1
|
Zhou BY, Shi XY, Luo ZY, Pan ZQ, Gu HY, Liu Y, Shi XH, Wu ZQ. Predictive Analysis of Dental Caries Risk via Rapid Urease Activity Evaluation in Saliva Using a ZIF-8 Nanoporous Membrane. ACS Sens 2025. [PMID: 40396810 DOI: 10.1021/acssensors.4c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Despite a decrease in the incidence of dental caries over the past four decades, it remains a widespread public health concern. The multifactorial etiology of dental caries complicates effective prevention and early intervention efforts, underscoring the need for the development of rapid predictive methods that account for multiple factors. In this study, we selected the activity of urease secreted by Streptococcus salivarius as a metabolic marker for dental caries. This activity was quantified by measuring the diffusion of hydroxide ions generated from the urease catalytic reaction on urea across a ZIF-8-modified nanoporous membrane. The choice of ZIF-8 was based on its preference in transporting hydroxide ions, enabling the accurate detection of urease activity at concentrations as low as 1 CFU/mL. Subsequently, we collected 287 saliva samples to determine the Michaelis constant (Km) of urease using this method. Logistic regression analysis revealed that both the Km of urease and the frequency of sugar intake are significant factors influencing the development of dental caries. Furthermore, we developed a machine learning methodology for identifying dental caries, achieving an accuracy rate of 81%. It is expected that increasing the sample size will further enhance the predictive accuracy of the model. This innovative approach provides valuable insights into early intervention strategies in the fight against dental caries.
Collapse
Affiliation(s)
- Bao-Yi Zhou
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Yan Shi
- Nantong Stomatological Hospital, Nantong, Jiangsu 226019, China
| | - Zhao-Ying Luo
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhong-Qin Pan
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Hai-Ying Gu
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yang Liu
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xin-He Shi
- Jingling Institute of Technology, Nanjing, Jiangsu 211169, China
| | - Zeng-Qiang Wu
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
2
|
Chen F, Zhang H, Wei Q, Tang J, Yin L, Ban Y, Zhou Q. Disrupted gut microbiota promotes the progression of chronic kidney disease in 5/6 nephrectomy mice by Bacillus pumilus gavage. Front Cell Infect Microbiol 2025; 15:1548767. [PMID: 40171160 PMCID: PMC11959065 DOI: 10.3389/fcimb.2025.1548767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background Our previous study identified differences in the gut microbiota between patients with chronic kidney disease (CKD) and healthy individuals. We observed that antibiotic-treated mice exhibited symptoms similar to those of patients with CKD after receiving a gut microbiota transplant from patients with CKD. Bacillus pumilus (B. pumilus), an alien microorganism to both human and mouse gut microbiota, possesses antibiotic properties that can alter the microbial community structure. Therefore, this study aimed to explore how changes in the gut microbiota structure induced by the oral gavage of B. pumilus affect the progression of CKD. We sought to identify the gut microbes and metabolic pathways associated with CKD to lay the groundwork for future clinical probiotic applications in patients with CKD. Methods We constructed sham-operated and 5/6 nephrectomy mice as the sham control (SC) and CKD models, respectively. CKD models were divided into a control group (CG) and an intervention group (IG). After 16 weeks of normal feeding, the IG were treated with B. pumilus by oral gavage, while SC and CG were treated with PBS once daily, 5 days per week, for 7 weeks. Fecal samples were collected for 16s rRNA sequencing and metabolomic analysis, kidneys were harvested for histological examination, and the colon was used for RT-PCR analysis. Results B. pumilus intervention exacerbated gut microbial homeostasis in CKD mice and increased serum creatinine and urea nitrogen levels, further aggravating kidney damage. 16s rRNA and metabolomic analysis revealed that Parvibacter and Enterorhabdus were probiotics related to kidney function, while Odoribacter was associated with kidney injury. Metabolomic analysis showed that glycerophospholipid and lysine metabolism were upregulated in CKD model mice, correlating with kidney damage. Conclusion This study shows that changes in the gut microbiota can affect the kidneys through gut metabolism, confirming that the lack of probiotics and the proliferation of harmful bacteria leading to gut microbiota dysbiosis are drivers of CKD progression. Our findings provide a basis for clinical interventions using gut microbes and offer a reference for targeted probiotic therapy.
Collapse
Affiliation(s)
- Fei Chen
- Blood Purification Centre, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Hailin Zhang
- Blood Purification Centre, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Qianqian Wei
- Blood Purification Centre, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Jie Tang
- Nursing Department, Yixing Traditional Chinese Medicine Hospital, Wuxi, China
| | - Lixia Yin
- Blood Purification Centre, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Yanan Ban
- Blood Purification Centre, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Qifan Zhou
- Blood Purification Centre, The First People’s Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
3
|
Li S, Liu J, Zhang X, Gu Q, Wu Y, Tao X, Tian T, Pan G, Chu M. The Potential Impact of Antibiotic Exposure on the Microbiome and Human Health. Microorganisms 2025; 13:602. [PMID: 40142495 PMCID: PMC11944296 DOI: 10.3390/microorganisms13030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Antibiotics are a cornerstone of modern medicine, saving countless lives. However, their widespread use presents two major challenges. First, antibiotic-induced changes in the microbiome can disrupt immune function, increasing the susceptibility to diseases associated with these alterations. Second, prolonged antibiotic use fosters the proliferation of antibiotic resistance genes, leading to the emergence of resistant strains and threatening our ability to control infections. These challenges highlight an urgent global health crisis, necessitating in-depth investigation into the multifaceted effects of antibiotic exposure on microbiome dynamics and human health. In this review, we explore the potential effects of antibiotic exposure on the microbiome and its implications for overall health. Additionally, we examine the role of emerging technologies in addressing these challenges and in shaping future antibiotic development. Our goal is to provide insights that will inform more effective public health strategies and interventions aimed at mitigating the adverse consequences of antibiotic use, restoring microbial balance, and improving overall health outcomes.
Collapse
Affiliation(s)
- Siqi Li
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019, China; (S.L.); (J.L.); (Q.G.); (Y.W.); (X.T.); (T.T.)
| | - Jiahao Liu
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019, China; (S.L.); (J.L.); (Q.G.); (Y.W.); (X.T.); (T.T.)
| | - Xinyang Zhang
- School of Medical, Nantong University, Nantong 226019, China;
| | - Qihong Gu
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019, China; (S.L.); (J.L.); (Q.G.); (Y.W.); (X.T.); (T.T.)
| | - Yutong Wu
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019, China; (S.L.); (J.L.); (Q.G.); (Y.W.); (X.T.); (T.T.)
| | - Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019, China; (S.L.); (J.L.); (Q.G.); (Y.W.); (X.T.); (T.T.)
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019, China; (S.L.); (J.L.); (Q.G.); (Y.W.); (X.T.); (T.T.)
| | - Gongbu Pan
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019, China; (S.L.); (J.L.); (Q.G.); (Y.W.); (X.T.); (T.T.)
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7005, Australia
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019, China; (S.L.); (J.L.); (Q.G.); (Y.W.); (X.T.); (T.T.)
| |
Collapse
|
4
|
Liu T, Chen Z, Sun L, Xiong L. Role of blood metabolites in mediating the effect of gut microbiota on chronic gastritis. Microbiol Spectr 2024; 12:e0149024. [PMID: 39404486 PMCID: PMC11537017 DOI: 10.1128/spectrum.01490-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 11/07/2024] Open
Abstract
Exploring the link between gut microbiota and chronic gastritis (CG), and assessing the potential mediating influence of blood metabolites. Using aggregated data from genome-wide association studies (GWAS), we performed a two-sample Mendelian randomization (MR) analysis to explore the genetic links between gut microbiota (412 types) and CG (623,822 cases). Furthermore, we utilized a two-step MR approach to measure the extent to which blood metabolites (1,400 types) mediate the impact of gut microbiota on CG. Through MR, we identified that three genetically predicted gut microbiota increased the risk of CG: the ubiquinol-8 biosynthesis pathway (OR 1.149, 95%CI 1.022-1.291), Odoribacter from the Porphyromonadaceae family (OR 1.260, 95%CI 1.044-1.523), and Coprococcus from the Lachnospiraceae family (OR 1.125, 95%CI 1.010-1.253). Currently, there is no evidence to suggest that genetically predicted CG affects the risk of gut microbiota. Four blood metabolites mediated the proportionate changes in genetically predicted gut microbiota: levels of 4-hydroxyphenylacetate levels by 14.9% (95% CI -0.559%, 30.3%), palmitoleate (16:1n7) levels, and the phosphate to alanine ratio together mediated the same microbiota by 6.97% (95% CI -1.61%, 15.6%) and 7.91% (95% CI -1.67%, 17.5%), while the phosphate to alanine ratio and X-12839 levels together mediated the same microbiota by 8.48% (95% CI -2.87%, 19.8%) and 10.7% (95% CI 0.353%, 21.1%). In conclusion, our research has confirmed a causal link between gut microbiota, blood metabolites, and CG. Metabolites such as 4-hydroxyphenylacetate levels, palmitoleate (16:1n7) levels, the phosphate to alanine ratio, and X-12839 levels have relatively significant mediating roles between gut microbiota and CG. These metabolites may influence the occurrence and development of CG by regulating inflammatory responses, energy metabolism, and gut barrier function. However, the majority of the influence of gut microbiota on CG remains unclear, necessitating further research into other potential mediating risk factors. Clinically, it is crucial to focus on patients suffering from CG who exhibit dysbiosis of gut microbiota.IMPORTANCEThe results indicate that interactions between particular gut microbiota and blood metabolites may significantly contribute to the onset and progression of CG. These findings offer new insights and potential targets for early diagnosis, personalized treatment, and prevention of CG.
Collapse
Affiliation(s)
- Tianying Liu
- College of Basic Medical Sciences, Changchun University of Traditional Medicine, Changchun, China
| | - Zhian Chen
- College of Integrative Medicine, Changchun University of Traditional Medicine, Changchun, China
| | - Li Sun
- Jilin Academy of Chinese Medical Sciences, Changchun, China
- Changchun University of Traditional Medicine, Changchun, China
| | - Lihui Xiong
- College of Basic Medical Sciences, Changchun University of Traditional Medicine, Changchun, China
| |
Collapse
|
5
|
Long J, Zhang J, Zeng X, Wang M, Wang N. Prevention and Treatment of Alzheimer's Disease Via the Regulation of the Gut Microbiota With Traditional Chinese Medicine. CNS Neurosci Ther 2024; 30:e70101. [PMID: 39508315 PMCID: PMC11541599 DOI: 10.1111/cns.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Alzheimer's disease (AD) is caused by a variety of factors, and one of the most important factors is gut microbiota dysbiosis. An imbalance in the gut mincrobiota have been shown to change the concentrations of lipopolysaccharide and short-chain fatty acids. These microorganisms synthesize substances that can influence the levels of a variety of metabolites and cause multiple diseases through the immune response, fatty acid metabolism, and amino acid metabolism pathways. Furthermore, these metabolic changes promote the formation of β-amyloid plaques and neurofibrillary tangles. Thus, the microbiota-gut-brain axis plays an important role in AD development. In addition to traditional therapeutic drugs such as donepezil and memantine, traditional Chinese medicines (TCMs) have also showed to significantly decrease the severity of AD symptoms and suppress the underlying related mechanisms. We searched for studies on the effects of different herbal monomers, single herbs, and polyherbal formulas on the gut microbiota of AD patients and identified the relevant pathways through which the gut microbiota affected AD. We conclude that improvements in the gut microbiota not only decrease the occurrence of inflammatory reactions but also reduce the deposition of central pathological products. Herbal monomers have a stronger effect on improving of central pathology. Polyherbal formulas have the most extensive effect on the gut microbiota in patients with AD. Among the effects of formulas, the anti-inflammatory effect is the most essential and is also the main concern regarding the use of TCMs in treating AD from the viewpoint of the gut microbiota. We hope that this review will be helpful for providing new ideas for the clinical application of TCMs in the treatment of AD.
Collapse
Affiliation(s)
- Jinyao Long
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jiani Zhang
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xin Zeng
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Min Wang
- Dongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Ningqun Wang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Fletcher JD, Olsson GE, Zhang YC, Burkhardt BR. Oral gavage delivery of Cornus officinalis extract delays type 1 diabetes onset and hyperglycemia in non-obese diabetic (NOD) mice. FEBS Open Bio 2024; 14:434-443. [PMID: 38129973 PMCID: PMC10909980 DOI: 10.1002/2211-5463.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease initiated by genetic predisposition and environmental influences, which result in the specific destruction of insulin-producing pancreatic β-cells. Currently, there are over 1.6 million cases of T1D in the United States with a worldwide incidence rate that has been increasing since 1990. Here, we examined the effect of Cornus officinalis (CO), a well-known ethnopharmacological agent, on a T1D model of the non-obese diabetic (NOD) mouse. A measured dose of CO extract was delivered into 10-week-old NOD mice by oral gavage for 15 weeks. T1D incidence and hyperglycemia were significantly lower in the CO-treated group as compared to the water gavage (WT) and a no handling or treatment control group (NHT) following treatment. T1D onset per group was 30%, 60% and 86% for the CO, WT and NHT groups, respectively. Circulating C-peptide was higher, and pancreatic insulitis was decreased in non-T1D CO-treated mice. Our findings suggest that CO may have therapeutic potential as both a safe and effective interventional agent to slow early stage T1D progression.
Collapse
Affiliation(s)
- Justin D. Fletcher
- Department of Molecular BiosciencesUniversity of South FloridaTampaFLUSA
| | - Grace E. Olsson
- Department of Molecular BiosciencesUniversity of South FloridaTampaFLUSA
| | | | - Brant R. Burkhardt
- Department of Molecular BiosciencesUniversity of South FloridaTampaFLUSA
| |
Collapse
|
7
|
Wang J, Chen G, Chen H, Chen J, Su Q, Zhuang W. Exploring the characteristics of gut microbiome in patients of Southern Fujian with hypocitraturia urolithiasis and constructing clinical diagnostic models. Int Urol Nephrol 2023:10.1007/s11255-023-03662-6. [PMID: 37294502 DOI: 10.1007/s11255-023-03662-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Hypocitraturia is an important cause of urolithiasis. Exploring the characteristics of the gut microbiome (GMB) of hypocitriuria urolithiasis (HCU) patients can provide new ideas for the treatment and prevention of urolithiasis. METHODS The 24 h urinary citric acid excretion of 19 urolithiasis patients was measured, and patients were divided into the HCU group and the normal citrate urolithiasis (NCU) group. The 16 s ribosomal RNA (rRNA) was used to detect GMB composition differences and construct operational taxonomic units (OTUs) coexistence networks. The key bacterial community was determined by Lefse analysis, Metastats analysis and RandomForest analysis. Redundancy analysis (RDA) and Pearson correlation analysis visualized the correlation between key OTUs and clinical features and then established the disease diagnosis model of microbial-clinical indicators. Finally, PICRUSt2 was used to explore the metabolic pathway of related GMB in HCU patients. RESULTS The alpha diversity of GMB in HCU group was increased and Beta diversity analysis suggested significant differences between HCU and NCU groups, which was related to renal function damage and urinary tract infection. Ruminococcaceae_ge and Turicibacter are the characteristic bacterial groups of HCU. Correlation analysis showed that the characteristic bacterial groups were significantly associated with various clinical features. Based on this, the diagnostic models of microbiome-clinical indicators in HCU patients were constructed with the areas under the curve (AUC) of 0.923 and 0.897, respectively. Genetic and metabolic processes of HCU are affected by changes in GMB abundance. CONCLUSION GMB disorder may be involved in the occurrence and clinical characteristics of HCU by influencing genetic and metabolic pathways. The new microbiome-clinical indicator diagnostic model is effective.
Collapse
Affiliation(s)
- Jialiang Wang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Guofeng Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Heyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China.
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Licheng District Zhongshan North Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
8
|
Wang Z, Jian G, Chen T, Chen Y, Li J, Wang N. The Qi-Bang-Yi-Shen formula ameliorates renal dysfunction and fibrosis in rats with diabetic kidney disease <em>via</em> regulating PI3K/AKT, ERK and PPARγ signaling pathways. Eur J Histochem 2023; 67. [PMID: 36856315 DOI: 10.4081/ejh.2023.3648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and a growing public health problem worldwide. Losartan potassium (Los), an angiotensin II receptor blocker, has been used to treat DKD clinically. Recently, multi-herbal formula has been shown to exhibit therapeutic activities in DKD in China. Thus, we aimed to explore the protective effects of combination of Los and Qi-Bang-Yi-Shen formula (QBF) on DKD rats. Streptozotocin (STZ) injection was used to establish a rat model of DKD. Next, the bloodurea nitrogen (BUN), creatinine (CRE) and uric acid (UA) levels were detected in serum samples from DKD rats. Hematoxylin and eosin (H&E), periodic Acid Schiff (PAS) and Masson staining were performed to observe glomerular injury and glomerular fibrosis in DKD rats. In this study, we found that QBF or Los treatment could decrease serum BUN, CRE, UA levels and reduce urine albumin-to-creatinine ratio (ACR) in DKD rats. Additionally, QBF or Los treatment obviously inhibited glomerular mesangial expansion and glomerular fibrosis, attenuated glomerular injury in kidney tissues of DKD rats. Moreover, QBF or Los treatment significantly reduced PI3K, AKT and ERK1/2 protein expressions, but increased PPARγ level in kidney tissues of DKD rats. As expected, combined treatment of QBF and Los could exert enhanced reno-protective effects compared with the single treatment. Collectively, combination of QBF and Los could ameliorate renal injury and fibrosis in DKD rats via regulating PI3K/AKT, ERK and PPARγ signaling pathways. These findings highlight the therapeutic potential of QBF to prevent DKD progression.
Collapse
Affiliation(s)
- Zhi Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Guihua Jian
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Teng Chen
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai.
| | - Yiping Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai.
| | - Junhui Li
- Putuo People's Hospital, Tongji University, Shanghai.
| | - Niansong Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| |
Collapse
|