1
|
Shi X, Yin H, Shi X. Bibliometric analysis of literature on natural medicines against chronic kidney disease from 2001 to 2024. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156410. [PMID: 39892309 DOI: 10.1016/j.phymed.2025.156410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a globally common and progressive disease. There has been few bibliometric study to analyze the status, hot spots, and trends in the field of natural medicines (NMs) against CKD. PURPOSE To comprehensively understand the status, hot spots, and trends in the field of NMs against CKD. METHODS The documents concerning NMs against CKD are extracted from the Web of Science Core Collection database (WOSCC). The literature analysis was conducted using VOSviewer 1.6.20 and CiteSpace 6.3.R1 software. RESULTS In total, 641 publications were encompassed, which were produced by 3 548 authors and 823 organizations, 241 journals, and 56 countries/regions. The most productive author, institution, country, and journal were Li, Ping, Nanjing University of Chinese Medicine, China, and Journal of Ethnopharmacology, respectively. The first high-cited article was published in Medicinal Research Reviews with 457 citations authored by Huang and colleagues in 2007. Oxidative stress, anti-inflammatory, renal fibrosis, and gut microbiota were the emerging keywords. Rhubarb, Astragalus, Angelica, and Cordyceps, which contain anthraquinones, cordycepin, adenosine, or various polysaccharides, are promising NMs to prevent or treat CKD. CONCLUSION Currently, the main hot spot is the elucidation of cellular and molecular mechanisms using novel technologies such as network pharmacology, molecular docking, and experimental validation. Future studies are needed to focus on the inherent molecular mechanisms and clinical applications. In addition, potential side effects of the bioactive compounds cannot be ignored.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Nephrology, The First People's Hospital of Jingdezhen, Jiangxi Province, 333000, China
| | - Hongmei Yin
- School of Health, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Jiangxi Province, Nanchang, 330022, China.
| | - Xiaodan Shi
- School of Health, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Jiangxi Province, Nanchang, 330022, China.
| |
Collapse
|
2
|
Wu F, Xu C, Si X, He F, Xu K, Zhang Y, Lin S. Efficacy of traditional Chinese medicine Cordyceps sinensis as an adjunctive treatment in patients with renal dysfunction: a systematic-review and meta-analysis. Front Med (Lausanne) 2025; 11:1477569. [PMID: 39839641 PMCID: PMC11747039 DOI: 10.3389/fmed.2024.1477569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Objective The effectiveness of using Cordyceps sinensis as an adjuvant therapy for patients with renal dysfunction (RD), especially acute kidney injury (AKI), is still a topic of debate. In response to the current conflicting data, the present meta-analysis was conducted to assess the clinical effectiveness of C. sinensis in the treatment of RD and to provide evidence for clinical practice. Methods Several databases, including PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI) and Wanfang, were systematically searched updated to March 25, 2024. We used the combined ratio (OR) and diagnostic ratio (DOR) to assess the therapeutic effect of C. sinensis. In addition, risk of bias was assessed by Cochrane Risk of Bias Assessment Tool. Results The present meta-analysis ultimately incorporated 15 studies comprising a total of 1,310 patients with RD. We pooled estimated the sensitivity, specificity as well as DOR from patient-based analyses with 0.89 (95% confidence interval [CI]: 0.84-0.93), 0.69 (95% CI: 0.59-0.77) and 18.0 (95% CI: 8.0-39.0), respectively. Moreover, we calculated the combined positive likelihood ratio (PLR) as well as negative likelihood ratio (NLR) to be 2.8 (95% CI: 2.1-3.9) and 0.16 (95% CI: 0.10-0.27), respectively. Additionally, area under the curve (AUC) of the summary receiver operating characteristic (SROC) was calculated as 0.88 (95% CI: 0.85-0.90) reflecting prognostic accuracy. Subsequently, subgroup analysis indicated that the clinical efficacy of C. sinensis in northern Chinese patients with RD was superior to that of southern. On the other hand, C. sinensis significantly reduced patients' blood creatinine levels, shortened the oliguria period, and increased urine osmolality, indicating it can improve the function of glomeruli and renal tubules. Conclusion Our results indicate that C. sinensis can be considered a dependable clinical treatment for individuals with RD. It may improve the function of glomeruli and tubules, promote the recovery of tubular function, and thus enhance the clinical therapeutic effects. Systematic review registration www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42024559042.
Collapse
Affiliation(s)
- Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Chunhua Xu
- Department of Nephrology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xinlei Si
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Fei He
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Kang Xu
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Yu Zhang
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Peng T, Li X, Tong X. Insights into the methods for separation and chromatographic determination of nucleotides/nucleosides in Cordyceps spp. J Chromatogr A 2024; 1734:465279. [PMID: 39197362 DOI: 10.1016/j.chroma.2024.465279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
Cordyceps genus is entomopathogenic mushrooms that have traditionally been used in ethnomedicine in Asian countries. Nucleosides (Ns), nucleotide(Nt), Nucleobases (Nb) and their analogues play a critically physiological role and have a great potential in drug development, such as pentostatin and cordycepin (COR). Due to their significance bioactivity, several Nt/Ns were used as markers for quality evaluation for medicinal Cordyceps, including adenosine, inosine, guanosine, uridine and COR. Among them, COR is the most considerable adenosine analogue, exhibiting significant therapeutic potential and has many intracellular targets. Nt/Ns contains polar compounds and the phosphate groups of Nt deprotonate and carry negative charges with a broad range of pH values. Recent years, various advanced methods of extraction and separation, and nanomaterials have been developed to extract, isolate and determine these molecules, such as ultrasound-assisted extraction (UAE), Supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) for the extraction, the solid phase extraction (SPE) methods (microextraction SPE (SPME), magnetic SPE (MSPE), and unique SPE materials based on the boronate affinity for the separation, and chromatography methods employing ultraviolet (UV), fluorescence, MS detection and electrospray ionization (ESI), along with matrix-assisted laser desorption/ ionization (MALDI) for the determination. COR derived from adenosine and its structure is very similar to that of 2'-deoxyadenosine (2'-dA) and adenosine, resulting in an incorrect identification, which will influence its therapeutic effects. Therefore, this review primarily focused on the characteristics of Nt/Ns, the advanced methods, strategies, nanomaterials for extracting and determining Nt/Ns (COR in particular) in Cordyceps spp, as well as the methods for distinguishing COR from its structure analogs.
Collapse
Affiliation(s)
- Ting Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xiaoxing Li
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China.
| |
Collapse
|
4
|
Tao Y, Luo R, Xiang Y, Lei M, Peng X, Hu Y. Use of bailing capsules (cordyceps sinensis) in the treatment of chronic kidney disease: a meta-analysis and network pharmacology. Front Pharmacol 2024; 15:1342831. [PMID: 38645562 PMCID: PMC11026558 DOI: 10.3389/fphar.2024.1342831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
The Bailing Capsule is a commonly used traditional Chinese medicine for the treatment of chronic kidney disease (CKD). However, its therapeutic effects and pharmacological mechanisms have not been fully explored. In this study, we integrated meta-analysis and network pharmacology to provide scientific evidence for the efficacy and pharmacological mechanism of Bailing Capsule in treating CKD. We conducted searches for randomized controlled studies matching the topic in PubMed, the Cochrane Library, Embase, Web of Science, and the Wanfang Database, and screened them according to predefined inclusion and exclusion criteria. Dates from the included studies were extracted for meta-analysis, including renal function indicators, such as 24-h urinary protein (24UP), blood urea nitrogen (BUN), and serum creatinine (Scr), as well as inflammatory indicators like high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Network pharmacology was employed to extract biological information, including active drug ingredients and potential targets of the drugs and diseases, for network construction and gene enrichment. Our findings indicated that 24UP, BUN, and Scr in the treatment group containing Bailing Capsule were lower than those in the control group. In terms of inflammatory indicators, hs-CRP, IL-6, and TNF-α, the treatment group containing Bailing Capsule also exhibited lower levels than the control group. Based on network pharmacology analysis, we identified 190 common targets of Bailing Capsule and CKD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that the pharmacological mechanism of Bailing Capsule might be related to immune response, inflammatory response, vascular endothelial damage, cell proliferation, and fibrosis. This demonstrates that Bailing Capsule can exert therapeutic effects through multiple targets and pathways, providing a theoretical basis for its use.
Collapse
Affiliation(s)
- Yilin Tao
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Ruixiang Luo
- The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, China
| | - Yuanbing Xiang
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Min Lei
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Xuan Peng
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Yao Hu
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
- Department of Medicine Renal Division, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Yang W, Zhu KF, Tao CT, Yan YM, Cheng YX. Isolation and target identification of anti-renal fibrosis compounds from Cordyceps militaris. Bioorg Chem 2024; 144:107169. [PMID: 38330722 DOI: 10.1016/j.bioorg.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Four undescribed compounds including one aromatic glucoside derivative, cordyceglycoside A (1), one new isoleucine derivative inner salt, cordycepisosalt A (2), a rare four-membered lactam, cinerealactam B (3), and one sesquiterpene derivative, cordycepsetp A (4), together with six known compounds were isolated from Cordyceps militaris. The structures including absolute configurations of these new compounds, were unambiguously elucidated by spectroscopic data analysis and single crystal X-ray diffraction. Biological evaluation of compounds 1-4 showed that 3 displays anti-renal fibrotic activities in TGF-β1 induced NRK-52e cells. Furthermore, DARTS coupled with LC-MS/MS analysis was used to identify candidate target proteins for 3. Subsequently, C1qbp knockdown using siRNA allowed us to validate the target protein of 3.
Collapse
Affiliation(s)
- Wei Yang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China
| | - Kun-Fang Zhu
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China
| | - Cheng-Tian Tao
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, PR China.
| |
Collapse
|
6
|
Zhang Y, Liu SJ. Cordyceps as potential therapeutic agents for atherosclerosis. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:102-114. [PMID: 38494355 DOI: 10.1016/j.joim.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Atherosclerosis is a leading cause of mortality and morbidity worldwide. Despite the challenges in managing atherosclerosis, researchers continue to investigate new treatments and complementary therapies. Cordyceps is a traditional Chinese medicine that has recently gained attention as a potential therapeutic agent for atherosclerosis. Numerous studies have demonstrated the effectiveness of cordyceps in treating atherosclerosis through various pharmacological actions, including anti-inflammatory and antioxidant activities, lowering cholesterol, inhibiting platelet aggregation, and modulating apoptosis or autophagy in vascular endothelial cells. Notably, the current misuse of the terms cordyceps and Ophiocordyceps sinensis has caused confusion among researchers, and complicated the current academic research on cordyceps. This review focuses on the chemical composition, pharmacological actions, and underlying mechanisms contributing to the anti-atherosclerotic effects of cordyceps and the mycelium of Ophiocordyceps spp. This review provides a resource for the research on the development of new drugs for atherosclerosis from cordyceps. Please cite this article as: Zhang Y, Liu SJ. Cordyceps as potential therapeutic agents for atherosclerosis. J Integr Med. 2024; 22(2): 102-114.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marxism, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases with Integrated Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
7
|
Sharma H, Sharma N, An SSA. Unique Bioactives from Zombie Fungus ( Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients 2023; 16:102. [PMID: 38201932 PMCID: PMC10780653 DOI: 10.3390/nu16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
8
|
Zhang Y, Li K, Zhang C, Liao H, Li R. Research Progress of Cordyceps sinensis and Its Fermented Mycelium Products on Ameliorating Renal Fibrosis by Reducing Epithelial-to-Mesenchymal Transition. J Inflamm Res 2023; 16:2817-2830. [PMID: 37440993 PMCID: PMC10335274 DOI: 10.2147/jir.s413374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Renal fibrosis is a hallmark and common outcome of various chronic kidney diseases (CKDs) and manifests pathologically as accumulation and deposition of extracellular matrix (ECM) in the kidney. Epithelial-to-mesenchymal transition (EMT) has been shown to be an important mechanism involved in renal fibrosis. Cordyceps sinensis, a traditional Chinese medicine, has long been used for the treatment of renal fibrosis. As research on the mycelium of C. sinensis progressed, a variety of medicines developed from fermented mycelium were used to treat CKD. However, their efficacies and mechanisms have not been fully summarized. In this review, five medicines developed from fermented mycelium of C. sinensis are presented. The pharmacodynamic effects of C. sinensis on different animal models of renal fibrosis are summarized. The in vitro studies and related mechanisms of C. sinensis on renal cells are detailed. Finally, the application and efficacy of these five commercial medicines that meet national standards in different types of CKD are summarized. From this review, it can be concluded that C. sinensis can alleviate various causes of renal fibrosis to some extent, and its mechanism is related to TGF-β1 dependent signaling, inhibition of inflammation, and improvement of renal function. Further research on rigorously designed, large-sample, clinically randomized controlled trial studies and detailed mechanisms should be conducted.
Collapse
Affiliation(s)
- Yaling Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
- Department of Nephrology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
| | - Kaiyun Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Chao Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Hui Liao
- Department of Pharmacy, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| |
Collapse
|