1
|
Zhou HP, Su J, Wei KJ, Wu SX, Yu JJ, Yu YK, Niu ZW, Jin XH, Yan MQ, Chen SH, Lyu GY. Beneficial Effects of Dendrobium officinale Extract on Insomnia Rats Induced by Strong Light and Noise via Regulating GABA and GABA A Receptors. Chin J Integr Med 2025; 31:490-498. [PMID: 40229628 DOI: 10.1007/s11655-025-3925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 04/16/2025]
Abstract
OBJECTIVE To explore the therapeutic effects and underlying mechanisms of Dendrobium officinale (Tiepi Shihu) extract (DOE) on insomnia. METHODS Forty-two male Sprague-Dawley rats were randomly divided into 6 groups (n=7 per group): normal control, model control, melatonin (MT, 40 mg/kg), and 3-dose DOE (0.25, 0.50, and 1.00 g/kg) groups. Rats were raised in a strong-light (10,000 LUX) and -noise (>80 db) environment (12 h/d) for 16 weeks to induce insomnia, and from week 10 to week 16, MT and DOE were correspondingly administered to rats. The behavior tests including sodium pentobarbital-induced sleep experiment, sucrose preference test, and autonomous activity test were used to evaluate changes in sleep and emotions of rats. The metabolic-related indicators such as blood pressure, blood viscosity, blood glucose, and uric acid in rats were measured. The pathological changes in the cornu ammonis 1 (CA1) region of rat brain were evaluated using hematoxylin and eosin staining and Nissl staining. Additionally, the sleep-related factors gamma-aminobutyric acid (GABA), glutamate (GA), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) were measured using enzyme linked immunosorbent assay. Finally, we screened potential sleep-improving receptors of DOE using polymerase chain reaction (PCR) array and validated the results with quantitative PCR and immunohistochemistry. RESULTS DOE significantly improved rats' sleep and mood, increased the sodium pentobarbital-induced sleep time and sucrose preference index, and reduced autonomic activity times (P<0.05 or P<0.01). DOE also had a good effect on metabolic abnormalities, significantly reducing triglyceride, blood glucose, blood pressure, and blood viscosity indicators (P<0.05 or P<0.01). DOE significantly increased the GABA content in hippocampus and reduced the GA/GABA ratio and IL-6 level (P<0.05 or P<0.01). In addition, DOE improved the pathological changes such as the disorder of cell arrangement in the hippocampus and the decrease of Nissel bodies. Seven differential genes were screened by PCR array, and the GABAA receptors (Gabra5, Gabra6, Gabrq) were selected for verification. The results showed that DOE could up-regulate their expressions (P<0.05 or P<0.01). CONCLUSION DOE demonstrated remarkable potential for improving insomnia, which may be through regulating GABAA receptors expressions and GA/GABA ratio.
Collapse
Affiliation(s)
- Heng-Pu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ke-Jian Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Su-Xiang Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing-Jing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi-Kang Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhuang-Wei Niu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Hu Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mei-Qiu Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Su-Hong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Gui-Yuan Lyu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Chen W, Xiao L, Guo W, Li H, Chen R, Duan Z, Chen Q, Lei Q. Research progress of traditional Chinese medicine regulating intestinal flora in the treatment of hypertension. Front Pharmacol 2024; 15:1449972. [PMID: 39717555 PMCID: PMC11664361 DOI: 10.3389/fphar.2024.1449972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Hypertension is a common disease; however, it is more prevalent in older adults, and its prevalence is increasing in younger populations. Numerous studies have revealed that hypertension and the composition and functionality of the intestinal flora are closely correlated. The balance of the intestinal flora, intestinal barrier integrity, and metabolite content of the intestinal flora play significant roles in the occurrence and progression of hypertension. Therefore, we performed a comprehensive review of Traditional Chinese medicine (TCM) for hypertension, focusing on the role of the intestinal flora to understand the mechanism by which TCM regulates hypertension through its effects on the intestinal flora. We analyzed the findings using the terms "traditional Chinese medicine," "hypertension," "high blood pressure," "blood pressure," "intestinal flora," "intestinal barrier function," "intestinal flora metabolites," and other keywords from the China National Knowledge Infrastructure, VIP Chinese Science and Technology, Wanfang Data, PubMed, and ScienceDirect databases. We found that TCM treats hypertension by regulating the balance of the intestinal microbiota, increasing the abundance of beneficial bacteria, reducing the abundance of harmful bacteria, improving intestinal barrier function, increasing compact proteins, reducing intestinal permeability, and regulating the content of intestinal flora metabolites. The use of TCM to treat hypertension by regulating the intestinal flora is a promising therapeutic strategy. However, most studies are limited by small sample sizes and there is a lack of large-scale randomized controlled trials. In the future, multi-center controlled clinical trials are needed to verify the efficacy and safety of TCM, optimize therapeutic protocols, and establish a foundation for the standardized and personalized application of TCM in hypertension management.
Collapse
Affiliation(s)
- Wenjun Chen
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Longfei Xiao
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wenlong Guo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hailin Li
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Chen
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhongyu Duan
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qinghua Chen
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qing Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Pan Y, Yang Y, Wu J, Zhou H, Yang C. Efficacy of probiotics, prebiotics, and synbiotics on liver enzymes, lipid profiles, and inflammation in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. BMC Gastroenterol 2024; 24:283. [PMID: 39174901 PMCID: PMC11342484 DOI: 10.1186/s12876-024-03356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND There is a contradiction in the use of microbiota-therapies, including probiotics, prebiotics, and synbiotics, to improve the condition of patients with nonalcoholic fatty liver disease (NAFLD). The aim of this review was to evaluate the effect of microbiota-therapy on liver injury, inflammation, and lipid levels in individuals with NAFLD. METHODS Using Pubmed, Embase, Cochrane Library, and Web of Science databases were searched for articles on the use of prebiotic, probiotic, or synbiotic for the treatment of patients with NAFLD up to March 2024. RESULTS Thirty-four studies involving 12,682 individuals were included. Meta-analysis indicated that probiotic, prebiotic, and synbiotic supplementation significantly improved liver injury (hepatic fibrosis, SMD = -0.31; 95% CI: -0.53, -0.09; aspartate aminotransferase, SMD = -0.35; 95% CI: -0.55, -0.15; alanine aminotransferase, SMD = -0.48; 95% CI: -0.71, -0.25; alkaline phosphatase, SMD = -0.81; 95% CI: -1.55, -0.08), lipid profiles (triglycerides, SMD = -0.22; 95% CI: -0.43, -0.02), and inflammatory factors (high-density lipoprotein, SMD = -0.47; 95% CI: -0.88, -0.06; tumour necrosis factor alpha, SMD = -0.86 95% CI: -1.56, -0.56). CONCLUSION Overall, supplementation with probiotic, prebiotic, or synbiotic had a positive effect on reducing liver enzymes, lipid profiles, and inflammatory cytokines in patients with NAFLD.
Collapse
Affiliation(s)
- Youwen Pan
- Nephrology Department, Lai'an County People's Hospital, Chuzhou, 239000, China
| | - Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Jiale Wu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Haiteng Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China.
| |
Collapse
|
4
|
Zhang M, Pi Y, Ma L, Li F, Luo J, Cai Y, Wu Y, Liu M, Dai Y, Zheng F, Yue H. Effects of ginseng on short-chain fatty acids and intestinal microbiota in rats with spleen-qi deficiency based on gas chromatography-mass spectrometry and 16s rRNA technology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9640. [PMID: 37942687 DOI: 10.1002/rcm.9640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 11/10/2023]
Abstract
RATIONALE Spleen-qi deficiency syndrome, a common weakness syndrome in traditional Chinese medicine, results from insufficient spleen-qi levels. For centuries, ginseng has been relied upon as a traditional Chinese medicine to treat spleen-qi deficiency syndrome. Until now, the mechanism feature of ginseng in treating temper deficiency through intestinal bacteria and short-chain fatty acid (SCFA) metabolites has not been fully elucidated. METHODS This study established a rat model of spleen-qi deficiency via multi-factor compound modeling that involved fatigue injury and a controlled diet. The content of SCFAs between different treatment groups was determined by gas chromatography-mass spectrometry. And the 16s rRNA sequencing technology was applied to reveal the effects of ginseng on the intestinal microecological environment of the rats. RESULTS It was found that the ginseng treatment group exhibited the most remarkable regulatory effect on propionic acid, surpassing all other administration groups. Ginseng increased the relative abundance of beneficial bacteria and decreased that of harmful bacteria at the genus level in rats with spleen-qi deficiency syndrome. And propionic acid is significantly positively correlated with Lactobacillus level and significantly negatively correlated with uncultured_bacterium_f_Muribaculaceae (p < 0.05). n-Butyric acid is negatively correlated with the Faecalibaculum level (p < 0.01). n-Valeric acid is significantly negatively correlated with the Romboutsia level (p < 0.01). CONCLUSION The mechanism of ginseng treatment for spleen-qi deficiency is elucidated from the perspective of gut microbiota and its metabolite SCFAs. It provides a new way for further development and utilization of ginseng and a theoretical basis.
Collapse
Affiliation(s)
- Meiyu Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yijun Pi
- Changchun University of Chinese Medicine, Changchun, China
| | - Liting Ma
- Changchun University of Chinese Medicine, Changchun, China
| | - Fangtong Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Jing Luo
- Changchun University of Chinese Medicine, Changchun, China
| | - Yongyu Cai
- Changchun University of Chinese Medicine, Changchun, China
| | - Yongxi Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Ming Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Wu W, Zhao Z, Zhao Z, Zhang D, Zhang Q, Zhang J, Fang Z, Bai Y, Guo X. Structure, Health Benefits, Mechanisms, and Gut Microbiota of Dendrobium officinale Polysaccharides: A Review. Nutrients 2023; 15:4901. [PMID: 38068759 PMCID: PMC10708504 DOI: 10.3390/nu15234901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dendrobium officinale polysaccharides (DOPs) are important active polysaccharides found in Dendrobium officinale, which is commonly used as a conventional food or herbal medicine and is well known in China. DOPs can influence the composition of the gut microbiota and the degradation capacity of these symbiotic bacteria, which in turn may determine the efficacy of dietary interventions. However, the necessary analysis of the relationship between DOPs and the gut microbiota is lacking. In this review, we summarize the extraction, structure, health benefits, and related mechanisms of DOPs, construct the DOPs-host axis, and propose that DOPs are potential prebiotics, mainly composed of 1,4-β-D-mannose, 1,4-β-D-glucose, and O-acetate groups, which induce an increase in the abundance of gut microbiota such as Lactobacillus, Bifidobacterium, Akkermansia, Bacteroides, and Prevotella. In addition, we found that when exposed to DOPs with different structural properties, the gut microbiota may exhibit different diversity and composition and provide health benefits, such as metabolism regulations, inflammation modulation, immunity moderation, and cancer intervention. This may contribute to facilitating the development of functional foods and health products to improve human health.
Collapse
Affiliation(s)
- Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Zhaoer Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Jiayu Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhengyi Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| |
Collapse
|
6
|
Yang W, Yang C, Du Y, Wang Q. Colon-Targeted Release of Turmeric Nonextractable Polyphenols and Their Anticolitis Potential via Gut Microbiota-Dependent Alleviation on Intestinal Barrier Dysfunction in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11627-11641. [PMID: 37470294 DOI: 10.1021/acs.jafc.3c00871] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Solid evidence has emerged supporting the role of nonextractable polyphenols (NEPs) and dietary fibers (DFs) as gut microbiota modulators. This study aims to elucidate gut microbiota-dependent release of turmeric NEPs and examine the possible anti-inflammatory mechanism in the dextran sulfate sodium-induced ulcerative colitis (UC) model. 1.5% DSS drinking water-induced C57BL/6J mice were fed a standard rodent chow supplemented with or without 8% extractable polyphenols (EPs), NEPs, or DFs for 37 days. The bound curcumin, demethoxycurcumin, and bisdemethoxycurcumin in NEPs were released up to 181.5 ± 10.6, 65.2 ± 6.0, and 69.5 ± 7.6 μg/mL by in vitro gut microbiota-simulated fermentation and released into the colon of NEP-supplemented mice by 5.7-, 11.0-, and 7.8-fold higher than pseudo germ-free mice, respectively (p < 0.05). NEPs also enhanced the colonic microbiota-dependent production of short-chain fatty acids in vitro and in vivo (p < 0.05). Interestingly, NEP feeding significantly improved the DSS-caused gut microbiota disorder, epithelial barrier damage, and inflammation of UC mice better than EPs or DFs (p < 0.05). Meanwhile, the pseudo germ-free mice supplemented with NEPs failed to ameliorate UC symptoms. These findings manifest that turmeric NEPs as macromolecular carriers exert the target delivery of polyphenols into the colon for regulating gut microbiota to restore the impaired gut barrier function for alleviation of inflammation.
Collapse
Affiliation(s)
- Weirong Yang
- Medical School, Xi'an Peihua University, Xi'an 710199, China
- The Faculty of Science, The University of Sydney, Sydney 2006, Australia
| | - Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yao Du
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qiaofeng Wang
- Medical School, Xi'an Peihua University, Xi'an 710199, China
| |
Collapse
|
7
|
Oskouei Z, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The effects of Dendrobium species on the metabolic syndrome: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:738-752. [PMID: 37396948 PMCID: PMC10311982 DOI: 10.22038/ijbms.2023.65997.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/01/2023] [Indexed: 07/04/2023]
Abstract
Metabolic syndrome (MetS) is known as a global health challenge with different types of health conditions such as hypertension, hyperglycemia, the increasing prevalence of obesity, and hyperlipidemia. Despite much recent scientific progress, the use of traditional herbal medicines with fewer side effects is increasing worldwide. Dendrobium, the second-largest orchid genus, has been used as a natural source of drugs for the treatment of MetS. The beneficial effects of Dendrobium, including anti-hypertension, anti-hyperglycemia, anti-obesity, and anti-hyperlipidemic against MetS have been shown in the scientific evidence. The anti-oxidant and lipid-lowering effects of Dendrobium modulate hyperlipidemia via reducing lipid accumulation and maintaining lipid metabolism. Restoring pancreatic beta cells and regulating the insulin signaling pathway are involved in its antidiabetic properties. The hypotensive effects contribute to increasing nitric oxide (NO) generation and inhibiting extracellular signal-regulated kinase (ERK) signaling. More research projects, especially clinical trials, are needed to investigate the safety, efficacy, and pharmacokinetics of Dendrobium in patients. This review article provides, for the first time, comprehensive information about the efficacy of different species of Dendrobium. The described species can be a source of medicines for the treatment of MetS, which are reported in various evidence.
Collapse
Affiliation(s)
- Zahra Oskouei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Xing W, Gao W, Lv X, Zhao Z, Mao G, Dong X, Zhang Z. The effects of supplementation of probiotics, prebiotics, or synbiotics on patients with non-alcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Front Nutr 2022; 9:1024678. [PMID: 36386939 PMCID: PMC9640999 DOI: 10.3389/fnut.2022.1024678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Research on the efficacy of probiotics, prebiotics, and synbiotics on NAFLD patients continues to be inconsistent. The purpose of this study is to evaluate the effectiveness of these microbial therapies on NAFLD. METHODS Eligible randomized-controlled trials reporting the effect of probiotics, prebiotics, or synbiotics in NAFLD were searched in PubMed, Web of Science, Embase, Google scholar, and CNKI databases from 2020 to Jul 2022. The changes in the outcomes were analyzed using standard mean difference (SMD) and 95% confidence intervals (CIs) with a random- or fixed-effects model to examine the effect of microbial therapies. Subgroup analysis, influence and publication bias analysis were also performed. The quality of the eligible studies was evaluated using the Cochrane Risk of Bias Tool. RESULTS Eleven studies met the inclusion criteria involving 741 individuals. Microbial therapies could improve liver steatosis, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-c), alanine aminotransferase (ALT), alkaline phosphatase (ALP), glutamyl transpeptidase (GGT), and homeostasis model assessment-insulin resistance (HOMAI-R) (all P < 0.05). But microbial therapies could not ameliorate body mass index (BMI), energy, carbohydrate, fat intake, fasting blood sugar, HbA1c, insulin, high-sensitivity C-reactive protein (hs-CRP), and hepatic fibrosis of patients with NAFLD. CONCLUSION Probiotics, prebiotics, and synbiotics supplementation can potentially improve liver enzymes, lipid profiles, and liver steatosis in patients with NAFLD.
Collapse
Affiliation(s)
- Wenmin Xing
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaoling Lv
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhenlei Zhao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaoyan Dong
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Zuyong Zhang
- The Third People’s Hospital of Hangzhou, Hangzhou, China
| |
Collapse
|
9
|
Long D, Mao C, Zhang X, Liu Y, Shangguan X, Zou M, Zhu Y, Wang X. Coronary heart disease and gut microbiota: A bibliometric and visual analysis from 2002 to 2022. Front Cardiovasc Med 2022; 9:949859. [PMID: 36158832 PMCID: PMC9493042 DOI: 10.3389/fcvm.2022.949859] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background Existing studies have indicated that gut microbiota is closely related to the occurrence and development of coronary heart disease(CHD). Gut microbiota and its metabolites may be important diagnostic markers for CHD in the future and are expected to become new targets for the prevention and treatment of CHD. However, the current studies exploring the link between CHD and gut microbiota are miscellaneous and poorly targeted, without bibliometric analysis available. Objective The purpose of this research was to perform a bibliometric and visual analysis of published papers on the relationship between CHD and gut microbiota. The study also sought to identify principal authors, institutions, and countries to analyze the research status and trends of gut microbiota research in the field of CHD. Methods The Web of Science Core Collection (WoSCC) database was searched for publications on CHD and gut microbiota between 2002 and 2022. CiteSpace 5.8. R1, VOSviewer 1.6.16, and Microsoft Excel 2019 software tools were utilized to perform this bibliometric analysis and visualization. Results There were 457 qualified publications found in total, with the annual number of publications increasing. The United States dominated in this field. Hazen, Stanley l was the author of the most papers. Cleveland Clinic published the most papers of any institution. The six main clusters’ specific characteristics were discovered through analysis of the co-occurrence of keywords: inflammation, diet, trimethylamine n-oxide, metabolism, cardiovascular disease, and myocardial infarction. Newly emerging research has focused predominantly on gut microbiota metabolites and recent strategies for intervention in coronary atherosclerosis. Conclusion These results provided a useful perspective on current research and future prospects for the research on the link between CHD and gut microbiota, which may help researchers to select suitable collaborators and facilitate their research to elucidate the underlying molecular mechanisms of CHD, including the causes, prevention, and treatment.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chenhan Mao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyue Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaxuan Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xueli Shangguan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Menglong Zou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Ying Zhu,
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Xindong Wang,
| |
Collapse
|