1
|
Geng W, Li P, Zhang G, Zhong R, Xu L, Kang L, Liu X, Wu M, Ji M, Guan H. Targeted Activation of OGG1 Inhibits Paraptosis in Lens Epithelial Cells of Early Age-Related Cortical Cataract. Invest Ophthalmol Vis Sci 2025; 66:29. [PMID: 39804629 PMCID: PMC11734758 DOI: 10.1167/iovs.66.1.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies. Methods Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy. Cell death-associated protein markers were quantified via Western blot analysis, including those for paraptosis (ALIX, GRP78), apoptosis (cleaved caspase 3 and caspase 9), pyroptosis (N-GSDMD), and ferroptosis (GPX4). Intracellular vesicle-organelle colocalization was assessed through immunofluorescence. OGG1 protein expression and activity were evaluated through multiple methods, including Western blot, laser micro-irradiation, and immunofluorescence. The therapeutic potential of the OGG1 activator TH10785 on paraptosis was investigated using an ex vivo rat lens model. Results Morphologic changes revealed significant endoplasmic reticulum (ER) swelling in ARCC patient LECs, with no characteristic apoptotic features. Paraptosis-related proteins exhibited significant alterations, while other cell death pathway markers (apoptosis, pyroptosis, and ferroptosis) remained unchanged. In the reactive oxygen species-induced paraptosis model, vesicular structures showed exclusive colocalization with ER-specific fluorescence. Elevated levels of the DNA damage marker 7,8-dihydro-8-oxoguanine were observed concurrent with decreased OGG1 activity. The OGG1 activator TH10785 showed efficacy in suppressing LECs paraptosis in ex vivo rat lens cultures. Conclusions Paraptosis was identified in the LECs of patients with early ARCC. TH10785 activates OGG1 to suppress paraptosis in LECs, suggesting a novel therapeutic approach for early ARCC intervention.
Collapse
Affiliation(s)
- Wenjing Geng
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Renhao Zhong
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Linhui Xu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xi Liu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Wu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Hong Y, Sun Y, Ainiwaer M, Xiao B, Zhang S, Ning L, Zhu X, Ji Y. A role for YAP/FOXM1/Nrf2 axis in oxidative stress and apoptosis of cataract induced by UVB irradiation. FASEB J 2024; 38:e23832. [PMID: 39046354 DOI: 10.1096/fj.202400848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
This study aims to investigate the hypothesis that Yes-associated protein (YAP) significantly regulates antioxidant potential and anti-apoptosis in UVB-induced cataract by exploring the underlying molecular mechanisms. To investigate the association between YAP and cataract, various experimental techniques were employed, including cell viability assessment, Annexin V FITC/PI assay, measurement of ROS production, RT-PCR, Western blot assay, and Immunoprecipitation. UVB exposure on human lens epithelium cells (HLECs) reduced total and nuclear YAP protein expression, increased cleaved/pro-caspase 3 ratios, decreased cell viability, and elevated ROS levels compared to controls. Similar Western blot results were observed in in vivo experiments involving UVB-treated mice. YAP knockdown in vitro demonstrated a decrease in the protein expression of FOXM1, Nrf2, and HO-1, which correlated with the mRNA expression, accompanied by an increase in cell apoptosis, caspase 3 activation, and the release of ROS. Conversely, YAP overexpression mitigated these effects induced by UVB irradiation. Immunoprecipitation revealed a FOXM1-YAP interaction. Notably, inhibiting FOXM1 decreased Nrf2 and HO-1, activating caspase 3. Additionally, administering the ROS inhibitor N-acetyl-L-cysteine (NAC) effectively mitigated the apoptotic effects induced by oxidative stress from UVB irradiation, rescuing the protein expression levels of YAP, FOXM1, Nrf2, and HO-1. The initial findings of our study demonstrate the existence of a feedback loop involving YAP, FOXM1, Nrf2, and ROS that significantly influences the cell apoptosis in HLECs under UVB-induced oxidative stress.
Collapse
Affiliation(s)
- Yingying Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yang Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Maierdanjiang Ainiwaer
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Binghe Xiao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shaohua Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li Ning
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yinghong Ji
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
3
|
Zhou J, Li X, Han Z, Qian Y, Bai L, Han Q, Gao M, Xue Y, Geng D, Yang X, Hao Y. Acetyl-11-keto-β-boswellic acid restrains the progression of synovitis in osteoarthritis via the Nrf2/HO-1 pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1644-1658. [PMID: 38982914 PMCID: PMC11659770 DOI: 10.3724/abbs.2024102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/01/2024] [Indexed: 07/11/2024] Open
Abstract
Synovial inflammation plays a key role in osteoarthritis (OA) pathogenesis. Fibroblast-like synoviocytes (FLSs) represent a distinct cell subpopulation within the synovium, and their unique phenotypic alterations are considered significant contributors to inflammation and fibrotic responses. The underlying mechanism by which acetyl-11-keto-β-boswellic acid (AKBA) modulates FLS activation remains unclear. This study aims to assess the beneficial effects of AKBA through both in vitro and in vivo investigations. Network pharmacology evaluation is used to identify potential targets of AKBA in OA. We evaluate the effects of AKBA on FLSs activation in vitro and the regulatory role of AKBA on the Nrf2/HO-1 signaling pathway. ML385 (an Nrf2 inhibitor) is used to verify the binding of AKBA to its target in FLSs. We validate the in vivo efficacy of AKBA in alleviating OA using anterior cruciate ligament transection and destabilization of the medial meniscus (ACLT+DMM) in a rat model. Network pharmacological analysis reveals the potential effect of AKBA on OA. AKBA effectively attenuates lipopolysaccharide (LPS)-induced abnormal migration and invasion and the production of inflammatory mediators, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS) in FLSs, contributing to the restoration of the synovial microenvironment. After treatment with ML385, the effect of AKBA on FLSs is reversed. In vivo studies demonstrate that AKBA mitigates synovial inflammation and fibrotic responses induced by ACLT+DMM in rats via activation of the Nrf2/HO-1 axis. AKBA exhibits theoretical potential for alleviating OA progression through the Nrf2/HO-1 pathway and represents a viable therapeutic candidate for this patient population.
Collapse
Affiliation(s)
- Jing Zhou
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Xueyan Li
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
- Department of Anesthesiathe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
| | - Zeyu Han
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Yinhua Qian
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Lang Bai
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Qibin Han
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Maofeng Gao
- Department of Orthopaedicsthe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Yi Xue
- Department of OrthopaedicsChangshu Hospital Affiliated to Nanjing University of Traditional Chinese MedicineSuzhou215500China
| | - Dechun Geng
- Department of Orthopaedicsthe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Xing Yang
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| |
Collapse
|
4
|
Xie J, Chen P, Mao S, Zang X, Cao R, Liu W, Wang X, Dai Y. Mir-204-5p alleviates mitochondrial dysfunction by targeting IGFBP5 in diabetic cataract. Mol Biol Rep 2024; 51:755. [PMID: 38874707 DOI: 10.1007/s11033-024-09701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Cataract contributes to visual impairment worldwide, and diabetes mellitus accelerates the formation and progression of cataract. Here we found that the expression level of miR-204-5p was diminished in the lens epithelium with anterior lens capsule of cataract patients compared to normal donors, and decreased more obviously in those of diabetic cataract (DC) patients. However, the contribution and mechanism of miR-204-5p during DC development remain elusive. METHODS AND RESULT The mitochondrial membrane potential (MMP) was reduced in the lens epithelium with anterior lens capsule of DC patients and the H2O2-induced human lens epithelial cell (HLEC) cataract model, suggesting impaired mitochondrial functional capacity. Consistently, miR-204-5p knockdown by the specific inhibitor also attenuated the MMP in HLECs. Using bioinformatics and a luciferase assay, further by immunofluorescence staining and Western blot, we identified IGFBP5, an insulin-like growth factor binding protein, as a direct target of miR-204-5p in HLECs. IGFBP5 expression was upregulated in the lens epithelium with anterior lens capsule of DC patients and in the HLEC cataract model, and IGFBP5 knockdown could reverse the mitochondrial dysfunction in the HLEC cataract model. CONCLUSIONS Our results demonstrate that miR-204-5p maintains mitochondrial functional integrity through repressing IGFBP5, and reveal IGFBP5 may be a new therapeutic target and prognostic factor for DC.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shilan Mao
- Shandong First Medical University, Jinan, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Xinyi Zang
- Weifang Medical University, Weifang, China
| | - Rui Cao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Wenhui Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| | - Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
5
|
Liu X, Li J, Liu S, Long Y, Kang C, Zhao C, Wei L, Huang S, Luo Y, Dai B, Zhu X. Fabrication of a 3D bioprinting model for posterior capsule opacification using GelMA and PLMA hydrogel-coated resin. Regen Biomater 2024; 11:rbae020. [PMID: 38529352 PMCID: PMC10963077 DOI: 10.1093/rb/rbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/27/2024] Open
Abstract
Posterior capsule opacification (PCO) remains the predominant complication following cataract surgery, significantly impairing visual function restoration. In this study, we developed a PCO model that closely mimics the anatomical structure of the crystalline lens capsule post-surgery. The model incorporated a threaded structure for accurate positioning and observation, allowing for opening and closing. Utilizing 3D printing technology, a stable external support system was created using resin material consisting of a rigid, hollow base and cover. To replicate the lens capsule structure, a thin hydrogel coating was applied to the resin scaffold. The biocompatibility and impact on cellular functionality of various hydrogel compositions were assessed through an array of staining techniques, including calcein-AM/PI staining, rhodamine staining, BODIPY-C11 staining and EdU staining in conjunction with transwell assays. Additionally, the PCO model was utilized to investigate the effects of eight drugs with anti-inflammatory and anti-proliferative properties, including 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), THZ1, sorbinil, 4-octyl itaconate (4-OI), xanthohumol, zebularine, rapamycin and caffeic acid phenethyl ester, on human lens epithelial cells (HLECs). Confocal microscopy facilitated comprehensive imaging of the PCO model. The results demonstrated that the GelMA 60 5% + PLMA 2% composite hydrogel exhibited superior biocompatibility and minimal lipid peroxidation levels among the tested hydrogels. Moreover, compared to using hydrogel as the material for 3D printing the entire model, applying surface hydrogel spin coating with parameters of 2000 rpm × 2 on the resin-based 3D printed base yielded a more uniform cell distribution and reduced apoptosis. Furthermore, rapamycin, 4-OI and AICAR demonstrated potent antiproliferative effects in the drug intervention study. Confocal microscopy imaging revealed a uniform distribution of HLECs along the anatomical structure of the crystalline lens capsule within the PCO model, showcasing robust cell viability and regular morphology. In conclusion, the PCO model provides a valuable experimental platform for studying PCO pathogenesis and exploring potential therapeutic interventions.
Collapse
Affiliation(s)
- Xin Liu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Jiale Li
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuyu Liu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ching Kang
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Chen Zhao
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Ling Wei
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Shaoqi Huang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Luo
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiangjia Zhu
- Cataract and Lens Refractive Surgery Group, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Xiong Z, Qiao Y, Zhang Q, Zhou G, Zhou C, Ma X, Jiang X, Yu W. Acetyl-11-keto-beta-boswellic acid modulates macrophage polarization and Schwann cell migration to accelerate spinal cord injury repair in rats. CNS Neurosci Ther 2024; 30:e14642. [PMID: 38430464 PMCID: PMC10908365 DOI: 10.1111/cns.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Inhibiting secondary inflammatory damage caused by glial cells and creating a stable microenvironment is one of the main strategies to investigate drugs for the treatment of spinal cord injury. Acetyl-11-keto-beta-boswellic acid (AKBA) is the active component of the natural drug boswellia, which has anti-inflammatory and antioxidant effects and offers a possible therapeutic option for spinal cord injury. METHODS In this study, a spinal cord injury model was established by crushing spinal cord, respectively, to detect the M1 macrophage inflammatory markers: iNOS, TNF-α, IL-1β, and the M2 macrophage markers CD206, ARG-1, IL-10, and the detection of antioxidant enzymes and MDA. In vitro, macrophages were cultured to verify the main mechanism of the macrophage switch from Nrf2/HO-1 to M2 type by flow cytometry, immunofluorescence, and other techniques. Macrophage and Schwann cell co-culture validated the migration mechanism of Schwann cells promoted by AKBA. RESULTS AKBA significantly enhanced the antioxidant enzyme activities of CAT, GSH-Px, T-AOC, and SOD, reduced MDA content, and reduced oxidative damage caused by spinal cord injury via the Nrf2/HO-1 signaling pathway; AKBA mediates Nrf2/HO-1/IL-10, converts macrophages from M1 to M2 type, reduces inflammation, and promotes Schwann cell migration, thereby accelerating the repair of spinal cord injury in rats. CONCLUSIONS Our work demonstrates that AKBA can attenuate oxidative stress as well as the secondary inflammatory injury caused by macrophages after SCI, promote Schwann cell migration to the injury site, and thus accelerate the repair of the injured spinal cord.
Collapse
Affiliation(s)
- Yao Wang
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Zongliang Xiong
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Yuncong Qiao
- School of Life SciencesNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Qiyuan Zhang
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Guanghu Zhou
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chong Zhou
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xianglin Ma
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xiaowen Jiang
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Wenhui Yu
- Department of Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and TreatmentNortheast Agricultural UniversityHarbinHeilongjiangChina
- Institute of Chinese Veterinary MedicineNortheast Agricultural UniversityHarbinHeilongjiangChina
| |
Collapse
|
7
|
Wang Y, Xiong Z, Zhang Q, Liu M, Zhang J, Qi X, Jiang X, Yu W. Acetyl-11-Keto-β-Boswellic Acid Accelerates the Repair of Spinal Cord Injury in Rats by Resisting Neuronal Pyroptosis with Nrf2. Int J Mol Sci 2023; 25:358. [PMID: 38203528 PMCID: PMC10779011 DOI: 10.3390/ijms25010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The primary aim of this study is to delve into the potential of Acetyl-11-keto-β-boswellic acid (AKBA) in ameliorating neuronal damage induced by acute spinal cord injury, as well as to unravel the intricate underlying mechanisms. A cohort of 40 Sprague-Dawley rats was meticulously categorized into four groups. Following a seven-day oral administration of AKBA, damaged spinal cord samples were meticulously procured for Nissl staining and electron microscopy to assess neuronal demise. Employing ELISA, immunofluorescence, Western blot (WB), and quantitative polymerase chain reaction (qPCR), the modulatory effects of AKBA within the context of spinal cord injury were comprehensively evaluated. Furthermore, employing an ex vivo extraction of spinal cord neurons, an ATP + LPS-induced pyroptotic injury model was established. The model was subsequently subjected to Nrf2 inhibition, followed by a battery of assessments involving ELISA, DCFH-DA staining, flow cytometry, immunofluorescence, and WB to decipher the effects of AKBA on the spinal cord neuron pyroptosis model. By engaging the Nrf2-ROS-NLRP3 pathway, AKBA exerted a repressive influence on the expression of the pyroptotic initiator protein Caspase-1, thereby mitigating the release of GSDMD and alleviating pyroptosis. Additionally, AKBA demonstrated the ability to attenuate the release of IL-18 and IL-1β, curbing neuronal loss and expediting the restorative processes within the context of spinal cord injury. Our study elucidates that AKBA can reduce spinal cord neuronal apoptosis, providing a basis for the development of AKBA as a clinical treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yao Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Zongliang Xiong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Qiyuan Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Mengmeng Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Jingjing Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xinyue Qi
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Wang L, Lou W, Zhang Y, Chen Z, Huang Y, Jin H. HO-1-Mediated Autophagic Restoration Protects Lens Epithelial Cells Against Oxidative Stress and Cellular Senescence. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 38051262 DOI: 10.1167/iovs.64.15.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Purpose Oxidative stress and cellular senescence are risk factors for age-related cataract. Heme oxygenase 1 (HO-1) is a critical antioxidant enzyme and related to autophagy. Here, we investigate the crosstalk among HO-1, oxidative stress, and cellular senescence in mouse lens epithelial cells (LECs). Methods The gene expression of HO-1, p21, LC3, and p62 was measured in human samples. The protective properties of HO-1 were examined in hydrogen peroxide (H2O2)-damaged LECs. Autophagic flux was examined by Western blot and mRFP-GFP-LC3 assay. Western blotting and lysotracker staining were used to analyze lysosomal function. Flow cytometry was used to detect intracellular reactive oxygen species and analyze cell cycle. Senescence-associated β-galactosidase assay was used to determine cellular senescence. The crosstalk between HO-1 and transcription factor EB (TFEB) was further observed in TFEB-knockdown cells. The TFEB binding site in the promoter region of Hmox1 was predicted by the Jasper website and was confirmed by chromatin immunoprecipitation assay. Results HO-1 gene expression decreased in LECs of patients with age-related nuclear cataract, whereas mRNA expression levels of p21, LC3, and p62 increased. Upon H2O2-induced oxidative stress, LECs showed the characteristics of autophagic flux blockade, lysosomal dysfunction, and premature senescence. Interestingly, HO-1 significantly restored the impaired autophagic flux and lysosomal function and delayed cellular senescence. TFEB gene silencing greatly reduced the HO-1-mediated autophagic restoration, leading to a failure to prevent LECs from oxidative stress and premature senescence. Conclusions We demonstrated HO-1 effects on restoring autophagic flux and delaying cellular senescence under oxidative stress in LECs, which are dependent on TFEB.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Lou
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziang Chen
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Li P, Zhong R, Yu J, Wang Y, Wang C, Geng W, Bao S, Wang S, Zhang G, Zhu X, Ji M, Guan H. DCLRE1A Contributes to DNA Damage Repair and Apoptosis in Age-Related Cataracts by Regulating the lncRNA/miRNA/mRNA Axis. Curr Eye Res 2023; 48:992-1005. [PMID: 37503815 DOI: 10.1080/02713683.2023.2241159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Age-related cataract (ARC) is associated with the deregulation of transcription and defects in DNA repair in lens epithelial cells (LECs). DCLRE1A acted in DNA interstrand cross-links pathway to improve DNA replication and transcription. The aim of this study was to examined the further regulatory effect on DCLRE1A in the lncRNA-miRNA-mRNA network using a cell model of DCLRE1A overexpression (OE-DCLRE1A) in LECs. METHODS The expression level of DCLRE1A in ARC tissues and SRA01/04 cells after H2O2 treatment was measured as protein and mRNA by qRT-PCR and Western Blot(WB). CCK8, and TUNEL assays detected the change in cell viability and apoptosis, respectively. Furthermore, Immunofluorescence assays detect the expression of DNA damaged and repair marker proteins after OE-DCLRE1A. The global expression profiles of lncRNAs, miRNAs, and mRNAs were determined using high-throughput sequencing. KEGG and GO enrichment analysis disclose the possible function of differentially expressed (DE) lncRNA, miRNA, and mRNA. RESULTS The protein and mRNA of DCLRE1A were decreased in the anterior capsule of ARC and SRA01/04 cells treated by H2O2. OE-DCLRE1A improved damaged-DNA repair and enhanced cell viability against apoptosis after H2O2 treatment. Furthermore, we demonstrated the DE-molecules between the OE-DCLRE1A and control groups including 595 DE-lncRNAs, 221 DE-miRNAs, and 4718 DE-mRNAs. Next, bioinformatics analysis not only found that the DE-mRNAs are mainly involved in DNA repair-related signaling pathways after OE-DCLRE1A, but also screened two lncRNA-miRNA-mRNA networks focusing on DNA damage activated by OE-DCLRE1A, which involved 2 lncRNAs, 2 miRNAs, and 53 mRNAs. CONCLUSION We revealed that DCLRE1A activated the lncRNA/miRNA/DNA-repair network to take part in DNA repair processes, which not only represents a new regulatory mechanism employed by DCLRE1A but also uncovers the screening lncRNA may hold potential therapeutic values in ARC formation. However, these conclusions will need to be confirmed by future studies in vitro and in vivo models.
Collapse
Affiliation(s)
- Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Renhao Zhong
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Department of Ophthalmology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Congyu Wang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Wenjing Geng
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Sijie Bao
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Siwen Wang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xi Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
10
|
Zhang X, Liu B, Lal K, Liu H, Tran M, Zhou M, Ezugwu C, Gao X, Dang T, Au ML, Brown E, Wu H, Liao Y. Antioxidant System and Endoplasmic Reticulum Stress in Cataracts. Cell Mol Neurobiol 2023; 43:4041-4058. [PMID: 37874455 PMCID: PMC10842247 DOI: 10.1007/s10571-023-01427-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
The primary underlying contributor for cataract, a leading cause of vision impairment and blindness worldwide, is oxidative stress. Oxidative stress triggers protein damage, cell apoptosis, and subsequent cataract formation. The nuclear factor-erythroid 2-related factor 2 (Nrf2) serves as a principal redox transcriptional factor in the lens, offering a line of defense against oxidative stress. In response to oxidative challenges, Nrf2 dissociates from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), moves to the nucleus, and binds to the antioxidant response element (ARE) to activate the Nrf2-dependent antioxidant system. In parallel, oxidative stress also induces endoplasmic reticulum stress (ERS). Reactive oxygen species (ROS), generated during oxidative stress, can directly damage proteins, causing them to misfold. Initially, the unfolded protein response (UPR) activates to mitigate excessive misfolded proteins. Yet, under persistent or severe stress, the failure to rectify protein misfolding leads to an accumulation of these aberrant proteins, pushing the UPR towards an apoptotic pathway, further contributing to cataractogenesis. Importantly, there is a dynamic interaction between the Nrf2 antioxidant system and the ERS/UPR mechanism in the lens. This interplay, where ERS/UPR can modulate Nrf2 expression and vice versa, holds potential therapeutic implications for cataract prevention and treatment. This review explores the intricate crosstalk between these systems, aiming to illuminate strategies for future advancements in cataract prevention and intervention. The Nrf2-dependent antioxidant system communicates and cross-talks with the ERS/UPR pathway. Both mechanisms are proposed to play pivotal roles in the onset of cataract formation.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingqing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kevin Lal
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haihua Liu
- Peking University First Hospital, Beijing, China
| | - Myhoa Tran
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Manyu Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chimdindu Ezugwu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xin Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Terry Dang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - My-Lien Au
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Erica Brown
- School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Yan Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
11
|
Li J, Huang Y, Ma T, Liu Y, Luo Y, Gao L, Li Z, Ye Z. Carbon Monoxide Releasing Molecule-3 Alleviates Oxidative Stress and Apoptosis in Selenite-Induced Cataract in Rats via Activating Nrf2/HO-1 Pathway. Curr Eye Res 2023; 48:919-929. [PMID: 37395371 DOI: 10.1080/02713683.2023.2232569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE This study investigated the protective effect of carbon monoxide releasing molecule-3 (CORM-3), the classical donor of carbon monoxide, on selenite-induced cataract in rats and explore its possible mechanism. METHODS Sprague-Dawley rat pups treated with sodium selenite (Na2SeO3) were chosen as the cataract model. Fifty rat pups were randomly divided into 5 groups: Control group, Na2SeO3 (3.46 mg/kg) group, low-dose CORM-3 (8 mg/kg/d) + Na2SeO3 group, high-dose CORM-3 (16 mg/kg/d) + Na2SeO3 group, and inactivated CORM-3 (iCORM-3) (8 mg/kg/d) + Na2SeO3 group. The protective effect of CORM-3 was tested by lens opacity scores, hematoxylin and eosin staining, TdT-mediated dUTP nick-end labeling assay, and enzyme-linked immunosorbent assay. Besides, quantitative real-time PCR and western blotting were used for mechanism validation. RESULTS Na2SeO3 induced nuclear cataract rapidly and stably, and the achievement ratio of Na2SeO3 group was 100%. CORM-3 alleviated lens opacity of selenite-induced cataract and attenuated the morphological changes of the rat lens. The levels of antioxidant enzymes GSH and SOD in rat lens were also increased by CORM-3 treatment. CORM-3 significantly reduced the ratio of apoptotic lens epithelial cells, besides, CORM-3 decreased the expression of Cleaved Caspase-3 and Bax induced by selenite and increased the expression of Bcl-2 in rat lens inhibited by selenite. Moreover, Nrf-2 and HO-1 were upregulated and Keap1 was downregulated after CORM-3 treatment. While iCORM-3 did not exert the same effect as CORM-3. CONCLUSIONS Exogenous CO released from CORM-3 alleviates oxidative stress and apoptosis in selenite-induced rat cataract via activating Nrf2/HO-1 pathway. CORM-3 may serve as a promising preventive and therapeutic strategy for cataract.
Collapse
Affiliation(s)
- Jinglan Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yating Liu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yu Luo
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
AlTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. The Protective Effect of 11-Keto-β-Boswellic Acid against Diabetic Cardiomyopathy in Rats Entails Activation of AMPK. Nutrients 2023; 15:nu15071660. [PMID: 37049501 PMCID: PMC10097356 DOI: 10.3390/nu15071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
This study examined the protective effect of 11-keto-β-boswellic acid (AKBA) against streptozotocin (STZ)-induced diabetic cardiomyopathy (DC) in rats and examined the possible mechanisms of action. Male rats were divided into 5 groups (n = 8/each): (1) control, AKBA (10 mg/kg, orally), STZ (65 mg/kg, i.p.), STZ + AKBA (10 mg/kg, orally), and STZ + AKBA + compound C (CC/an AMPK inhibitor, 0.2 mg/kg, i.p.). AKBA improved the structure and the systolic and diastolic functions of the left ventricles (LVs) of STZ rats. It also attenuated the increase in plasma glucose, plasma insulin, and serum and hepatic levels of triglycerides (TGs), cholesterol (CHOL), and free fatty acids (FFAs) in these diabetic rats. AKBA stimulated the ventricular activities of phosphofructokinase (PFK), pyruvate dehydrogenase (PDH), and acetyl CoA carboxylase (ACC); increased levels of malonyl CoA; and reduced levels of carnitine palmitoyltransferase I (CPT1), indicating improvement in glucose and FA oxidation. It also reduced levels of malondialdehyde (MDA); increased mitochondria efficiency and ATP production; stimulated mRNA, total, and nuclear levels of Nrf2; increased levels of glutathione (GSH), heme oxygenase (HO-1), superoxide dismutase (SOD), and catalase (CAT); but reduced the expression and nuclear translocation of NF-κB and levels of tumor-necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These effects were concomitant with increased activities of AMPK in the LVs of the control and STZ-diabetic rats. Treatment with CC abolished all these protective effects of AKBA. In conclusion, AKBA protects against DC in rats, mainly by activating the AMPK-dependent control of insulin release, cardiac metabolism, and antioxidant and anti-inflammatory effects.
Collapse
|