1
|
Roşian ŞH, Boarescu I, Boarescu PM. Antioxidant and Anti-Inflammatory Effects of Bioactive Compounds in Atherosclerosis. Int J Mol Sci 2025; 26:1379. [PMID: 39941147 PMCID: PMC11818840 DOI: 10.3390/ijms26031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by the accumulation of lipids and immune cells within arterial walls, remains a leading cause of cardiovascular morbidity and mortality worldwide. Oxidative stress and inflammation are central to its pathogenesis, driving endothelial dysfunction, foam cell formation, and plaque instability. Emerging evidence highlights the potential of bioactive compounds with antioxidant and anti-inflammatory properties to mitigate these processes and promote vascular health. This review explores the mechanisms through which bioactive compounds-such as polyphenols, carotenoids, flavonoids, omega-3 fatty acids, coenzyme Q10, and other natural compounds-modulate oxidative stress and inflammation in atherosclerosis. It examines their effects on key molecular pathways, including the inhibition of reactive oxygen species (ROS) production, suppression of nuclear factor-κB (NF-κB), and modulation of inflammatory cytokines. By integrating current knowledge, this review underscores the therapeutic potential of dietary and supplemental bioactive compounds as complementary strategies for managing atherosclerosis, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Ştefan Horia Roşian
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, 400001 Cluj-Napoca, Romania;
- Cardiology Department of Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400001 Cluj-Napoca, Romania
| | - Ioana Boarescu
- Neurology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
| | - Paul-Mihai Boarescu
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
- Cardiology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
| |
Collapse
|
2
|
Sikder MM, Li X, Akumwami S, Labony SA. Reactive Oxygen Species: Role in Pathophysiology, and Mechanism of Endogenous and Dietary Antioxidants during Oxidative Stress. Chonnam Med J 2025; 61:32-45. [PMID: 39958267 PMCID: PMC11821989 DOI: 10.4068/cmj.2025.61.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025] Open
Abstract
Redox imbalances, which result from excessive production of reactive oxygen species (ROS) or malfunctioning of the antioxidant system, are the source of oxidative stress. ROS affects all structural and functional components of cells, either directly or indirectly. In addition to causing genetic abnormalities, excessive ROS also oxidatively modifies proteins by protein oxidation and peroxidation and alters lipid structure via advanced lipoxidation, decreasing function and promoting damage or cell death. On the other hand, low levels of ROS constitute important redox-signaling molecules in various pathways that maintain cellular homeostasis and regulate key transcription factors. As a result, ROS can affect various cellular processes, such as apoptosis, migration, differentiation, and proliferation. ROS can act as signaling molecules, controlling various normal physiological activities at the cellular level. Furthermore, there is an increasing body of evidence indicating the role of ROS in various clinical conditions. In this review, we will summarize the role of ROS in physiological and pathological processes and antioxidant action during oxidative stress.
Collapse
Affiliation(s)
- Mohammad Mamun Sikder
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Xiaodong Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Steeve Akumwami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Clinical Sciences, Anesthesiology, Public Health National Institute, Bujumbura, Burundi
| | - Sanzida Akter Labony
- Bachelor of Medicine and Bachelor of Surgery (MBBS), Rangpur Medical College, Rangpur, Bangladesh
| |
Collapse
|
3
|
Xu Q, Ren L, Ren N, Yang Y, Pan J, Zheng Y, Wang G. Ferroptosis: a new promising target for hepatocellular carcinoma therapy. Mol Cell Biochem 2024; 479:2615-2636. [PMID: 38051404 DOI: 10.1007/s11010-023-04893-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixed most common malignant tumor in the world. The study for HCC is mired in the predicament confronted with the difficulty of early diagnosis and high drug resistance, the survival rate of patients with HCC being low. Ferroptosis, an iron-dependent cell death, has been discovered in recent years as a cell death means with tremendous potential to fight against cancer. The in-depth researches for iron metabolism, lipid peroxidation and dysregulation of antioxidant defense have brought about tangible progress in the firmament of ferroptosis with more and more results showing close connections between ferroptosis and HCC. The potential role of ferroptosis has been widely used in chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of various new drugs significantly improving the prognosis of patients. Based on the characteristics and mechanisms of ferroptosis, this article further focuses on the main signaling pathways and promising treatments of HCC, envisioning that existing problems in regard with ferroptosis and HCC could be grappled with in the foreseeable future.
Collapse
Affiliation(s)
- Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yu Zheng
- Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Zhang F, Yan Y, Cai Y, Liang Q, Liu Y, Peng B, Xu Z, Liu W. Current insights into the functional roles of ferroptosis in musculoskeletal diseases and therapeutic implications. Front Cell Dev Biol 2023; 11:1112751. [PMID: 36819098 PMCID: PMC9936329 DOI: 10.3389/fcell.2023.1112751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis is a novel type of cell death associated with iron accumulation and excessive lipid peroxidation. Elucidating the underlying molecular mechanisms of ferroptosis is intensively related to the development and treatment of multiple diseases, including musculoskeletal disorders. Moreover, in vitro and in vivo studies have shown the importance of oxidative stress in musculoskeletal conditions such as osteoporosis, osteoarthritis, rheumatoid arthritis, and osteosarcoma. Ferroptosis-derived clinical management of musculoskeletal diseases offers tremendous and attractive opportunities. Notably, ferroptosis agonists have been proven to enhance the sensitivity of osteosarcoma cells to conventional therapeutic strategies. In this review, we have mainly focused on the implications of ferroptosis regulation in the pathophysiology and therapeutic response of musculoskeletal disorders. Understanding roles of ferroptosis for controlling musculoskeletal diseases might provide directions for ferroptosis-driven therapies, which could be promising for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, China
| |
Collapse
|
5
|
Coenzyme Q10 Attenuates Human Platelet Aggregation Induced by SARS-CoV-2 Spike Protein via Reducing Oxidative Stress In Vitro. Int J Mol Sci 2022; 23:ijms232012345. [PMID: 36293203 PMCID: PMC9604356 DOI: 10.3390/ijms232012345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Platelet hyperreactivity and oxidative stress are the important causes of thrombotic disorders in patients with COVID-19. Oxidative stress, induced by the excessive generation of reactive oxygen species (ROS), could increase platelet function and the risk of thrombus formation. Coenzyme Q10 (CoQ10), exhibits strong antioxidative activity and anti-platelet effect. However, the effects and mechanisms of CoQ10 on attenuating platelet aggregation induced by spike protein have never been studied. This study aims to investigate whether the SARS-CoV-2 spike protein potentiates human platelet function via ROS signaling and the protective effect of CoQ10 in vitro. Using a series of platelet function assays, we found that spike protein potentiated platelet aggregation and oxidative stress, such as ROS level, mitochondrial membrane potential depolarization, and lipid damage level (MDA and 8-iso-PGF2α) in vitro. Furthermore, CoQ10 attenuated platelet aggregation induced by spike protein. As an anti-platelet mechanism, we showed that CoQ10 significantly decreased the excess production of ROS induced by spike protein. Our findings show that the protective effect of CoQ10 on spike protein-potentiated platelet aggregation is probably associated with its strong antioxidative ability.
Collapse
|