1
|
Marino KM, Shippy DC, Ulland TK. Sugar utilization by microglia in Alzheimer's disease. J Neuroimmunol 2025; 401:578552. [PMID: 39970850 PMCID: PMC11908943 DOI: 10.1016/j.jneuroim.2025.578552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Diabetes is a major risk factor for Alzheimer's disease (AD), yet the effect of specific carbohydrate sources in the diet on AD pathology remains unclear. The primary neuroimmune cell, microglia, undergo a metabolic shift during neuroinflammation associated with AD pathology. We utilized existing gene expression data and identified changes in sugar transporters (increased Slc2a1 (glucose) and decreased Slc2a5 (fructose) expression). To examine gene expression with respect to primary sugar source, N9 cells, a mouse microglia cell line, were cultured in glucose or fructose supplemented media and stimulated with lipopolysaccharide (LPS). RNA-sequencing analyses indicated significant changes between control and sugar supplemented media and several differentially expressed genes between glucose and fructose media. Concurrently, 5XFAD mice received equicaloric diets with specific carbohydrate sources: dextrose or fructose. Regardless of diet, sex, or genotype, all mice developed high blood sugar levels; confocal microscopy analyses indicated similar amyloid plaque burden and microglial response relative to the control diet, but there was a change in the microglial response between dextrose and fructose fed mice. Overall, these data indicate microglia preferentially express sugar transporters and sugar source may influence microglial reactivity in response to plaque pathology.
Collapse
Affiliation(s)
- Kaitlyn M Marino
- Neuroscience Training Program, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America; Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - Tyler K Ulland
- Neuroscience Training Program, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America; Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, United States of America.
| |
Collapse
|
2
|
Legge AC, Hanly JG. Recent advances in the diagnosis and management of neuropsychiatric lupus. Nat Rev Rheumatol 2024; 20:712-728. [PMID: 39358609 DOI: 10.1038/s41584-024-01163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/04/2024]
Abstract
Neuropsychiatric manifestations of systemic lupus erythematosus (SLE) are common and frequently associated with a substantial negative impact on health outcomes. The pathogenesis of neuropsychiatric SLE (NPSLE) remains largely unknown, but a single pathogenic mechanism is unlikely to be responsible for the heterogeneous array of clinical manifestations, and a combination of inflammatory and ischaemic mechanistic pathways have been implicated. Currently, valid and reliable biomarkers for the diagnosis of NPSLE are lacking, and differentiating NPSLE from nervous system dysfunction not caused by SLE remains a major challenge for clinicians. However, correct attribution is essential to ensure timely institution of appropriate treatment. In the absence of randomized clinical trials on NPSLE, current treatment strategies are derived from clinical experience with different therapeutic modalities and their efficacy in the management of other manifestations of SLE or of neuropsychiatric disease in non-SLE populations. This Review describes recent advances in the understanding of NPSLE that can inform diagnosis and management, as well as unanswered questions that necessitate further research.
Collapse
Affiliation(s)
- Alexandra C Legge
- Division of Rheumatology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - John G Hanly
- Division of Rheumatology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.
| |
Collapse
|
3
|
Al Jassem O, Rifi R, Kheir K, Masri A, Eid H. A rare case of systemic lupus erythematosus-associated neuromyelitis optica spectrum disorder with cystic lesions and dual seropositivity for anti-AQP4 and anti-MOG antibodies. Clin Case Rep 2024; 12:e9063. [PMID: 39219777 PMCID: PMC11364486 DOI: 10.1002/ccr3.9063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 09/04/2024] Open
Abstract
Key Clinical Message In patients with SLE, concurrent NMOSD can manifest with optic neuritis and transverse myelitis. AQP-4 antibody positivity confirms the diagnosis. Prompt treatment is critical to manage the acute symptoms and prevent relapses, as highlighted by a young patient's case with optic neuritis and extensive spinal cord lesions. Abstract Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune disorder of the central nervous system that affects the optic nerve and spinal cord. It is associated with autoantibodies against aquaporin-4 (AQP-4) and/or myelin oligodendrocytes glycoproteins. It is diagnosed based on clinical, radiological, and serological criteria, and treated with immunosuppressants in the acute phase. Long-term immunosuppression is essential to prevent potential relapses. In this case report, we present the case of a 19-year-old female patient with systemic lupus erythematosus (SLE), who presented with blurriness and loss of vision in her left eye. Optical coherence tomography was normal, but a gadolinium-enhanced cervico-dorsal MRI showed multiple lesions extending from the brainstem to the C7-T1 junction suggestive of longitudinally extensive transverse myelitis (LETM), the largest of which was a cystic lesion at the cervico-spinal junction. A contrast injection also revealed left optic neuritis. Cerebrospinal fluid analysis showed elevated IgG and red blood cell count, but no oligoclonal bands. The patient tested positive for AQP-4 autoantibodies, confirming the diagnosis of NMOSD. Treatment with intravenous methylprednisolone led to partial improvement, but the patient experienced a relapse with severe neurological symptoms, including tetraplegia and bladder and bowel dysfunction. This case illustrates the importance of considering NMOSD in the differential diagnosis of patients with SLE who present with optic neuritis and/or myelitis, especially when MRI findings are suggestive of LETM. Early diagnosis and adherence to treatment are crucial to prevent further relapses and deleterious sequelae.
Collapse
Affiliation(s)
- Omar Al Jassem
- Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Rami Rifi
- Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Karim Kheir
- Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Alaa Masri
- Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Hassan Eid
- Department of NeurologyNew Mazloum HospitalTripoliLebanon
| |
Collapse
|
4
|
Drougkas K, Skarlis C, Mavragani C. Type I Interferons in Systemic Autoimmune Rheumatic Diseases: Pathogenesis, Clinical Features and Treatment Options. Mediterr J Rheumatol 2024; 35:365-380. [PMID: 39193187 PMCID: PMC11345602 DOI: 10.31138/mjr.270324.tis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/29/2024] Open
Abstract
Type I interferon (IFN) pathway dysregulation plays a crucial role in the pathogenesis of several systemic autoimmune rheumatic diseases (SARDs), including systemic lupus erythematosus (SLE), Sjögren's disease (SjD), systemic sclerosis (SSc), dermatomyositis (DM) and rheumatoid arthritis (RA). Genetic and epigenetic alterations have been involved in dysregulated type I IFN responses in systemic autoimmune disorders. Aberrant type I IFN production and secretion have been associated with distinct clinical phenotypes, disease activity, and severity as well as differentiated treatment responses among SARDs. In this review, we provide an overview of the role of type I IFNs in systemic autoimmune diseases including SLE, RA, SjD, SSc, and DM focusing on pathophysiological, clinical, and therapeutical aspects.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Rutkowska-Zapała M, Grabowska-Gurgul A, Lenart M, Szaflarska A, Kluczewska A, Mach-Tomalska M, Baj-Krzyworzeka M, Siedlar M. Gene Signature of Regulatory T Cells Isolated from Children with Selective IgA Deficiency and Common Variable Immunodeficiency. Cells 2024; 13:417. [PMID: 38474381 PMCID: PMC10930802 DOI: 10.3390/cells13050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Selective IgA deficiency (SIgAD) is the most common form and common variable immunodeficiency (CVID) is the most symptomatic form of predominant antibody deficiency. Despite differences in the clinical picture, a similar genetic background is suggested. A common feature of both disorders is the occurrence of autoimmune conditions. Regulatory T cells (Tregs) are the major immune cell type that maintains autoimmune tolerance. As the different types of abnormalities of Treg cells have been associated with autoimmune disorders in primary immunodeficiency (PID) patients, in our study we aimed to analyze the gene expression profiles of Treg cells in CVID and SIgAD patients compared to age-matched healthy controls. The transcriptome-wide gene profiling was performed by microarray technology. As a result, we analyzed and visualized gene expression patterns of isolated population of Treg cells. We showed the differences at the gene level between patients with and without autoimmunizations. Our findings suggest that the gene signatures of Treg cells isolated from SIgAD and CVID patients differ from age-matched healthy controls and from each other, presenting transcriptional profiles enriched in innate immune or Th response, respectively. The occurrence of autoimmunity in both types of PID is associated with down-regulation of class I IFNs signaling pathways. In summary, our findings improve our understanding of Treg dysfunctions in patients with common PIDs and associated autoimmunity.
Collapse
Affiliation(s)
- Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Agnieszka Grabowska-Gurgul
- Department of Medical Genetics, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland;
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Monika Mach-Tomalska
- Department of Clinical Immunology, University Children’s Hospital, Wielicka 265, 30-663 Krakow, Poland;
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| |
Collapse
|
6
|
Abou Raya A, Raya SA. Neuromyelitis optica spectrum disorders (NMOSD) and systemic lupus erythematosus (SLE): Dangerous duo. Int J Rheum Dis 2024; 27:e14973. [PMID: 37975635 DOI: 10.1111/1756-185x.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Anna Abou Raya
- Rheumatology & Clinical Immunology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Suzan Abou Raya
- Internal Medicine Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
7
|
Biswal NR, Mallick AK, Swain K, Sahoo JP. An Observational Study of Multi-Faceted Demyelinating Disorders. Cureus 2023; 15:e43775. [PMID: 37731435 PMCID: PMC10507210 DOI: 10.7759/cureus.43775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Idiopathic inflammatory demyelinating diseases of the central nervous system (IIDCDs) are wide-ranging disorders due to their similarities and differences. In order to address these conditions, studying their characteristics is essential. The endpoints of our study were to assess the incidence, presenting features, MRI findings, and predictors of disease progression of prevalent demyelinating disorders. MATERIAL AND METHODS This prospective, observational study was conducted at Srirama Chandra Bhanja (SCB) Medical College and Hospital, India, from August 2018 to November 2021. Individuals of 18-65 years of age with common demyelinating disorders were assessed at baseline, six, 12, and 24 months. Univariate and multivariate analyses were performed for the assessment of predictors. We used R software (version 4.2.1; R Foundation for Statistical Computing, Vienna, Austria) for data analysis. RESULTS Two hundred twenty (79%) of 278 enrolled participants completed this study. The mean age of the study population was 52.3±11.4 years. One hundred thirty-eight (63%) of them were males. The most common IIDCD in our study was neuromyelitis optica spectrum disorder (NMOSD: 87, 39.5%), followed by multiple sclerosis (MS: 72, 32.7%), acute transverse myelitis (ATM: 35, 15.9%), and acute disseminated encephalomyelitis (ADEM: 26, 11.8%). The univariate analysis revealed that male gender, diabetes mellitus, and history of smoking or alcoholism were significant predictors of the disease progression. CONCLUSION The IIDCDs were polysymptomatic at the initial presentation. Male diabetics are more prone to progressive disorders. However, multivariate analysis did not provide statistically significant results.
Collapse
Affiliation(s)
- Nihar R Biswal
- Neurology, Srirama Chandra Bhanja (SCB) Medical College, Cuttack, IND
| | - Ashok K Mallick
- Neurology, Srirama Chandra Bhanja (SCB) Medical College, Cuttack, IND
| | - Kali Swain
- Neurology, Srirama Chandra Bhanja (SCB) Medical College, Cuttack, IND
| | | |
Collapse
|
8
|
Cerebrospinal Fluid Biomarkers in Differential Diagnosis of Multiple Sclerosis and Systemic Inflammatory Diseases with Central Nervous System Involvement. Biomedicines 2023; 11:biomedicines11020425. [PMID: 36830963 PMCID: PMC9953577 DOI: 10.3390/biomedicines11020425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diagnosis of multiple sclerosis (MS) is established on criteria according to clinical and radiological manifestation. Cerebrospinal fluid (CSF) analysis is an important part of differential diagnosis of MS and other inflammatory processes in the central nervous system (CNS). METHODS In total, 242 CSF samples were collected from patients undergoing differential MS diagnosis because of the presence of T2-hyperintensive lesions on brain MRI. The non-MS patients were subdivided into systemic inflammatory diseases with CNS involvement (SID) or cerebrovascular diseases (CVD) or other non-inflammatory diseases (NID). All samples were analyzed for the presence of oligoclonal bands and ELISA was performed for detection of: INF gamma, IL-6, neurofilaments light chain (NF-L), GFAP, CHI3L1, CXCL13, and osteopontin. RESULTS The level of IL-6 (p = 0.024), osteopontin (p = 0.0002), and NF-L (p = 0.002) was significantly different among groups. IL-6 (p = 0.0350) and NF-L (p = 0.0015) level was significantly higher in SID compared to NID patients. A significantly higher level of osteopontin (p = 0.00026) and NF-L (p = 0.002) in MS compared to NID population was noted. ROC analysis found weak diagnostic power for osteopontin and NFL-L. CONCLUSIONS The classical and non-standard markers of inflammatory process and neurodegeneration do not allow for sufficient differentiation between MS and non-MS inflammatory CNS disorders. Weak diagnostic power observed for the osteopontin and NF-L needs to be further investigated.
Collapse
|
9
|
Evangelopoulos ME, Hoepner R, Mavragani C. Editorial: Demyelinating neurological syndromes: The role of autoimmunity. Front Neurol 2023; 14:1178980. [PMID: 37034064 PMCID: PMC10080054 DOI: 10.3389/fneur.2023.1178980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Maria Eleftheria Evangelopoulos
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Maria Eleftheria Evangelopoulos
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clio Mavragani
- Greece and Joint Academic Rheumatology Program, Departments of Physiology and Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Raftopoulou S, Rapti A, Karathanasis D, Evangelopoulos ME, Mavragani CP. The role of type I IFN in autoimmune and autoinflammatory diseases with CNS involvement. Front Neurol 2022; 13:1026449. [PMID: 36438941 PMCID: PMC9685560 DOI: 10.3389/fneur.2022.1026449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Type I interferons (IFNs) are major mediators of innate immunity, with well-known antiviral, antiproliferative, and immunomodulatory properties. A growing body of evidence suggests the involvement of type I IFNs in the pathogenesis of central nervous system (CNS) manifestations in the setting of chronic autoimmune and autoinflammatory disorders, while IFN-β has been for years, a well-established therapeutic modality for multiple sclerosis (MS). In the present review, we summarize the current evidence on the mechanisms of type I IFN production by CNS cellular populations as well as its local effects on the CNS. Additionally, the beneficial effects of IFN-β in the pathophysiology of MS are discussed, along with the contributory role of type I IFNs in the pathogenesis of neuropsychiatric lupus erythematosus and type I interferonopathies.
Collapse
Affiliation(s)
- Sylvia Raftopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Karathanasis
- First Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | | | - Clio P. Mavragani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|