1
|
Becht JM, Kohlleppel H, Schins RPF, Kämpfer AAM. Effect of Butyrate on Food-Grade Titanium Dioxide Toxicity in Different Intestinal In Vitro Models. Chem Res Toxicol 2024; 37:1501-1514. [PMID: 39213652 PMCID: PMC11409378 DOI: 10.1021/acs.chemrestox.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Short-chain fatty acids (SCFA) are an important energy source for colonocytes and crucial messenger molecules both locally in the intestine and systemically. Butyrate, one of the most prominent and best-studied SCFA, was demonstrated to exert anti-inflammatory effects, improve barrier integrity, enhance mucus synthesis in the intestine, and promote cell differentiation of intestinal epithelial cells in vitro. While the physiological relevance is undisputed, it remains unclear if and to what extent butyrate can influence the effects of xenobiotics, such as food-grade titanium dioxide (E171, fgTiO2), in the intestine. TiO2 has been controversially discussed for its DNA-damaging potential and banned as a food additive within the European Union (EU) since 2022. First, we used enterocyte Caco-2 monocultures to test if butyrate affects the cytotoxicity and inflammatory potential of fgTiO2 in a pristine state or following pretreatment under simulated gastric and intestinal pH conditions. We then investigated pretreated fgTiO2 in intestinal triple cultures of Caco-2, HT29-MTX-E12, and THP-1 cells in homeostatic and inflamed-like state for cytotoxicity, barrier integrity, cytokine release as well as gene expression of mucins, oxidative stress markers, and DNA repair. In Caco-2 monocultures, butyrate had an ambivalent role: pretreated but not pristine fgTiO2 induced cytotoxicity in Caco-2 cells, which was not observed in the presence of butyrate. Conversely, fgTiO2 induced the release of interleukin 8 in the presence but not in the absence of butyrate. In the advanced in vitro models, butyrate did not affect the characteristics of the healthy or inflamed states and caused negligible effects in the investigated end points following fgTiO2 exposure. Taken together, the effects of fgTiO2 strongly depend on the applied testing approach. Our findings underline the importance of the experimental setup, including the choice of in vitro model and the physiological relevance of the exposure scenario, for the hazard testing of food-grade pigments like TiO2.
Collapse
Affiliation(s)
- Janine M Becht
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Hendrik Kohlleppel
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Roel P F Schins
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Angela A M Kämpfer
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| |
Collapse
|
2
|
El-Daly SM, Gouhar SA, Abdelrahman SS. Inflammation alters the expression pattern of drug transporters during Caco-2 cell stimulation and azoxymethane-induced colon tumorigenesis. J Biochem Mol Toxicol 2024; 38:e23815. [PMID: 39171650 DOI: 10.1002/jbt.23815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Drug transporters play a pivotal role in modulating drug disposition and are subject to alterations under inflammatory conditions. This study aimed to elucidate the intricate expression patterns of drug transporters during both acute and chronic inflammation, which are closely linked to malignant transformation. To investigate acute inflammation, we employed an in vitro model by subjecting Caco-2 cells to various inflammatory stimuli (IL-1β, TNF-α, or LPS) individually or in combination. The successful induction of inflammation was confirmed by robust increases in IL-6 and NO production. Notably, inflamed Caco-2 cells exhibited significantly diminished levels of ABCB1 and ABCG2, while the expression of ABCC2 was upregulated. For chronic inflammation induction in vivo, we employed the well-established AOM/DSS mouse model known for its association with colitis-driven tumorigenesis. Persistent inflammation was effectively monitored throughout the experiment via elevated IL-6 and NO levels. The sequential stages of tumorigenesis were confirmed through Ki-67 immunohistochemistry. Intriguingly, we observed gradual alterations in the expression patterns of the studied drug transporters during stepwise induction, with ABCB1, ABCG2, and ABCC1 showing downregulation and ABCC2 exhibiting upregulation. Immunohistochemistry further revealed dynamic changes in the expression of ABCB1 and ABCC2 during the induction cycles, closely paralleling the gradual increase in Ki-67 expression observed during the development of precancerous lesions. Collectively, our findings underscore the significant impact of inflammation on drug transporter expression, potentially influencing the process of malignant transformation of the colon.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Shaimaa A Gouhar
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Hudcovic T, Petr Hermanova P, Kozakova H, Benada O, Kofronova O, Schwarzer M, Srutkova D. Priority order of neonatal colonization by a probiotic or pathogenic Escherichia coli strain dictates the host response to experimental colitis. Front Microbiol 2024; 15:1393732. [PMID: 39206364 PMCID: PMC11349737 DOI: 10.3389/fmicb.2024.1393732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming prevalence of inflammatory bowel disease (IBD) in early childhood is associated with imbalances in the microbiome, the immune response, and environmental factors. Some pathogenic Escherichia coli (E. coli) strains have been found in IBD patients, where they may influence disease progression. Therefore, the discovery of new harmful bacterial strains that have the potential to drive the inflammatory response is of great importance. In this study, we compared the immunomodulatory properties of two E. coli strains of serotype O6: the probiotic E. coli Nissle 1917 and the uropathogenic E. coli O6:K13:H1. Using the epithelial Caco-2 cell line, we investigated the different abilities of the strains to adhere to and invade epithelial cells. We confirmed the potential of E. coli Nissle 1917 to modulate the Th1 immune response in a specific manner in an in vitro setting by stimulating mouse bone marrow-derived dendritic cells (BM-DCs). In gnotobiotic in vivo experiments, we demonstrated that neonatal colonization with E. coli Nissle 1917 achieves a stable high concentration in the intestine and protects mice from the progressive effect of E. coli O6:K13:H1 in developing ulcerative colitis in an experimental model. In contrast, a single-dose treatment with E. coli Nissle 1917 is ineffective in achieving such high concentrations and does not protect against DSS-induced ulcerative colitis in mice neonatally colonized with pathobiont E. coli O6:K13:H1. Despite the stable coexistence of both E. coli strains in the intestinal environment of the mice, we demonstrated a beneficial competitive interaction between the early colonizing E. coli Nissle 1917 and the late-arriving strain O6:K13:H1, suggesting its anti-inflammatory potential for the host. This study highlights the importance of the sequence of bacterial colonization, which influences the development of the immune response in the host gut and potentially impacts future quality of life.
Collapse
Affiliation(s)
- Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Petra Petr Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| |
Collapse
|
4
|
Li Y, Xu Y, Hu X, Li C, Wei L, Wang X, Jin Y, Hu Z. Water-Soluble Se-Containing Proteins from Chicken Alleviate DSS-Induced Ulcerative Colitis in Mice via Inhibiting TLR4/MyD88 Pathway and Protecting the Goblet Cell Pathway. Biol Trace Elem Res 2024; 202:3767-3780. [PMID: 37950138 DOI: 10.1007/s12011-023-03952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The influence of water-soluble selenium-containing proteins (WSSeP) in chicken on ulcerative colitis (UC) is not known. This work aims to investigate the effect of two WSSeP including h-Se with 1.78 μg Se/g and l-Se with 1.04 μg Se/g on mice UC induced by dextran sodium sulfate (DSS) versus 5-aminosalicylic acid (5-ASA). Seventy C57BL/6 mice were randomly divided into seven groups: groups 1 and 7 were given normal saline. Group 2 to group 4 were administrated orally 500, 1500, and 3000 mg/kg/day h-Se, respectively. Group 5 was given 1500 mg/kg/day l-Se as the control of group 3. From day 14 to day 21, groups 2 to 7 were fed with 3% DSS. Synchronously, group 6 was fed with 150 mg/kg/day 5-ASA. On day 21, the disease activity index, colon length, the histopathological changes, the expressions of claudin-1, occludin, ZO-1, TLR4, and MyD88 in colons, the levels of inflammatory cytokines (IFN-γ, IL-1β, IL-6, TNF-α), and antioxidant markers (LPS, GSH-Px, SOD, MDA) in serum were determined. WSSeP can effectively improve the damages of DSS to the colon, thymus, and spleen, which present protein and Se dose-dependent. 1.50 g h-Se dose can significantly promote the expression levels of claudin-1, occludin, and ZO-1, to surround crypt gland and goblet and epithelial cells and inhibit the attack of DSS, suppress TLR4/MyD88 pathway, decrease the levels of IL-1β, IL-6, TNF-α, IFN-γ, LPS, and MDA, and increase the activities of GSH-Px and SOD, which are better than those of 5-ASA. Therefore, WSSeP would be a natural and potential anti-inflammatory agent for UC.
Collapse
Affiliation(s)
- Yuancheng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Yanlong Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Xin Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Chenxi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Lulu Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Xinlei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Yi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Bui G, Torres-Fuentes C, Pusceddu MM, Gareau MG, Marco ML. Milk and Lacticaseibacillus paracasei BL23 effects on intestinal responses in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G659-G675. [PMID: 38591132 PMCID: PMC11376982 DOI: 10.1152/ajpgi.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.
Collapse
Affiliation(s)
- Glory Bui
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| | - Cristina Torres-Fuentes
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| |
Collapse
|
6
|
Vagnerová K, Hudcovic T, Vodička M, Ergang P, Klusoňová P, Petr Hermanová P, Šrůtková D, Pácha J. The effect of oral butyrate on colonic short-chain fatty acid transporters and receptors depends on microbial status. Front Pharmacol 2024; 15:1341333. [PMID: 38595917 PMCID: PMC11002167 DOI: 10.3389/fphar.2024.1341333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Butyrate, a metabolite produced by gut bacteria, has demonstrated beneficial effects in the colon and has been used to treat inflammatory bowel diseases. However, the mechanism by which butyrate operates remains incompletely understood. Given that oral butyrate can exert either a direct impact on the gut mucosa or an indirect influence through its interaction with the gut microbiome, this study aimed to investigate three key aspects: (1) whether oral intake of butyrate modulates the expression of genes encoding short-chain fatty acid (SCFA) transporters (Slc16a1, Slc16a3, Slc16a4, Slc5a8, Abcg2) and receptors (Hcar2, Ffar2, Ffar3, Olfr78, Olfr558) in the colon, (2) the potential involvement of gut microbiota in this modulation, and (3) the impact of oral butyrate on the expression of colonic SCFA transporters and receptors during colonic inflammation. Specific pathogen-free (SPF) and germ-free (GF) mice with or without DSS-induced inflammation were provided with either water or a 0.5% sodium butyrate solution. The findings revealed that butyrate decreased the expression of Slc16a1, Slc5a8, and Hcar2 in SPF but not in GF mice, while it increased the expression of Slc16a3 in GF and the efflux pump Abcg2 in both GF and SPF animals. Moreover, the presence of microbiota was associated with the upregulation of Hcar2, Ffar2, and Ffar3 expression and the downregulation of Slc16a3. Interestingly, the challenge with DSS did not alter the expression of SCFA transporters, regardless of the presence or absence of microbiota, and the effect of butyrate on the transporter expression in SPF mice remained unaffected by DSS. The expression of SCFA receptors was only partially affected by DSS. Our results indicate that (1) consuming a relatively low concentration of butyrate can influence the expression of colonic SCFA transporters and receptors, with their expression being modulated by the gut microbiota, (2) the effect of butyrate does not appear to result from direct substrate-induced regulation but rather reflects an indirect effect associated with the gut microbiome, and (3) acute colon inflammation does not lead to significant changes in the transcriptional regulation of most SCFA transporters and receptors, with the effect of butyrate in the inflamed colon remaining intact.
Collapse
Affiliation(s)
- Karla Vagnerová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology, Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Petra Klusoňová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | | | - Dagmar Šrůtková
- Institute of Microbiology, Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
7
|
Lai C, Chen L, Zhong X, Tang Z, Zhang B, Luo Y, Li C, Jin M, Chen X, Li J, Shi Y, Sun Y, Guo L. Long-term effects on liver metabolism induced by ceftriaxone sodium pretreatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122238. [PMID: 37506808 DOI: 10.1016/j.envpol.2023.122238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Ceftriaxone is an emerging contaminant due to its potential harm, while its effects on liver are still need to be clarified. In this study, we first pretreated the 8-week-old C57BL/6J mice with high dose ceftriaxone sodium (Cef, 400 mg/mL, 0.2 mL per dose) for 8 days to prepare a gut dysbiosis model, then treated with normal feed for a two-month recovery period, and applied non-targeted metabolomics (including lipidomics) to investigate the variations of fecal and liver metabolome, and coupled with targeted determination of fecal short-chain fatty acids (SCFAs) and bile acids (BAs). Lastly, the correlations and mediation analysis between the liver metabolism and gut metabolism/microbes were carried, and the potential mechanisms of the mal-effects on gut-liver axis induced by Cef pretreatment were accordingly discussed. Compared to the control group, Cef pretreatment reduced the rate of weight gain and hepatosomatic index, induced bile duct epithelial cells proliferated around the central vein and appearance of binucleated hepatocytes, decreased the ratio of total branching chains amino acids (BCAAs) to total aromatic amino acids (AAAs) in liver metabolome. In fecal metabolome, the total fecal SCFAs and BAs did not change significantly while butyric acid decreased and the primary BAs increased after Cef pretreatment. Correlation and mediation analysis revealed one potential mechanism that Cef may first change the intestinal microbiota (such as destroying its normal structure, reducing its abundance and the stability of the microbial network or certain microbe abundance like Alistipes), and then change the intestinal metabolism (such as acetate, caproate, propionate), leading to liver metabolic disorder (such as spermidine, inosine, cinnamaldehyde). This study proved the possibility of Cef-induced liver damage, displayed the overall metabolic profile of the liver following Cef pretreatment and provided a theoretical framework for further research into the mechanism of Cef-induced liver damage.
Collapse
Affiliation(s)
- Chengze Lai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zeli Tang
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guang Dong Province, China
| | - Mengcheng Jin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xu Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinglin Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yinying Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Lianxian Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
8
|
He Y, Ling Y, Zhang Z, Mertens RT, Cao Q, Xu X, Guo K, Shi Q, Zhang X, Huo L, Wang K, Guo H, Shen W, Shen M, Feng W, Xiao P. Butyrate reverses ferroptosis resistance in colorectal cancer by inducing c-Fos-dependent xCT suppression. Redox Biol 2023; 65:102822. [PMID: 37494767 PMCID: PMC10388208 DOI: 10.1016/j.redox.2023.102822] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Ferroptosis has emerged to be a promising approach in cancer therapies; however, colorectal cancer (CRC) is relatively insensitive to ferroptosis. Exactly how the gut microenvironment impacts the ferroptotic sensitivity of CRC remains unknown. Herein, by performing metabolomics, we discovered that butyrate concentrations were significantly decreased in CRC patients. Butyrate supplementation sensitized CRC mice to ferroptosis induction, showing great in vivo translatability. Particularly, butyrate treatment reduced ferroptotic resistance of cancer stem cells. Mechanistically, butyrate inhibited xCT expression and xCT-dependent glutathione synthesis. Moreover, we identified c-Fos as a novel xCT suppressor, and further elucidated that butyrate induced c-Fos expression via disrupting class I HDAC activity. In CRC patients, butyrate negatively correlated with tumor xCT expression and positively correlated with c-Fos expression. Finally, butyrate was found to boost the pro-ferroptotic function of oxaliplatin (OXA). Immunohistochemistry data showed that OXA non-responders exhibited higher xCT expression compared to OXA responders. Hence, butyrate supplementation is a promising approach to break the ferroptosis resistance in CRC.
Collapse
Affiliation(s)
- Ying He
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Yuhang Ling
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | | | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xutao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ke Guo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qian Shi
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Xilin Zhang
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Lixia Huo
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Kan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Huihui Guo
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Weiyun Shen
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Manlu Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wenming Feng
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China.
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Bhatt S, Gupta M. Dietary fiber from fruit waste as a potential source of metabolites in maintenance of gut milieu during ulcerative colitis: A comprehensive review. Food Res Int 2023; 164:112329. [PMID: 36737922 DOI: 10.1016/j.foodres.2022.112329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of inflammatory bowel disease, particularly ulcerative colitis (UC), has increased dramatically in the past few years owing to a changed lifestyle. Despite various therapeutic treatments, management of the disease is still an issue due to several limitations, including cost and adverse reactions. In this regard, researchers and consumers are inclined towards natural herbal medicines and prophylactic agents. Of these, dietary fiber (DF) (polysaccharides) has become an important topic of interest owing to various putative health attributes, particularly for diseases associated with the large intestine, such as UC. To fulfil industrial and scientific demands of dietary fibers, waste utilization can prove advantageous. Here, the present review highlights recent comprehensive advances in dietary fiber from waste resources in improving UC. Additionally, their role in the gut-associated microbiome, pathway for metabolites synthesis, inflammation, and its mediators. Moreover, here we also discussed short-chain fatty acids (SCFAs) transport and epithelial barrier function along with the mechanism of inflammation regulation. Collectively, it depicts dietary fiber from waste resources that could regulate various cellular processes and molecular mechanisms involved in perpetuating UC and can be used as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Shriya Bhatt
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh Gupta
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Effect of DSS-Induced Ulcerative Colitis and Butyrate on the Cytochrome P450 2A5: Contribution of the Microbiome. Int J Mol Sci 2022; 23:ijms231911627. [PMID: 36232929 PMCID: PMC9569822 DOI: 10.3390/ijms231911627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Several studies have indicated the beneficial anti-inflammatory effect of butyrate in inflammatory bowel disease (IBD) therapy implying attempts to increase butyrate production in the gut through orally administered dietary supplementation. Through the gut-liver axis, however, butyrate may reach directly the liver and influence the drug-metabolizing ability of hepatic enzymes, and, indirectly, also the outcome of applied pharmacotherapy. The focus of our study was on the liver microsomal cytochrome P450 (CYP) 2A5, which is a mouse orthologue of human CYP2A6 responsible for metabolism of metronidazole, an antibiotic used to treat IBD. Our findings revealed that specific pathogen-free (SPF) and germ-free (GF) mice with dextran sulfate sodium (DSS)-induced colitis varied markedly in enzyme activity of CYP2A and responded differently to butyrate pre-treatment. A significant decrease (to 50%) of the CYP2A activity was observed in SPF mice with colitis; however, an administration of butyrate prior to DSS reversed this inhibition effect. This phenomenon was not observed in GF mice. The results highlight an important role of gut microbiota in the regulation of CYP2A under inflammatory conditions. Due to the role of CYP2A in metronidazole metabolism, this phenomenon may have an impact on the IBD therapy. Butyrate administration, hence, brings promising therapeutic potential for improving symptoms of gut inflammation; however, possible interactions with drug metabolism need to be further studied.
Collapse
|