1
|
Xu C, Wang H, Wang H, Man J, Deng Y, Li Y, Cheng K, Niu J, Gui H, Fu S, Yang L. Schisandrin B regulates mitochondrial dynamics via AKT1 activation and mitochondrial targeting to ameliorate renal ischemia-reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156672. [PMID: 40220406 DOI: 10.1016/j.phymed.2025.156672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/22/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a significant cause of acute kidney injury(AKI) and delayed graft function(DGF), impacting post-transplant outcomes. Mitochondrial dynamics, in particular fission and fusion, play a pivotal role in the cellular response to RIRI. The modulation of these dynamics represents a potential therapeutic target. Schisandrin B (Sch B), a component derived from traditional Chinese medicine, has shown protective roles in various organ injuries, but its effect on RIRI through mitochondrial dynamics remains unexplored. OBJECTIVE This study explores the previously uninvestigated role of Sch B in modulating mitochondrial dynamics as a potential means of alleviating RIRI. By focusing on mitochondrial fission and fusion, this research provides novel insights into the therapeutic potential of Sch B, distinguishing it from existing approaches. METHODS HK-2 cells were treated with hypoxia/reoxygenation (HR) in order to simulate renal ischemia-reperfusion injury (RIRI) in vitro. In vivo, mice underwent renal ischemia followed by reperfusion, which allowed for the simulation of the injury. Sch B's impact on mitochondrial dynamics, apoptosis, and oxidative stress was assessed through mitochondrial morphology assays, Western blotting for mitochondrial and apoptotic markers, TUNEL staining, and measurement of reactive oxygen species. Key molecular interactions were explored via Western blotting, molecular docking, SPR, and cellular thermal shift assays. In vivo, renal pathological damage was evaluated using HE, PAS, and TUNEL staining, while immunohistochemistry and immunofluorescence were employed to detect the expression levels of mitochondrial dynamics proteins and p-AKT1. RESULTS First, we unveiled that Schisandrin B (Sch B) significantly mitigated oxidative stress and apoptosis in HK-2 cells subjected to hypoxia-reoxygenation conditions. Sch B pretreatment notably enhanced cell viability and mitochondrial function, demonstrating its superior antioxidant capabilities compared to NAC. Second, we discovered that Sch B's protective effects involve regulating mitochondrial dynamics by decreasing fission markers, such as DRP1, while increasing fusion proteins, including OPA1 and MFN2. Furthermore, our studies revealed that Sch B directly binds to AKT1, promoting its phosphorylation and localization to mitochondria, thereby enhancing mitochondrial resilience. Finally, we demonstrated that in vivo administration of Sch B reduced renal damage and apoptosis in mouse models of renal ischemia-reperfusion injury (RIRI), while immunohistochemical analyses unveiled its role in promoting mitochondrial fusion and reducing fission, marking a significant advancement in understanding Sch B's therapeutic potential in RIRI. CONCLUSION Our findings demonstrate for the first time that Sch B directly interacts with AKT1 protein, enhancing its phosphorylation and promoting mitochondrial localization. This innovative mechanism reduces oxidative stress, apoptosis, and mitochondrial fission, highlighting Sch B's unique capability to modulate mitochondrial dynamics in RIRI. These results establish Sch B as a promising therapeutic agent, offering a new dimension in the management of RIRI by targeting mitochondrial health.
Collapse
Affiliation(s)
- Changhong Xu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - HuaBin Wang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hailong Wang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jiangwei Man
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yun Deng
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Kun Cheng
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jiping Niu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Huiming Gui
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Shengjun Fu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
2
|
Javanmardi S, Moradpour F, Veisi M, Omidian N, Kavyannejad R. Effects of a mitochondrial calcium uniporter and P-selectin inhibitors on neural injury induced by global cerebral ischemia-reperfusion in male rats. Metab Brain Dis 2025; 40:150. [PMID: 40085331 DOI: 10.1007/s11011-025-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Neural injury following ischemia-reperfusion (I/R) is induced by multiple pathophysiological pathways. This study aimed to use mitochondrial calcium channel and p-selectin inhibitors to weaken these pathways. One hundred and two rats were randomly divided into six groups. In the sham group, cerebral I/R induction and drug intervention were not performed. In the I/R group, cerebral I/R induction was induced. In the RR + FCN group, animals received only ruthenium red (RR) and fucoidan (FCN) intraperitoneally without I/R induction. In the I/R + RR group, animals received RR during the cerebral I/R period. In the I/R + FCN group, FCN was administered along with cerebral I/R. In the I/R +(RR + FCN) group, animals exposed to cerebral I/R received a combination of RR and FCN simultaneously. The shuttle box and new object tests were used to assess learning and memory. The superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels in the hippocampus were measured. Neuronal death in the hippocampal CA1 area was assessed via hematoxylin-eosin staining. FCN and RR significantly decreased the tissue MDA, IL-1β, TNF-α levels while increased the SOD level. These inhibitors significantly reduced learning disorders and cerebral edema following I/R. The rate of neuronal death was significantly lower in each of the receiving RR and FCN groups. This study revealed that the use of FCN and RR significantly attenuated the pathways associated with oxidative stress and inflammation as well as neuronal death following cerebral I/R, thereby reducing learning and memory impairments. The effects of neuroprotection were further determined when two inhibitors were used simultaneously. HIGHLIGHTS: Cerebral ischemia-reperfusion is associated with many neurological, sensory and motor defects. Multiple pathways of neural pathophysiology are activated during cerebral ischemia-reperfusion. The Administration of ruthenium and fucoidan weakens inflammatory pathways, oxidative stress, and learning dysfunctions caused by cerebral ischemia and reperfusion. Stronger Neuroprotective effects were observed during the simultaneous administration of ruthenium and fucoidan.
Collapse
Affiliation(s)
- Setareh Javanmardi
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Moradpour
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojgan Veisi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Neda Omidian
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasoul Kavyannejad
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2025; 42:341-360. [PMID: 39655451 DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Significance: Hydrogen sulfide (H2S), a ubiquitous small gaseous signaling molecule, plays a critical role in various diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), ischemic stroke, and myocardial infarction (MI) via reducing inflammation, inhibiting oxidative stress, and cell apoptosis. Recent Advances: Uncontrolled inflammation is closely related to pathological process of ischemic stroke, RA, MI, and IBD. Solid evidence has revealed the axes between gut and other organs like joint, brain, and heart, and indicated that H2S-mediated anti-inflammatory effect against IBD, RA, MI, and ischemic stroke might be related to regulating the functions of axes between gut and other organs. Critical Issues: We reviewed endogenous H2S biogenesis and the H2S-releasing donors, and revealed the anti-inflammatory effects of H2S in IBD, ischemic stroke, RA, and MI. Importantly, this review outlined the potential role of H2S in the gut-joint axis, gut-brain axis, and gut-heart axis as a gasotransmitter. Future Direction: The rate, location, and timing of H2S release from its donors determine its potential success or failure as a useful therapeutic agent and should be focused on in the future research. Therefore, there is still a need to explore internal and external sources monitoring and controlling H2S concentration. Moreover, more efficient H2S-releasing compounds are needed; a better understanding of their chemistry and properties should be further developed. Antioxid. Redox Signal. 42, 341-360.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Lyu B, Gou W, Xu F, Chen L, Wang Z, Ren Z, Liu G, Li Y, Hou W. Target Discovery Driven by Chemical Biology and Computational Biology. CHEM REC 2025; 25:e202400182. [PMID: 39811950 DOI: 10.1002/tcr.202400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects. Chemical biology can achieve these goals using techniques such as changing protein thermal stability, enzyme sensitivity, and molecular structure and applying probes, isotope labeling and mass spectrometry. Concurrently, computational biology employs a diverse array of computational models to predict drug targets. This approach also offers innovative avenues for repurposing existing drugs. In this paper, we review the reported chemical biology and computational biology techniques for identifying different types of targets that can provide valuable insights for drug target discovery.
Collapse
Affiliation(s)
- Bohai Lyu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenfeng Gou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Feifei Xu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhiyun Wang
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhonghao Ren
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Gaiting Liu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiliang Li
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Wenbin Hou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| |
Collapse
|
5
|
Xinhua C, Yang W, Jinyang S, Hongyue X, Wanlu Y, Mingmei Z, Jiazhang Q, Lu Y. The Effects of Baitouweng Decoction on Salmonella Typhimurium Infection and Its Underlying Mechanisms Evaluated by In Vivo and In Vitro Experiments, Network Pharmacology Analysis, and Molecular Docking Technology. Foodborne Pathog Dis 2025; 22:140-158. [PMID: 39298327 DOI: 10.1089/fpd.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Salmonella Typhimurium is a foodborne pathogen threatening livestock and human health. It is highly resistant to commonly used clinical antibiotics, and it is urgently needed to explore new anti-Salmonella treatment schemes. In this study, first, our in vivo mouse experiments showed that Baitouweng decoction (BTW), a classical Traditional Chinese Medicine (TCM) prescription, had good efficacy against Salmonella Typhimurium infection: mitigating weight loss of mice; lowering the bacterial load of liver, spleen, and colon; reducing the production of serum inflammatory factors (interleukin-1β and tumor necrosis factor-α); and decreasing histological index scores than that in the Salmonella Typhimurium infection group. Furthermore, we explored the potential active components and molecular mechanism of BTW in the treatment of Salmonella Typhimurium infection. A total of 465 compounds of BTW were retrieved from herb website and 227 bioactive compounds were identified, 911 potential BTW-related targets and 1,602 disease targets of Salmonella Typhimurium infection were acquired by ten public analytical databases, among them, 188 genes were overlay targets of BTW-Salmonella Typhimurium; String, Metascape, and Cytoscape plug-in Molecular Complex Detection and ClueGo analysis pointed that BTW exerted an anti-Salmonella effect through a multicomponent, multitarget, and multipathway manner, including 10 hub targets (TNF, AKT CASP3, ALB, EGFR, JUN, MAPK, STAT3, VEGFA, and TP53) and 94 pathways such as cell apoptosis, inflammation, and metabolism. Finally, AutoDock Vina showed that the hub target AKT1 with menispermine and quercetin had good binding energy, which was confirmed by the in vitro cellular thermal shift assay and drug affinity responsive target stability assay. This study laid the foundation for further study of BTW mechanism and for further development of BTW anti-Salmonella.
Collapse
Affiliation(s)
- Cui Xinhua
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Wang Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Fang F, Bao S, Chen D, Duan X, Zhao Y, Ma Y. Protective effects and mechanism of quercetin from Rhododendron dauricum against cerebral ischemia-reperfusion injury. Eur J Pharmacol 2024; 985:177126. [PMID: 39532226 DOI: 10.1016/j.ejphar.2024.177126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
METHODS This study seeks to identify the bioactive compounds within Rhododendron dauricum and explore potential mechanisms for treating cerebral I/R injury through a comprehensive analysis employing network pharmacology, complemented by experimental validation. RESULTS The core targets associated with quercetin in the treatment of cerebral I/R injury are TNF-α, IL-6, IL-1β, and AKT1. Notably, we propose for the first time that its mode of action primarily involves the inhibition of the TNF-α/RhoA/ROCK2 pathway. CONCLUSION Our findings reveal that quercetin emerges as a pivotal bioactive component of Rhododendron dauricum in the context of cerebral I/R injury treatment.
Collapse
Affiliation(s)
- Fang Fang
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Siwei Bao
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Danxia Chen
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiaofeng Duan
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuefen Zhao
- Department of Pharmacy, Chinese medicine hospitals Changji Hui Autonomous Prefecture, Xinjiang, 831100, China.
| | - Yabin Ma
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
7
|
Zhang Y, Li Y, Liu F. AEBP1 Silencing Protects Against Cerebral Ischemia/Reperfusion Injury by Regulating Neuron Ferroptosis and Microglia M2 Polarization Through PRKCA-PI3K-Akt Axis. Drug Dev Res 2024; 85:e70032. [PMID: 39670965 DOI: 10.1002/ddr.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Cerebral ischemia/reperfusion injury is one of the main causes of neuronal damage. Neuron ferroptosis and microglia polarization are considered as critical processes during cerebral ischemia/reperfusion. Adipocyte enhancer-binding protein 1 (AEBP1) usually acts as a transcriptional repressor which is involved in various diseases. However, it is still remains unknown whether AEBP1 could have important roles in regulating the neuron ferroptosis and microglia polarization in cerebral ischemia/reperfusion injury. The oxygen-glucose deprivation and reperfusion (OGD/R)-treated cells and middle cerebral artery occlusion (MCAO)-treated mice were used as in vitro and in vivo models. The differentially expressed factors were analyzed according to GEO datasets. Relative mRNA and protein expression levels were detected by qRT-PCR and western blot analysis. Cell viability was measured by CCK-8 assay. ROS, GSH and iron contents were detected using specifical assay kits. CD26 and CD206 levels were measured by immunofluorescence assay. Inflammatory cytokines were detected by ELISA. The association between AEBP1 and PRKCA was assessed by luciferase reporter and ChIP analyses. The neuron damage in mice was analyzed by TTC staining and neurological deficit score. Transcription factor AEBP1 was increased in OGD/R-treated HT22 and BV2 cells. AEBP1 silencing attenuated OGD/R-induced HT22 cell ferroptosis through increasing cell viability, GSH and GPX4 levels, and decreasing ROS, iron and ACSL4 levels. AEBP1 knockdown promoted microglia M2 polarization by increasing CD206-positive cells and Arg-1 level, and reducing iNOS, TNF-α, IL-1β and IL-6 levels in BV2 cells. AEBP1 transcriptionally repressed PRKCA expression, and further regulated PI3K/Akt signaling activation. Inhibition of PRKCA or PI3K/Akt reversed the effects of AEBP1 silencing on neuron ferroptosis and microglia M2 polarization. AEBP1 downregulation attenuated neuronal damage by decreasing infarct size and deficit scores in MCAO-treated mice. AEBP1 silencing mitigated neuron ferroptosis and promoted microglia M2 polarization through increasing PRKCA and activating PI3K/Akt signaling, indicating the potentially protective action of AEBP1 knockdown in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yafen Zhang
- Department of Neurosurgery, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| | - Yan Li
- Emergency Department, Affiliated Hospital of Medical College of Hebei University of Engineering, Handan, China
| | - Fengli Liu
- Nursing Department, Medical College, Hebei University of Engineering, Handan, China
| |
Collapse
|
8
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Chuang HW, Huang CC, Chen KT, Kuo YY, Ren JH, Wang TY, Tsai MH, Chen PT, Wei IH. Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release. Psychiatry Investig 2024; 21:1286-1298. [PMID: 39610240 DOI: 10.30773/pi.2024.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study. METHODS Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK-mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu. RESULTS Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK-mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site. CONCLUSION Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR-mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
Collapse
Affiliation(s)
- Han-Wen Chuang
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Chih-Chia Huang
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kuang-Ti Chen
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Yen-Yu Kuo
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Jou-Hua Ren
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tse-Yen Wang
- Department of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mang-Hung Tsai
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Po-Ting Chen
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - I-Hua Wei
- Department of Anatomy, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Zhang Y, Wu X, Li R, Sui M, Li G, Fan S, Yang M, Liu Q, Liu X, Wu C, Li L. Sodium danshensu modulates skeletal muscle fiber type formation and metabolism by inhibiting pyruvate kinase M1. Front Pharmacol 2024; 15:1467620. [PMID: 39502528 PMCID: PMC11534700 DOI: 10.3389/fphar.2024.1467620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Sodium Danshensu (SDSS) is extracted from Salvia miltiorrhiza and has many pharmacological effects. However, little is known about its effects on muscle fiber formation and metabolism. Here, we aimed to investigated the role and molecular mechanisms of SDSS in modulating the formation of skeletal muscle fiber. C2C12 cells were incubated in differentiation medium with or without SDSS for 4 days. C57BL/6 mice were orally administered SDSS by gavage once a day for 8 weeks. Grip strength, treadmill, muscle weight, western blotting, qPCR, immunofluorescence staining and H&E staining were performed. SDSS target proteins were searched through drug affinity responsive target stability (DARTS) and mass spectrometry analysis. Furthermore, molecular docking was carried out for Pyruvate kinase M1 (PKM1). The effect of PKM1 on myosin heavy chain (MyHCs) gene expression was verified by knockdown of PKM1 experiment. SDSS induced oxidative muscle fiber-related gene expression, and inhibited glycolytic fiber-related gene expression in C2C12 cells. Muscle mass, the percentage of slow oxidative fibers, succinic dehydrogenase activity, muscle endurance, glucose tolerance, and the expression of the MyHC1 and MyHC2a genes increased while MyHC2b expression, lactate dehydrogenase activity, and the percentage of glycolytic muscle fibers decreased in SDSS-treated mice. Mechanistically, SDSS bound to the pyruvate kinase PKM1 and significantly repressed its activity. PKM1 inhibited MyHC1 and MyHC2a expression but promoted MyHC2b expression. SDSS also significantly attenuated the effects of PKM1 on muscle fiber-related gene expression in C2C12 cells. Our findings indicate that SDSS promotes muscle fiber transformation from the glycolytic type to the oxidative type by inhibiting PKM1 activity, which provide a new idea for treating muscle atrophy, muscle metabolism diseases and improving animal meat production.
Collapse
Affiliation(s)
- Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xiaoxiao Wu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ruoqi Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Mengru Sui
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Guoyin Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Shuhua Fan
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Mingsheng Yang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Dancheng Green Agriculture Observation and Research Station of Henan Province, Zhoukou Normal University, Zhoukou, China
| | - Qiuping Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Changjing Wu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Lili Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
11
|
Wang Y, Li Y, Zhou Y, Gao Y, Zhao L. Guanxinning Tablet Alleviates Post-Ischemic Stroke Injury Via Regulating Complement and Coagulation Cascades Pathway and Inflammatory Network Mobilization. Drug Des Devel Ther 2024; 18:4183-4202. [PMID: 39308695 PMCID: PMC11416781 DOI: 10.2147/dddt.s479881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Currently, ischemic stroke (IS) continues to significantly contribute to functional deterioration and reduced life quality. Regrettably, the choice of neuro-rehabilitation interventions to enhance post-IS outcomes is limited. Guanxinning tablet (GXNT), a multi-component medicine composed of Danshen and Chuanxiong, has demonstrated neuroprotective potential against ischemic brain injury and diabetic encephalopathy. However, the therapeutic impact of GXNT on post-IS functional outcomes and pathological injury, as well as the underlying molecular mechanisms and anti-IS active substances, remain unclear. Methods To answer the above questions, neurological and behavioral assessment, cerebral lesions, and blood-brain barrier (BBB) integrity were combined to comprehensively investigate GXNT's pharmacodynamic effects against post-IS injury. The possible molecular mechanisms were revealed through transcriptome sequencing coupled with experimental verification. Furthermore, the brain tissue distribution of main components in GXNT, behavioral changes of IS zebrafish, and molecular docking were integrated to identify the anti-IS active compounds. Results Treatment with GXNT significantly mitigated the functional deficits, cerebral cortex lesions, and BBB disruption following IS. Transcriptome sequencing and bioinformatics analysis suggested that complement and coagulation cascades as well as inflammation might play crucial roles in the GXNT's therapeutic effects. Molecular biology experiments indicated that GXNT administration effectively normalized the abnormal expression of mRNA and protein levels of key targets related to complement and coagulation cascades (eg C3 and F7) and inflammation (eg MMP3 and MMP9) in the impaired cortical samples of IS mice. The locomotor promotion in IS zebrafish as well as favorable affinity with key proteins (C3, F7, and MMP9) highlighted anti-IS activities of brain-permeating constituents (senkyunolide I and protocatechuic acid) of GXNT. Conclusion Taken together, these intriguing findings indicate that GXNT intervention exerts a beneficial effect against post-IS injury via regulating the complement and coagulation cascades pathway and mobilizing inflammatory network. Senkyunolide I and protocatechuic acid show promise as anti-IS active compounds.
Collapse
Affiliation(s)
- Yule Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Yiran Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yue Zhou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
12
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
13
|
Zhang S, Li S, Meng L, Liu X, Zhang Y, Zhao S, Zhao H. Root exudation under maize/soybean intercropping system mediates the arbuscular mycorrhizal fungi diversity and improves the plant growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1375194. [PMID: 38947945 PMCID: PMC11211593 DOI: 10.3389/fpls.2024.1375194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Introduction Maize/soybean intercropping is a common cropping practice in Chinese agriculture, known to boost crop yield and enhance soil fertility. However, the role of below-ground interactions, particularly root exudates, in maintaining intercropping advantages in soybean/maize intercropping systems remains unclear. Methods This study aimed to investigate the differences in root exudates between intercropping and monocropping systems through two pot experiments using metabolomics methods. Multiple omics analyses were conducted to explore correlations between differential metabolites and the community of Arbuscular Mycorrhizal Fungi (AMF), shedding light on the mechanisms underlying the dominance of intercropping from the perspective of root exudates-soil microorganism interactions. Results and discussion The study revealed that intercropping significantly increased the types and contents of root exudates, lowered soil pH, increased the availability of nutrients like available nitrogen (AN) and available phosphorus (AP), and enhanced AMF colonization, resulting in improving the community composition of AMF. Besides, root exudates in intercropping systems differed significantly from those in monocropping, with 41 and 39 differential metabolites identified in the root exudates of soybean/maize, predominantly amino acids and organic acids. The total amount of amino acids in the root exudates of soybean intercropping was 3.61 times higher than in monocropping. Additionally, the addition of root exudates significantly improved the growth of soybean/maize and AMF colonization, with the mycorrhizal colonization rate in intercropping increased by 105.99% and 111.18% compared to monocropping, respectively. The identified metabolic pathways associated with root exudates were closely linked to plant growth, soil fertility improvement, and the formation of AMF. Correlation analysis revealed a significant relationship (P < 0.05) between certain metabolites such as tartaric acid, oxalic acid, malic acid, aspartic acid, alanine, and the AMF community. Notably, the photosynthetic carbon fixation pathway involving aspartic acid showed a strong association with the function of Glomus_f_Glomerace, the dominant genus of AMF. A combined analysis of metabolomics and high throughput sequencing revealed that the root exudates of soybean/maize intercropping have direct or indirect connections with AMF and soil nutrients. Conclusion This suggests that the increased root exudates of the soybean/maize intercropping system mediate an improvement in AMF community composition, thereby influencing soil fertility and maintaining the advantage of intercropping.
Collapse
Affiliation(s)
- Shu Zhang
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Shumin Li
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Lingbo Meng
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang, China
| | - Xiaodan Liu
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Yuhang Zhang
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Shuchang Zhao
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Haobing Zhao
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| |
Collapse
|
14
|
Liang Q, Li D, Li J, Li Y, Zou Y, Zhang Y. Protective effect of Danshensu against neurotoxicity induced by monosodium glutamate in adult mice and their offspring. Heliyon 2024; 10:e25546. [PMID: 38356496 PMCID: PMC10865244 DOI: 10.1016/j.heliyon.2024.e25546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Excessive neuronal excitation by glutamate is a well-established cause of neurotoxicity, leading to severe impairment of brain function. Excitotoxicity is a key factor in numerous neurodegenerative conditions. In this study, we investigated the neuroprotective effects of Danshensu (DSS) against monosodium glutamate (MSG)-induced neurotoxicity in adult mice and their offspring. We randomly divided one hundred 8-week-old Kunming mice (equal number of males and females) into a control group and an experimental group. The experimental group was further subdivided into various treatment groups, including MSG gavage treatment, bwbw DSS treatment group 1 (bwbw DSS treatment group 2, a drug control group, and a normal control group (receiving an equal volume of physiological saline for ten consecutive days). Additionally, another one hundred healthy 8-week-old Kunming mice were similarly divided into groups and treated. These mice were paired randomly (one male and one female) and pregnant females were housed separately to obtain offspring. Subsequently, we conducted histological and behavioral analyses on adult mice and their offspring. MSG treatment induced significant cellular edema and hippocampal damage in both the treated mice and their offspring. However, varying doses of DSS effectively counteracted the neurotoxic effects of MSG, with no adverse impact on brain tissue structure or neural function in either adult mice or their offspring. Behavioral experiments further confirmed that DSS exerted a substantial protective effect against MSG-induced impairment of learning and memory in the treated adult mice and their offspring, in addition to mitigating central nervous system overexcitation and inhibiting exploratory behavior. In conclusion, DSS exerts significant protective effects against MSG-induced neurotoxicity in both adult mice and their offspring.
Collapse
Affiliation(s)
- Qiong Liang
- College of Health, Hainan Technology and Business College, Haikou 570203, PR China
- Hainan Institute for Food and Drug Control Haikou Branch, Haikou 570311, PR China
| | - Dingguo Li
- Hainan Medical University, Haikou 571199, PR China
| | - Jianli Li
- Hainan Institute for Food and Drug Control Haikou Branch, Haikou 570311, PR China
| | - Yuanzhu Li
- College of Health, Hainan Technology and Business College, Haikou 570203, PR China
| | - Yanan Zou
- College of Health, Hainan Technology and Business College, Haikou 570203, PR China
| | - Yuxia Zhang
- College of Health, Hainan Technology and Business College, Haikou 570203, PR China
| |
Collapse
|
15
|
Zhang X, Yang Q, Zhang R, Zhang Y, Zeng W, Yu Q, Zeng M, Gan J, Li H, Yang L, Gao Q, Jiang X. Sodium Danshensu ameliorates cerebral ischemia/reperfusion injury by inhibiting CLIC4/NLRP3 inflammasome-mediated endothelial cell pyroptosis. Biofactors 2024; 50:74-88. [PMID: 37458329 DOI: 10.1002/biof.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/03/2023] [Indexed: 02/20/2024]
Abstract
Endothelial pyroptosis promotes cerebral ischemia/reperfusion injury (CIRI). Sodium Danshensu (SDSS) has been shown to attenuate CIRI and have anti-inflammatory properties in endothelial cells. However, the mechanism and effect of SDSS on alleviating endothelial pyroptosis after CIRI remains poorly understood. Thus, we aimed to investigate the efficacy and mechanism of SDSS in reducing endothelial pyroptosis. It has been shown that SDSS administration inhibited NLRP3 inflammasome-mediated pyroptosis. As demonstrated by protein microarrays, molecular docking, CETSA and ITDRFCETSA , SDSS bound strongly to CLIC4. Furthermore, SDSS can decrease its expression and inhibit its translocation. Its effectiveness was lowered by CLIC4 overexpression but not by knockdown. Overall The beneficial effect of SDSS against CIRI in this study can be ascribed to blocking endothelial pyroptosis by binding to CLIC4 and then inhibiting chloride efflux-dependent NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Qiuyue Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
16
|
Lei W, Chen CY, Zhou FJ, Ma YL, Li YH, Zhang H. Tanshinol alleviates ischemia-induced myocardial fibrosis via targeting ERK2 and disturbing the intermolecular autophosphorylation of ERK2 Thr188. Biomed Pharmacother 2023; 168:115729. [PMID: 37862964 DOI: 10.1016/j.biopha.2023.115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Myocardial fibrosis is the fundamental remodeling process in myocardial ischemia (MI) and also the major contributor of heart failure and death. Tanshinol (Danshensu in Chinese, DSS), a major ingredient of salvia mitiorrhiza Bunge (Lamiaceae) root, exerted significant cardio protection effects. In this study, we aimed to identify the action target and then uncover the mechanism of DSS alleviating myocardial fibrosis. The pharmacological activities of DSS protecting ischemic cardiac was assessed and the myocardial proteomics was carried out. To identify the target of DSS, a cellular thermal shift assay combined with LC-MS identification was conducted. Surface plasmon resonance assay, molecular dynamics simulation and pharmacological and molecular biology approaches were adopted to explore the action mechanisms of DSS. Our results revealed that DSS effectively alleviated MI-induced left ventricle dysfunctions and the increasements of circulating myocardial markers. Besides, DSS significantly reversed the proteomic profile related to myocardial fibrotic processes and the ERK2 was identified as a crucial cellular target of DSS. DSS abated the temperature-dependent denaturation of ERK2 in a dose-dependent manner and the KD value of DSS and ERK2 was 60.19 μM. After Ang II stimulation, DSS suppressed the phosphorylation of Thr188 rather than the classic residues in TEY motif. DSS interfered the ERK2 homo-dimerization and then blocked the intermolecular autophosphorylation at Thr188 site. Thereout, DSS inhibited the nuclear translocation of ERK2 and the expression of downstream fibrotic biomolecules. Collectively, our results demonstrated that DSS targeted ERK2 and suppressed the intermolecular autophosphorylation at Thr188 residue, thus protecting ischemic myocardia from fibrosis remodeling.
Collapse
Affiliation(s)
- Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chun-Yan Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng-Jie Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yao-Lei Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu-Hong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
17
|
Bi M, Li D, Zhang J. Role of curcumin in ischemia and reperfusion injury. Front Pharmacol 2023; 14:1057144. [PMID: 37021057 PMCID: PMC10067738 DOI: 10.3389/fphar.2023.1057144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/23/2023] [Indexed: 03/22/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable pathological process after organic transplantations. Although traditional treatments restore the blood supply of ischemic organs, the damage caused by IRI is always ignored. Therefore, the ideal and effective therapeutic strategy to mitigate IRI is warrented. Curcumin is a type of polyphenols, processing such properties as anti-oxidative stress, anti-inflammation and anti-apoptosis. However, although many researches have been confirmed that curcumin can exert great effects on the mitigation of IRI, there are still some controversies about its underlying mechanisms among these researches. Thus, this review is to summarize the protective role of curcumin against IRI as well as the controversies of current researches, so as to clarify its underlying mechanisms clearly and provide clinicians a novel idea of the therapy for IRI.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Danyi Li
- Department of Ophthalmology, Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jin Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Jin Zhang,
| |
Collapse
|
18
|
Yang F, Shen C. Sodium Danshensu Cream Promotes the Healing of Pressure Ulcers in Mice through the Nrf2/HO-1 and NF-κB Pathways. Pharmaceuticals (Basel) 2022; 15:ph15121548. [PMID: 36558999 PMCID: PMC9783848 DOI: 10.3390/ph15121548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
On the basis of the mice pressure ulcers (PU) model, the protective effect and potential mechanism of sodium Danshensu (SDSS) cream against PU were investigated. The mice were randomly divided into three groups: the negative control group (cream without 0.5 g SDSS), the SDSS group (cream containing 0.5 g SDSS), and the positive group (0.5 g Hirudoid®). After 7 and 14 days of ointment application, the wound-healing rate of the SDSS and positive groups was significantly higher than that of the control group (p < 0.05). The results of hematoxylin−eosin staining also indicated that SDSS has the potential to promote the healing of PU. In addition, the serum IL-6, IL-1β, TNF-α, and MDA levels decreased significantly (p < 0.01) after 14 days of SDSS treatment, while the SOD, CAT, and GSH-Px activities increased significantly (p < 0.01). In addition, SDSS cream was able to significantly increase the expression of Nrf2, HO-1, GCLM, NQO1, NF-κB p65, NF-κB p50, IKKα, and IKKβ while decreasing the expression of Keap1 and IκBαin the Nrf2/HO-1 and NF-κB pathways. Our research will provide a foundation for the future clinical prevention and treatment of PU with SDSS cream.
Collapse
Affiliation(s)
- Fei Yang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou 310008, China
| | - Cuizhen Shen
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Correspondence:
| |
Collapse
|