1
|
Lu YL, Huang C, Huang SY, Li T, Chen WY, Yi SL, Pei Y, Lu JT, Chen ZY, Cao HY, Tan B. The mechanism of patchouli alcohol in treating IBS-D based on BMP-Smad pathway. Biomed Pharmacother 2025; 187:118050. [PMID: 40267641 DOI: 10.1016/j.biopha.2025.118050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Irritable Bowel Syndrome (IBS) is a chronic gastrointestinal condition, and diarrhea predominant (IBS-D) is the most common subtype.The enteric nervous system (ENS) regulates major gastrointestinal motility and function, and the intestinal neuronal BMP-SMAD signaling pathway is closely related to intestinal motility. Patchouli alcohol (PA) has been reported to modulate IBS-D, but whether its mechanism of action ameliorates IBS-D through the BMP-SMAD signaling pathway is unclear.This study preliminarily confirmed the abnormal colonic contraction of IBS-D functional bowel disease, and PA can not only improve gastrointestinal motor function, effectively inhibit the characteristic diarrhea and increased visceral sensitivity in IBS-D rats, but also regulate the neurohomeostasis of the gastrointestinal tract. In this study, in vivo and ex vivo studies confirmed that the neurohomeostatic regulation of patchouli alcohol was related to the increase of BMPRII+ neuronal subsets in the intestinal myenteric plexus and the regulation of BMP-SMAD signal pathway; PA increased the phosphorylation level of BMP-SMAD pathway-related proteins in IBS-D rat intestinal neurons.The findings can provide evidence for subsequent clinical research and drug development.
Collapse
Affiliation(s)
- Yu-Lin Lu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Yan Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Li
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wan-Yu Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Lin Yi
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Pei
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Tong Lu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuo-Ying Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Ying Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China.
| |
Collapse
|
2
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Xia B, Lin T, Li Z, Wang J, Sun Y, Wang D, Ye J, Zhang Y, Kou R, Zhao B, Yi J, Bai G, Liu X. Lactiplantibacillus plantarum Regulates Intestinal Physiology and Enteric Neurons in IBS through Microbial Tryptophan Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17989-18002. [PMID: 39082086 DOI: 10.1021/acs.jafc.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by visceral pain and gut dysmotility. However, the specific mechanisms by which Lactobacillus strains relieve IBS remain unclear. Here, we screened Lactobacillus strains from traditional Chinese fermented foods with potential IBS-alleviating properties through in vitro and in vivo experiments. We demonstrated that Lactiplantibacillus plantarum D266 (Lp D266) administration effectively modulates intestinal peristalsis, enteric neurons, visceral hypersensitivity, colonic inflammation, gut barrier function, and mast cell activation. Additionally, Lp D266 shapes gut microbiota and enhances tryptophan (Trp) metabolism, thus activating the aryl hydrocarbon receptor (AhR) and subsequently enhancing IL-22 production to maintain gut homeostasis. Mechanistically, Lp D266 potentially modulates colonic physiology and enteric neurons by microbial tryptophan metabolites. Further, our study indicates that combining Lp D266 with Trp synergistically ameliorates IBS symptoms. Together, our experiments identify the therapeutic efficacy of tryptophan-catabolizing Lp D266 in regulating gut physiology and enteric neurons, providing new insights into the development of probiotic-mediated nutritional intervention for IBS management.
Collapse
Affiliation(s)
- Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tongkui Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhiqing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jialin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuwei Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yajuan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Rongwei Kou
- School of Science, Xi'an University of Technology, Xi'an, 710048 Shaanxi, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 Yunnan, China
| | - Gaiyan Bai
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, 710068 Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
4
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Jiang Z, Zou Q, Chen Q, Zhang J, Tang H, Chen J, Qin Y, Yang L, Chen Z, Cao L. Therapeutic role of Wuda granule in gastrointestinal motility disorder through promoting gastrointestinal motility and decreasing inflammatory level. Front Pharmacol 2023; 14:1237686. [PMID: 37670946 PMCID: PMC10476622 DOI: 10.3389/fphar.2023.1237686] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/18/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction: Previous studies indicated that Wuda Granule (WDG) has been applied in the treatment of gastrointestinal motility disorder (GMD), but the effect and underlying mechanisms is yet to be elucidated. This study aimed to explore the mechanism and pharmacological effect of WDG for GMD via network analysis, verification of animal experiments and clinical experiments. Methods: The chemical components of WDG were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP, http://lsp.nwu.edu.cn/index.php), and the Encyclopedia of Traditional Chinese Medicine (ETCM, http://www.tcmip.cn/ETCM/index.php/Home/Index/) according to oral bioavailability (OB) ≥ 20% and drug-likeness (DL) ≥ 0.10. The targets of WDG compounds were retrieved from the Swiss Target Prediction database (http://www.swisstargetprediction.ch/) and targets related to GMD were retrieved from GeneCards database (https://www.genecards.org/). Network analysis were performed to screen the key active compounds of WDG and its hub targets. Then the pharmacological effect of WDG were verified via vivo experiments in rats and clinical experiments. Results: The results showed that 117 effective active compounds of WDG were screened and 494 targets of WDG compounds targeting GMD were selected. These targets were involved in the biological process of inflammatory regulation and the regulation of gastrointestinal motility. The mechanism was mainly involved in the regulation of PI3K-Akt signaling pathway and Rap1 signaling pathway. In addition, molecular docking analysis suggested that eight key active compounds of WDG may be mainly responsible for the effect of WDG on GMD by targeting HARS, AKT, and PIK3CA, respectively. Animal experiments and clinical trials both suggested that WDG could exert therapeutical effect on GMD via inhibiting inflammation and promoting gastrointestinal motility, it could also improve digestive function of patients with laparoscopic colorectal cancer after surgery. Conclusion: This study was the first to demonstrate that WDG improved GMD mainly via inhibiting inflammatory level and promoting gastrointestinal motility, providing new insights for the understanding of WDG for GMD, inspiration for future research and reference for clinical strategy in terms of the treatment of GMD.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuping Zou
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Emergency Department, Dongguan People’s Hospital, Dongguan, China
| | - Qicheng Chen
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhong Zhang
- Department of Research Public Service Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jingbao Chen
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - You Qin
- Department of Minimally Invasive Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liming Yang
- Department of Minimally Invasive Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Cao
- Department of Perioperative Research Centre of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|