH, Sobarzo-Sánchez E, Aschner M, Shirooie S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13:902551. [PMID: 36133811 PMCID: PMC9483099 DOI: 10.3389/fphar.2022.902551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe), a member of the Zingiberaceae family, is one of the most popular spices worldwide, known since ancient times, and used both as a spice and a medicinal plant. The phenolic compounds found in ginger are predominantly gingerols, shogaols, and paradols. Gingerols are the major phenolic compounds found in fresh ginger and contain mainly 6-gingerol as well as 4-, 5-, 8-, 10-, and 12-gingerols. Gingerols possess a wide array of bioactivities, such as antioxidant and anticancer, among others. Regarding the different array of biological activities and published data on the mechanisms underlying its action, the complex interaction between three key events, including inflammation, oxidative stress, and immunity, appears to contribute to a plethora of pharmacological activities of this compound. Among these, the immunomodulatory properties of these compounds, which attract attention due to their effects on the immune system, have been the focus of many studies. Gingerols can alleviate inflammation given their ability to inhibit the activation of protein kinase B (Akt) and nuclear factor kappa B (NF-κB) signaling pathways, causing a decrease in proinflammatory and an increase in anti-inflammatory cytokines. However, given their low bioavailability, it is necessary to develop new and more effective strategies for treatment with gingerols. In order to overcome this problem, recent studies have addressed new drug delivery systems containing gingerols. In this review, the immunomodulatory activities of gingerol and its underlying mechanisms of action combined with the contributions of developed nanodrug delivery systems to this activity will be examined.
Collapse
Affiliation(s)
- Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | | | | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Park Avenue Bronx, NY, United States
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Han X, Yang Y, Qi J, Zhang M, Xue Y, Chu X, Jia Q, Sun S, Guan S. Protective effects and possible mechanism of 6-gingerol against arsenic trioxide-induced nephrotoxicity based on network pharmacological analysis and experimental validation. Int Immunopharmacol 2022; 110:108926. [PMID: 35728306 DOI: 10.1016/j.intimp.2022.108926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Nephrotoxicity induced by the chemotherapeutic drug arsenic trioxide (ATO) is often overlooked, and the underlying mechanisms remain poorly understood. Based on network pharmacology and experimental validation, this study investigates the protection of 6-gingerol (6G) against ATO-induced nephrotoxicity and the potential mechanisms. METHODS We screened and collected 6G and disease-related targets and then imported the interaction targets into a String database to construct protein-protein interaction (PPI) networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Mice were injected intraperitoneally with ATO (5 mg/kg) for seven days to induce nephrotoxicity, and then the histological morphology of the kidneys, biochemical indices of serum and tissues, and associated protein expressions were observed. RESULTS The network pharmacology results revealed that the effects of 6G against nephrotoxicity are closely related to apoptosis, and the MAPKs pathway was screened for validation. In animal experiments, 6G improved the histopathological morphology of the kidneys, reduced the levels of renal function markers, enhanced antioxidant activity, and decreased the levels of inflammation. Furthermore, 6G reduced apoptotic cells in kidney tissues, decreased the levels of Bax and c-Caspase-3, and increased the level of Bcl-2. The results of immunohistochemistry and western blotting revealed that 6G significantly inhibited the expressions of p-p38, p-ERK, and p-JNK. CONCLUSION The results comprehensively demonstrate the protective effects of 6G against ATO-induced nephrotoxicity. The effects are related to anti-oxidant, anti-inflammatory, and anti-apoptotic properties, possibly through inhibition of the MAPKs pathway.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiaying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Muqing Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China; Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yucong Xue
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Shijiang Sun
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China; School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|