1
|
Jia H, Chen X, Liang Z, Liang R, Wu J, Hu Y, Cui W, Zhang X. Senegenin regulates the mechanism of insomnia through the Keap1/Nrf2/PINK1/Parkin pathway mediated by GAD67. J Sleep Res 2025; 34:e14354. [PMID: 39380353 PMCID: PMC12069745 DOI: 10.1111/jsr.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
GAD67 impacts insomnia as a key enzyme catalysing the conversion of glutamate (Glu) to gamma-aminobutyric acid (GABA). Senegenin enhances neuroprotection and is used widely to treat insomnia and other neurological diseases. This study aimed to investigate how senegenin regulates insomnia through a GAD67-mediated signalling pathway. We measured GAD67 expression levels in insomnia patients and evaluated the expression levels of GAD67 and Keap1/Nrf2/Parkin/PINK1-related cytokines following GAD67 lentiviral transfection in PC12 cells and in rat models. We also assessed cellular reactive oxygen species (ROS) and mitochondrial membrane potential levels. Additionally, EEG/EMG was used to analyse the sleep phases of rats and to assess memory and exploration functions. Pathological changes and the expression of GAD67 and sleep-related proteins in the hippocampus were examined. The results showed that GAD67 expression was increased in insomnia patients, ROS levels were elevated, and the mitochondrial membrane potential was decreased in the GAD67-KD group. Insomnia rats exhibited changes in sleep rhythm, learning, and exploration dysfunction, pathological changes in the CA1 region of the hippocampus, and differential expression of GAD67 and sleep-related factors. Inhibitory neurofactor expression levels were decreased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Conversely, excitatory factor expression levels were increased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Senegenin intervention modulated cytokine expression levels. In conclusion, GAD67 negatively regulates insomnia, and senegenin can regulate insomnia by mediating the expression of cytokines in the GAD67-regulated Keap1/Nrf2/Parkin/PINK1 pathway.
Collapse
Affiliation(s)
- Honglin Jia
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
| | - Xu Chen
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
- Xinjiang Medical UniversityUrumqiChina
| | | | | | - Jinhong Wu
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
| | - Yanling Hu
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
| | - Wenjun Cui
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
| | - Xingping Zhang
- Xinjiang Medical University Fourth Clinical Medical CollegeUrumqiChina
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical UniversityUrumqiChina
| |
Collapse
|
2
|
Yan XD, Yang Y, Zhang WT, Kong QQ, Zheng XT, Li LS, Yu Q. Senegenin ameliorates diabetic encephalopathy via promoting mitophagy and repressing NLRP3 inflammasome activation. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06796-w. [PMID: 40281338 DOI: 10.1007/s00213-025-06796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
RATIONALE Diabetic encephalopathy (DE) remains a severe complication of diabetes in central nervous system with limited effective therapy. OBJECTIVES This study investigated the beneficial effect of senegenin on DE and its possible mechanisms. METHODS Type 2 diabetes mellitus mouse model and high-glucose (HG)-stimulated PC-12 cells were used as the in vivo and in vitro DE models. Learning and memory ability was evaluated by MWM test. Pathological changes in the brain tissues were determined by HE staining. Cell viability was detected by CCK-8. Mitochondrial membrane potential was measured by JC-1 probe. Target protein levels were assessed by Western blotting. Nucleotide-binding domain-like receptor protein 3 (NLRP3) expression was observed by immunofluorescent staining. RESULTS Cognitive impairment and obvious pathological changes were found in DE mice, which were effectively attenuated by senegenin treatment. In addition, senegenin induced mitophagy and maintained homeostasis of mitochondrial dynamics to relieve mitochondrial dysfunction. Moreover, NLRP3 inflammation activation induced by DE was inhibited by senegenin. Finally, inhibition of mitophagy counteracted senegenin-mediated inactivation of NLRP3 inflammation and neuroprotection. CONCLUSIONS Senegenin relieved diabetic encephalopathy via inducing mitophagy to inactivate NLRP3 inflammasome. Senegenin might be an effective therapy for treating DE.
Collapse
Affiliation(s)
- Xiao-Dan Yan
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Yu Yang
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China
| | - Wan-Ting Zhang
- Functional Nano & Soft Materials Laboratory, Soochow University, Suzhou, 215127, Jiangsu Province, People's Republic of China
| | - Qing-Quan Kong
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China
| | - Xi-Tong Zheng
- Department of Medical and Health Industry, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China
| | - Lin-Sen Li
- Graduate School, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China.
| | - Qing Yu
- Department of Medical and Health Industry, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
Rojas A, González I, Morales MA. Natural products and cancer: The urgent need to bridge the gap between preclinical and clinical research. World J Gastrointest Oncol 2025; 17:100484. [PMID: 40235887 PMCID: PMC11995318 DOI: 10.4251/wjgo.v17.i4.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Any new report on the anticancer properties of natural products always awakens new satisfaction and hope about the role of the international scientific community in its continuous contributions to human health, particularly when those reports contribute to both the understanding and therapeutics of cancer. For many decades, natural products have been pivotal in drug discovery programs because they offer a diverse array of anticancer therapeutic possibilities. Recently, two manuscripts published in the World Journal of Gastrointestinal Oncology added new data to the already extensive body of anticancer preclinical evidence for resveratrol and senegenin, two compounds widely present in herbal preparations used in traditional Chinese medicine. The first one, with comprehensive and recognized anticancer properties, and the second one, shows a compelling body of evidence supporting its neuroprotective effects, but with emerging anticancer activities. Natural products have become key elements in the expanding and dynamic field of anticancer drug discovery. However, urgent and collective efforts are still needed to bridge the gap between preclinical and clinical research and thus bring new anticancer therapeutic breakthroughs.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
4
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
5
|
Yang S, Liu S, Dai Z. Tenuigenin inhibits osteosarcoma growth via CIP2A/PP2A/NF-κB axis. Cancer Chemother Pharmacol 2024; 95:15. [PMID: 39739023 DOI: 10.1007/s00280-024-04733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Polygala tenuifolia and its active components have been revealed to possess anti-tumor activities. However, the role of Tenuigenin (TEN), a bioactive ingredient from Polygala tenuifolia, in tumors such as osteosarcoma (OS) remains unclear. The present research intended to explore the efficacy and underlying mechanism of TEN on OS. METHODS OS cells were administrated with different concentrations of TEN. Cell viability, proliferation, invasion, and migration were assessed with CCK-8 assay, colony formation assay, transwell assay, and wound healing assay, respectively. Protein and mRNA levels were determined with western blot and qRT-PCR, while protein phosphatase 2A (PP2A) activity was tested with PP2A phosphatase assay kit. The interaction between PP2A and cancerous inhibitor of protein phosphatase 2A (CIP2A) or nuclear factor kappaB (NF-κB) signaling was detected using co-immunoprecipitation. p-p65 expression in the nucleus was determined with immunofluorescence. The efficacy of TEN in vivo was also explored in a xenograft tumor model. Immunohistochemistry was performed to detect CIP2A and Ki67 in mice. RESULTS TEN treatment or CIP2A depletion repressed cell viability, proliferation, invasion, and migration in OS cells. Additionally, TEN reduced CIP2A, increased PP2A activity, and inactivated NF-κB signaling. PP2A directly interacted with CIP2A or NF-κB signaling, and PP2A inhibition reversed CIP2A knockdown-induced repression of NF-κB signaling. CIP2A overexpression overturned the efficacy of TEN, which was reversed by NF-κB inhibition. TEN decreased CIP2A, elevated PP2A activity, inactivated NF-κB signaling, and inhibited tumor growth in vivo, which was antagonized by CIP2A overexpression. CONCLUSION TEN suppressed OS growth via CIP2A/PP2A/NF-κB axis, indicating that it would be a novel drug for treating OS.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Orthopedics & Soft Tissue, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Shasha Liu
- Department of Comprehensive Bone and Joint Rehabilitation, Hunan Provincial Rehabilitation Hospital, Changsha, 410007, Hunan Province, People's Republic of China
| | - Zixun Dai
- Department of Orthopedics & Soft Tissue, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
6
|
Zhang X, Wang LQ, Liu ZY. Senegenin suppresses hepatocellular carcinoma by regulating O-GlcNAcylation. World J Gastrointest Oncol 2024; 16:3994-4005. [PMID: 39350979 PMCID: PMC11438784 DOI: 10.4251/wjgo.v16.i9.3994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Based on current knowledge, hepatocellular carcinoma (HCC) is a condition with numerous etiologies and risk factors. However, the pathogenesis of HCC remains unclear. AIM To investigate the roles of senegenin and O-GlcNAcylation in the growth and metastasis of HCC. METHODS The levels of O-linked N-acetylglucosamine transferase (OGT) and O-GlcNAcylation in HCC cells and tissues were detected using western blot analysis. The effects of senegenin and O-GlcNAcylation on the proliferation of HCC cells were investigated in vitro using cell counting kit-8 and clonogenic assays. The potential effects of senegenin and O-GlcNAcylation on HCC metastasis were examined using the transwell migration assay. O-GlcNAcylation levels were altered via drug treatment and lentiviral infection, and western blot analysis was used to detect proteins involved in various pathways. RESULTS Western blot analysis revealed that OGT and O-GlcNAcylation levels were significantly elevated in HCC tissues and cells. O-GlcNAcylation levels in HCC cells were significantly altered by drug treatment and lentiviral infection. An increase in the glycosylation level was linked to enhanced proliferation, invasiveness, clonogenicity, and metastatic potential of cancer cells. O-GlcNAcylation induced by senegenin was found to slow the proliferation and migration of HCC cells. The levels of proteins involved in nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, which are associated with endoplasmic reticulum stress, were altered. CONCLUSION Senegenin lowers O-GlcNAcylation levels, decreases OGT expression, and inhibits cancer cell growth and metastasis by regulating proteins involved in NF-κB and JNK pathways.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Traditional Chinese Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Li-Qiong Wang
- Department of Hepatology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhi-Yong Liu
- Department of Traditional Chinese Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| |
Collapse
|
7
|
Qiang RR, Xiang Y, Zhang L, Bai XY, Zhang D, Li YJ, Yang YL, Liu XL. Ferroptosis: A new strategy for targeting Alzheimer's disease. Neurochem Int 2024; 178:105773. [PMID: 38789042 DOI: 10.1016/j.neuint.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a complex pathogenesis, which involves the formation of amyloid plaques and neurofibrillary tangles. Many recent studies have revealed a close association between ferroptosis and the pathogenesis of AD. Factors such as ferroptosis-associated iron overload, lipid peroxidation, disturbances in redox homeostasis, and accumulation of reactive oxygen species have been found to contribute to the pathological progression of AD. In this review, we explore the mechanisms underlying ferroptosis, describe the link between ferroptosis and AD, and examine the reported efficacy of ferroptosis inhibitors in treating AD. Finally, we discuss the potential challenges to ferroptosis inhibitors use in the clinic, enabling their faster use in clinical treatment.
Collapse
Affiliation(s)
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Jing Li
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
8
|
Zeng Q, Luo Y, Sang X, Liao M, Wen B, Hu Z, Sun M, Luo Z, Huang X, Liu W, Tang S. Senegenin Attenuates Pulmonary Fibrosis by Inhibiting Oxidative-Stress-Induced Epithelial Cell Senescence through Activation of the Sirt1/Pgc-1α Signaling Pathway. Antioxidants (Basel) 2024; 13:675. [PMID: 38929114 PMCID: PMC11200506 DOI: 10.3390/antiox13060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal interstitial lung disease for which effective drug therapies are lacking. Senegenin, an effective active compound from the traditional Chinese herb Polygala tenuifolia Willd, has been shown to have a wide range of pharmacological effects. In this study, we investigated the therapeutic effects of senegenin on pulmonary fibrosis and their associated mechanisms of action. We found that senegenin inhibited the senescence of epithelial cells and thus exerted anti-pulmonary-fibrosis effects by inhibiting oxidative stress. In addition, we found that senegenin promoted the expression of Sirt1 and Pgc-1α and that the antioxidative and antisenescent effects of senegenin were suppressed by specific silencing of the Sirt1 and Pgc-1α genes, respectively. Moreover, the senegenin-induced effects of antioxidation, antisenescence of epithelial cells, and antifibrosis were inhibited by treatment with Sirt1 inhibitors in vivo. Thus, the Sirt1/Pgc-1α pathway exerts its antifibrotic effect on lung fibrosis by mediating the antioxidative and antisenescent effects of senegenin.
Collapse
Affiliation(s)
- Qian Zeng
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Yuyang Luo
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Xiaoxue Sang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Minlin Liao
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Binbin Wen
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Zhengang Hu
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Z.H.); (Z.L.)
| | - Mei Sun
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Ziqiang Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Z.H.); (Z.L.)
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| |
Collapse
|
9
|
Xu Y, Xin J, Sun Y, Wang X, Sun L, Zhao F, Niu C, Liu S. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment. Pharmaceuticals (Basel) 2024; 17:472. [PMID: 38675431 PMCID: PMC11054595 DOI: 10.3390/ph17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by widespread lung dysfunction, is associated with significant morbidity and mortality due to the lack of effective pharmacological treatments available clinically. Small-molecule compounds derived from natural products represent an innovative source and have demonstrated therapeutic potential against sepsis-induced ALI. These natural small molecules may provide a promising alternative treatment option for sepsis-induced ALI. This review aims to summarize the pathogenesis of sepsis and potential therapeutic targets. It assembles critical updates (from 2014 to 2024) on natural small molecules with therapeutic potential against sepsis-induced ALI, detailing their sources, structures, effects, and mechanisms of action.
Collapse
Affiliation(s)
- Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| |
Collapse
|
10
|
Chen L, Jiang L, Shi X, Yang J, Wang R, Li W. Constituents, pharmacological activities, pharmacokinetic studies, clinical applications, and safety profile on the classical prescription Kaixinsan. Front Pharmacol 2024; 15:1338024. [PMID: 38362144 PMCID: PMC10867185 DOI: 10.3389/fphar.2024.1338024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Kaixinsan (KXS) is a noteworthy classical prescription, which consists of four Chinese medicinal herbs, namely Polygalae Radix, Ginseng Radix et Rhizoma, Poria, and Acori Tatarinowii Rhizoma. KXS was initially documented in the Chinese ancient book Beiji Qianjin Yaofang written by Sun Simiao of the Tang Dynasty in 652 A.D. As a traditional Chinese medicine (TCM) prescription, it functions to nourish the heart and replenish Qi, calm the heart tranquilize the mind, and excrete dampness. Originally used to treat amnesia, it is now also effective in memory decline and applied to depression. Although there remains an abundance of literature investigating KXS from multiple aspects, few reviews summarize the features and research, which impedes better exploration and exploitation of KXS. This article intends to comprehensively analyze and summarize up-to-date information concerning the chemical constituents, pharmacology, pharmacokinetics, clinical applications, and safety of KXS based on the scientific literature, as well as to examine possible scientific gaps in current research and tackle issues in the next step. The chemical constituents of KXS primarily consist of saponins, xanthones, oligosaccharide esters, triterpenoids, volatile oils, and flavonoids. Of these, saponins are the predominant active ingredients, and increasing evidence has indicated that they exert therapeutic properties against mental disease. Pharmacokinetic research has illustrated that the crucial exposed substances in rat plasma after KXS administration are ginsenoside Re (GRe), ginsenoside Rb1 (GRb1), and polygalaxanthone III (POL). This article provides additional descriptions of the safety. In this review, current issues are highlighted to guide further comprehensive research of KXS and other classical prescriptions.
Collapse
Affiliation(s)
- Liping Chen
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
11
|
Zhang Y, Tian J, Ni J, Wei M, Li T, Shi J. Polygala tenuifolia and Acorus tatarinowii in the treatment of Alzheimer's disease: a systematic review and meta-analysis. Front Pharmacol 2024; 14:1268000. [PMID: 38283842 PMCID: PMC10815298 DOI: 10.3389/fphar.2023.1268000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Background: The complexity of Chinese medicine treatment for Alzheimer's disease (AD) utilizing a multi-herb therapy makes the evidence in current studies insufficient. Herb pairs are the most fundamental form of multi-herb formulae. Among the Chinese herbal formulas for AD treatment, Polygala tenuifolia (PT) and Acorus tatarinowii (AT) appeared as the most commonly used herbal pairs in combination. Objective: The aim of this study is to evaluate the clinical efficacy and safety of the combination of PT and AT in the treatment of AD. Methods: We systematically searched and screened randomized controlled trials of pairing PT and AT for the treatment of AD patients in eight databases with a search deadline of June 26, 2023. Authors, year of publication, title, and basic information such as subject characteristics (age, sex, and race), course of disease, control interventions, dose, and treatment duration were extracted from the screened studies. Primary outcomes assessed included mini-mental state examination (MMSE), activities of daily living (ADL), and AD assessment scale-cognitive subscale (ADAS-cog), while secondary outcomes included efficiency and adverse events. The quality of the included studies was assessed using the Cochrane risk of bias tool. The mean difference with 95% confidence intervals (MD [95% CI]) and risk ratio (RR) was selected as the effect size, and the data were analyzed and evaluated using RevMan 5.4 and Stata 16. Results: A total of sixteen eligible and relevant studies involving 1103 AD participants were included. The combination of PT and AT plus conventional drugs was superior to single conventional drugs in MMSE [MD = 2.57, 95%CI: (1.44, 3.69); p < 0.00001; I 2 = 86%], ADL [MD = -3.19, 95%CI: (-4.29, -2.09); p < 0.00001; I 2 = 0%], and ADAS-cog scores [MD = -2.09, 95%CI: (-3.07, -1.10); p < 0.0001; I 2 = 0%]. The combination of PT and AT plus conventional drugs had a significantly more favorable benefit in clinical effectiveness [RR = 1.27, 95%CI: (1.12, 1.44); p = 0.0002; I 2 = 0%]. Adverse events were not increased with the combination of PT and AT plus conventional drugs compared to conventional drugs [RR = 0.65, 95%CI: (0.35, 1.19); p = 0.16; I 2 = 0%]. The experimental group treated with the combination of PT and AT alone for AD was comparable in MMSE, ADL, and ADAS-cog scores compared with the control group treated with single conventional drugs. Conclusion: Compared to single conventional drugs, the combination of PT and AT may be used as an alternative therapy to improve global cognition and functioning in AD, and the combination of PT and AT as adjunctive therapy appears to produce a better therapeutic response to AD in terms of efficacy without increasing the risk of adverse events. However, the very low to low quality of available evidence limits confidence in the findings. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023444156.
Collapse
Affiliation(s)
- Yuchen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinzhou Tian
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingnian Ni
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingqing Wei
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Cao X, Xie H, Song M, Zhao L, Liu H, Li G, Zhu JK. Simple method for transformation and gene editing in medicinal plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:17-19. [PMID: 38078380 DOI: 10.1111/jipb.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
A sample delivery method, modified from cut-dip-budding, uses explants with robust shoot regeneration ability, enabling transformation and gene editing in medicinal plants, bypassing tissue culture and hairy root formation. This method has potential for applications across a wide range of plant species.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongtao Xie
- Bellagen Biotechnology Co. Ltd., Jinan, 250000, China
| | - Minglei Song
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lianghui Zhao
- Bellagen Biotechnology Co. Ltd., Jinan, 250000, China
| | - Hailiang Liu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Guofu Li
- Bellagen Biotechnology Co. Ltd., Jinan, 250000, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies, Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| |
Collapse
|
13
|
Yan H, Feng L, Li M. The Role of Traditional Chinese Medicine Natural Products in β-Amyloid Deposition and Tau Protein Hyperphosphorylation in Alzheimer's Disease. Drug Des Devel Ther 2023; 17:3295-3323. [PMID: 38024535 PMCID: PMC10655607 DOI: 10.2147/dddt.s380612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease is a prevalent form of dementia among elderly individuals and is characterized by irreversible neurodegeneration. Despite extensive research, the exact causes of this complex disease remain unclear. Currently available drugs for Alzheimer's disease treatment are limited in their effectiveness, often targeting a single aspect of the disease and causing significant adverse effects. Moreover, these medications are expensive, placing a heavy burden on patients' families and society as a whole. Natural compounds and extracts offer several advantages, including the ability to target multiple pathways and exhibit high efficiency with minimal toxicity. These attributes make them promising candidates for the prevention and treatment of Alzheimer's disease. In this paper, we provide a summary of the common natural products used in Chinese medicine for different pathogeneses of AD. Our aim is to offer new insights and ideas for the further development of natural products in Chinese medicine and the treatment of AD.
Collapse
Affiliation(s)
- Huiying Yan
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Lina Feng
- Shandong Key Laboratory of TCM Multi-Targets Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, People’s Republic of China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
14
|
Li Z, Shi H. Study on the active ingredients of Shenghui decoction inhibiting acetylcholinesterase based on molecular docking and molecular dynamics simulation. Medicine (Baltimore) 2023; 102:e34909. [PMID: 37746985 PMCID: PMC10519482 DOI: 10.1097/md.0000000000034909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
We aim to investigate the mechanism and effective components of Shenghui decoction (SHD), which has been shown to inhibit acetylcholinesterase (AChE) through molecular docking (MD) and molecular dynamics simulation (MDS). The effective ingredients in SHD were collected through the TCMSP database and literature review. All components were docked with AChE using CDOCKER. Receptor ligand interaction analysis was performed for the optimal ligand. Two simulation models (model I and II) containing AChE and acetylcholine (ACh) were constructed, in which model II contained the best-docked ligand. Perform 90ns MDS on 2 models. After the simulation, the distance between ACh and AChE peripheral active sites were calculated in both models. The root mean square deviation (RMSD) curve of ligand and receptor, the radius of gyration (Rog) of the receptor, the distance between ligand center and binding site center, and the binding energy of ligand and receptor were calculated in model II. 98 ingredients of SHD were collected, and the best ligand was Tumulosic acid. The residues that form conventional hydrogen bonds between AChE and Tumulosic acid include Tyr132 and Glu201. MDS revealed that ACh could bind to AChE active site in model I. In model II, ACh cannot bind to the binding cavity because the ligand occupies the active site. The RMSD of AChE and Tumulosic acid tends to be stable, the Rog curve of AChE is relatively stable, and the distance between ligand and binding cavity does not fluctuate greatly, indicating that the structure of receptor and ligand is relatively stable. The binding energy of AChE and Tumulosic acid was -24.14 ± 2.46 kcal/mol. SHD contains many effective ingredients that may inhibit AChE activity. Tumulosic acid can occupy the binding site to prevent ACh from entering the chemical domain, thus exerting AChE inhibitory effect.
Collapse
Affiliation(s)
- Zefei Li
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Heyuan Shi
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
15
|
Yu SJ, Tang HL, Li WH, Bin CL, Liu Z, Tang ZH, Liang JH. Donepezil combined with traditional Chinese medicine has promising efficacy on mild cognitive impairment: a systematic review and meta-analysis. Front Neurosci 2023; 17:1206491. [PMID: 37476835 PMCID: PMC10354366 DOI: 10.3389/fnins.2023.1206491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Objective Prior research has shown mixed results regarding the effectiveness of combining donepezil and traditional Chinese medicine (TCM) to treat mild cognitive impairment (MCI). In light of this, our study aims to examine the efficacy and safety of this treatment approach for patients with MCI. Methods We conducted a comprehensive search of various databases, including Medline (via PubMed), Cochrane, Embase, Web of Science, Chinese National Knowledge Infrastructure, Chinese Biomedical Literature Database, Chinese Scientific Journal Database, and Wanfang Database from their inception to November 16, 2022. The selection of studies, risk of bias assessment, and data extraction were carried out independently by two authors. The statistical analysis was performed using STATA. Results Our meta-analysis included a total of 35 studies with 2,833 patients, published between 2008 and 2022, with intervention durations ranging from 4 weeks to 12 months. However, most of the studies had a high risk of detection bias. Our findings indicated that the combination of donepezil and TCM significantly improved the Montreal Cognitive Assessment (MoCA) score (weighted mean difference [WMD] = 2.79, 95% confidence interval [CI]: 1.82 to 3.75) and the Barthel Index score (WMD = 9.20, 95% CI: 5.39 to 13.00) compared to donepezil alone. However, subgroup analyses showed that the MoCA score did not increase significantly in patients with MCI resulting from cerebrovascular disease (WMD = 1.47, 95% CI: -0.02 to 2.96). Conclusion The combination of donepezil and TCM may have a more positive effect on cognitive function and activities of daily living in patients with MCI compared to the use of donepezil alone. However, due to the limited quality of the studies included in our analysis, these findings should be interpreted with caution.
Collapse
Affiliation(s)
- Si-jia Yu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui-ling Tang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-hong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen-li Bin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Liu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao-hui Tang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-hong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Yang G, Lang Y. Extract identification and evaluation of the cytotoxic activity of Polygala fallax Hemsl in Heilongjiang ethnic medicine against tumors. Technol Health Care 2023; 31:565-575. [PMID: 37066951 DOI: 10.3233/thc-236050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Heilongjiang Province is a frontier province with distinctive characteristics, fertile land and rich products. OBJECTIVE This study provides a new method for qualitatively studying flavonoids in traditional Chinese medicine and a new auxiliary means for identifying flavonoid isomers. METHODS The flavonoids in Polygala fallax Hemsl were identified by ultra-performance liquid chromatography-photo-diode array (PDA)-quadrupole-electro- static field orbitrap mass spectrometry tandem by UV Spectrum, primary and secondary high-resolution mass spectrometry (MS1/MS2) cleavage of fragments combined with databases, mass spectrometry cleavage patterns and literature. RESULTS The established QSRR model was used to verify the flavonoids identified from the Polygala fallax Hemsl. CONCLUSION The structure of multiple Polygala fallax Hemsl has been identified using various spectral methods. The tumor cytotoxic activity of the isolated compounds was evaluated. This paper is of great significance for further elucidating the pharmacodynamic substance basis and further developing and utilizing Polygala fallax Hemsl.
Collapse
Affiliation(s)
- Guang Yang
- Business Economics Research Institute, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Yan Lang
- Department of Rehabilitation Therapy, Wuyi University, Nanping, Fujian, China
| |
Collapse
|