1
|
Zhu N, Hou J, Zhang Y, Yang N, Ding K, Chang C, Liu Y, Gu H, Chen B, Wei X, Zhu L. A prognostic glycolysis-related gene signature in osteosarcoma: implications for metabolic programming, immune microenvironment, and drug response. PeerJ 2025; 13:e19369. [PMID: 40321814 PMCID: PMC12047218 DOI: 10.7717/peerj.19369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Background/Aims Osteosarcoma (OS), a malignant tumor originating in the bone or cartilage, primarily affects children and adolescents. Notably, glycolysis is the main target for metabolic programming to ensuring the energy supply for cancer. This study aimed to establish a glycolysis-related gene (GRG) risk signature in OS to comprehensively assessing the pathogenic, prognosis, and their application in predicting drug response. Methods mRNA expression profiles were acquired from the Gene Expression Omnibus (GEO, GSE16091, GSE39058, and GSE21257). Using the non-negative matrix factorization (NMF) algorithm, patients with OS were stratified into distinct subgroups based on 288 GRGs identified through univariable Cox analysis. Univariate Cox regression analysis of differentially expressed genes (DEGs) between the molecular clusters was conducted to establish a risk signature comprising GRGs in OS. The prognostic efficacy of this risk signature was assessed via Kaplan-Meier curve analysis and Cox regression, evaluating its independence as a prognostic indicator. Additionally, the predictive potential of the risk model for drug response was evaluated using the "OncoPredict" package. Furthermore, the distribution of immune cell types in single-cell RNA sequencing (scRNA-seq) data was examined in correlation with the four identified GRGs risk signatures, followed by validation of expression levels in vitro using RT-PCR. Results Patients diagnosed with OS were categorized into two distinct molecular subgroups, exhibiting notable variations in prognosis and tumor microenvironment. Univaria te Cox regression analysis was employed to identify four GRGs, namely chondroitin sulfate glucuronyltransferase (CHPF), Ras-related GTP-binding protein D (RRAGD), nucleoprotein TPR (TPR), and versican core protein (VCAN), which constitute a prognostic signature for patients with OS. This signature demonstrated robust prognostic value, as corroborated by Kaplan-Meier, univariate, and multivariate Cox regression analyses. Significant differences in tumor microenvironment immune infiltration (such as B cells, monocytes) were observed between molecular subgroups. Moreover, a significant disparity in drug sensitivity to AZD8055, paclitaxel, and PD0325901 was noted between the high-risk and low-risk cohorts, and the established four-gene risk signature served as dependable prognostic indicators in the validation cohort, confirmed at the cellular level through external dataset validation and reverse transcription quantitative PCR (RT-qPCR) experiments. Conclusion A risk signature based on GRGs was established for OS, exhibiting robust predictive efficacy for prognostic assessment, and offering significant clinical utility for the prognosis of OS.
Collapse
Affiliation(s)
- Naiqiang Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Hou
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Yu Zhang
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - Ning Yang
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - KaiKai Ding
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - Chengbing Chang
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanqi Liu
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - Haipeng Gu
- Hebei Key Laboratory of Panvascular Diseases, Chengde, China
| | - Bin Chen
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Hu X, Chen W, Yang K, Zhu C, Li Z, Zheng D, Geng R. TCF19/CDKN2A Regulates Glycolysis and Macrophage M2 Polarization for Osteosarcoma Progression. FASEB J 2025; 39:e70519. [PMID: 40193126 DOI: 10.1096/fj.202401343rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 02/22/2025] [Accepted: 03/27/2025] [Indexed: 05/17/2025]
Abstract
Osteosarcoma (OS) is the most common malignant tumor of the bone. This paper aimed to explore the mechanism of macrophage polarization and glycolysis in OS. Gene expression microarray GSE42572 for OS was downloaded from the GEO database and validated in TCGA-SARC. CDKN2A expression in OS cell lines and normal human bone osteoblasts was detected. Saos2 cells were transfected with siRNA-CDKN2A, and U2OS were transfected with pcDNA3.4-CDKN2A to knock down or upregulate CDKN2A expression to explore the role in malignant behaviors. Extracellular acidification rate, oxygen consumption rate, and glycolysis-related proteins were detected. Saos2 cells were co-incubated with THP-1 cells, and CD206 and CD86 levels were detected. The secretion of IL-10 and IL-12 by macrophages was measured. CDKN2A upstream regulatory elements were predicted by online databases, and the binding of TCF19 to the CDKN2A promoter was validated. Xenograft OS was established to verify the effect of TCF19 knockdown on OS growth in mice. CDKN2A was highly expressed in OS tissues and cell lines. CDKN2A knockdown inhibited the proliferation, migration, and invasion of Saos2 cells and promoted apoptosis and glycolysis. After CDKN2A knockdown in Saos2 cells and co-incubation with macrophages, CD206-positive cells decreased, CD86-positive cells increased, IL-10 decreased, and IL-12 increased. TCF19 was enriched on the CDKN2A promoter and promoted CDKN2A expression. Upregulation of CDKN2A by TCF19 promoted glycolysis and M2 polarization. TCF19 downregulation inhibited OS growth, metabolic reprogramming, and CDKN2A expression in OS mice. TCF19 is enriched in the CDKN2A promoter and enhances its expression, which in turn activates glycolysis and M2 polarization, ultimately promoting OS progression.
Collapse
Affiliation(s)
- Xinyue Hu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Chen
- Department of Orthopaedics, the Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Kaiyuan Yang
- Department of Orthopaedics, the Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Chunhui Zhu
- Department of Orthopaedics, the Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Zhuang Li
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dong Zheng
- Department of Orthopaedics, the Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Rui Geng
- Department of Orthopaedics, the Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
3
|
Cheng B, Liu J, Gao L, Zhu Z, Yang Y, Liu S, Wu X. EMB-driven glioblastoma multiforme progression via the MCT4/GPX3 axis: therapeutic inhibition by Ganxintriol A. J Transl Med 2025; 23:272. [PMID: 40038742 PMCID: PMC11881305 DOI: 10.1186/s12967-025-06290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Embigin (EMB) is a transmembrane glycoprotein highly expressed in glioblastoma multiforme (GBM), yet its role in GBM progression remains unclear. In this study, we investigate the function of intracellular EMB in promoting GBM progression and evaluate the effect of Ganxintriol A, a traditional Chinese herbal extract, in GBM treatment. METHODS Bioinformatics datasets were utilized to assess EMB expression and its prognostic value in GBM patients. In vitro experiments such as PCR、western blot,CCK8,transwell,wound healing,clone formation and flow cytometry assays were conducted to examine EMB's biological functions and underlying mechanisms in GBM cell lines. Additionally, we constructed a subcutaneous tumor model in nude mice and evaluated the effect of traditional Chinese medicine extract Ganxintriol A on the progression of GBM through in vivo and in vitro experiments. RESULTS EMB is highly expressed in GBM and is associated with poor prognosis in GBM patients. EMB overexpression accelerated GBM progression, whereas EMB knockdown had the opposite effect. Further analysis revealed that EMB upregulated epithelial-mesenchymal transition (EMT) and glycolysis while maintaining glutathione (GSH) redox balance by inducing monocarboxylate transporter 4 (MCT4) and glutathione peroxidase 3 (GPX3) expression. Treatment with Ganxintriol A significantly downregulated EMB expression, effectively inhibiting GBM progression both in vitro and in vivo. CONCLUSIONS This study highlights EMB as an independent prognostic biomarker for GBM and reveals a novel mechanism by which EMB drives GBM progression. Additionally, Ganxintriol A is identified as a promising therapeutic candidate for GBM treatment.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, 379 Tongshan Road, Xuzhou, 221000, China
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200292, China
| | - Jing Liu
- Department of Neurology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou No. 1 People's Hospital, 269 University Road, Xuzhou, 221000, China
| | - Ling Gao
- Department of Pharmacy, The Affiliated Huaihai Hospital of Xuzhou Medical University, The 71st Group Army Hospital of CPLA Army, 226 Tongshan Road, Xuzhou, 221000, China
| | - Ziwen Zhu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200292, China
| | - Yang Yang
- Department of Pharmacy, The Affiliated Huaihai Hospital of Xuzhou Medical University, The 71st Group Army Hospital of CPLA Army, 226 Tongshan Road, Xuzhou, 221000, China
| | - Shangqi Liu
- Department of Neurology, Xuzhou Central Hospital, the Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221000, China
| | - Xiaojin Wu
- Department of Radiation Oncology, Xuzhou Central Hospital, the Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221000, China.
| |
Collapse
|
4
|
Chen S, Hu X, Yi X, Deng X, Xiong T, Ou Y, Liu S, Li C, Yan X, Hao L. USP22 Promotes Osteosarcoma Progression by Stabilising β-Catenin and Upregulating HK2 and Glycolysis. J Cell Mol Med 2024; 28:e70239. [PMID: 39661501 PMCID: PMC11633763 DOI: 10.1111/jcmm.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Osteosarcoma is a primary malignancy that is difficult to treat and is prone to developing resistance to chemotherapy. As such, it is necessary to continuously explore novel therapeutic targets. Ubiquitin-specific protease 22 (USP22) is an ubiquitin-specific protease that has been demonstrated to have potent carcinogenic effects on a variety of cancers and is involved in several biological processes. Studies have demonstrated that reprogramming of glucose metabolism is a major factor in the development and progression of osteosarcoma, and that USP22 is strongly associated with the metabolism of glucose in osteosarcoma. However, it is still unknown how precisely USP22 works in osteosarcoma. To further elucidate the expression and specific molecular mechanisms of USP22 in osteosarcoma. The results of Western blot analysis and quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that the expression of USP22 in osteosarcoma tissues was significantly higher than that in adjacent healthy tissues. In addition, the expression of USP22 promotes the proliferation of osteosarcoma cells in a glycolytic dependent manner both in vitro and in vivo, while the knockout of USP22 is the opposite. In addition, USP22 knockout reduced the protein expression of β-catenin and hexokinase 2 (HK2) in osteosarcoma cells. In addition, the regulation of HK2 expression induced by USP22 depends on β-catenin. Mechanistically, USP22 regulates HK2 by deubiquitination and stabilising the expression of β-catenin, thereby controlling glycolysis in osteosarcoma cells.
Collapse
Affiliation(s)
- Shenliang Chen
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- University of NanchangNanchangChina
| | - Xin Hu
- Jiangxi Pingxiang People's HospitalPingxiangChina
| | - Xuan Yi
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xueqiang Deng
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Xiong
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- University of NanchangNanchangChina
| | - Yanghuan Ou
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- University of NanchangNanchangChina
| | - Shuaigang Liu
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Chen Li
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiaohua Yan
- University of NanchangNanchangChina
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesNanchang University Jiangxi Medical CollegeNanchangChina
| | - Liang Hao
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
5
|
Tu JB, Liu T, Li JF, Long J, Wang X, Liu WC, Gao XH. Global research trends and hotspots in metabolomics of osteosarcoma: a decade-spanning bibliometric and visualized analysis. Front Immunol 2024; 15:1463078. [PMID: 39445018 PMCID: PMC11496093 DOI: 10.3389/fimmu.2024.1463078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECT Osteosarcoma is a malignant tumor originating from the bones, commonly found in children and adolescents, especially in rapidly growing bone areas such as the knees and upper arms. In this study, we aim to delineate the evolution and convergence of research themes in osteosarcoma metabolomics over the past decade, identify major contributors, and forecast emerging trends that could direct future research efforts. METHOD The bibliometric method has been applied to systematically analyze the literature in the field of osteosarcoma metabolomics. The relevant literatures were collected from the Web of Science Core Collection, spanning from January 1, 2014, to December 31, 2023. Tools such as CiteSpace, Bibliometrix, and VOSviewer were used for the visual analysis of the collected literatures. The focused information includes institutions, journals, countries, authors, keywords, and citations. RESULT Various aspects in the field of osteosarcoma metabolism were analyzed. Shanghai Jiao Tong University has published the most papers in the past ten years, followed by Central South University and Zhejiang University. Among the sources, the international journal of molecular sciences publishes the most articles, and oncotarget is the journal with the highest H index. According to Bradford's law, there are 34 core journals identified. A total of 5501 authors participated in the creation of papers in this field. The distribution of authors follows Lotka`s Law, and 85.3% of authors have only one article. 46% of the corresponding authors are from China, but most of these corresponding authors are not good at international cooperation. China also has the largest number of publications, followed by the United States. It can be confirmed that China dominates this field. Among the keywords, "expression" is the keyword that has received the most attention in the past ten years. All keywords can be divided into 9 clusters. Based on the explosive words and hot topics each year, we speculate that future research will focus on the tumor microenvironment, molecular mechanisms and autophagy, targeted therapies and inhibitors. CONCLUSION In summary, this study comprehensively analyzed the current state of research in the field of osteosarcoma metabolism through bibliometric methods. The findings revealed the development trends and research hotspots in this field, which may provide valuable references for future research directions.
Collapse
Affiliation(s)
- Jun-Bo Tu
- Department of Orthopaedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Oethopaedics, Xinfeng County People's Hospital, Ganzhou, Jiangxi, China
| | - Tao Liu
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Jun-Feng Li
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Jian Long
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Xiu Wang
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Wen-Cai Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Hua Gao
- Department of Orthopaedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 PMCID: PMC11151680 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
7
|
Zhang Q, Zhu J, Xie J, Gu Y, Chen L. USP22 as a key regulator of glycolysis pathway in osteosarcoma: insights from bioinformatics and experimental approaches. PeerJ 2024; 12:e17397. [PMID: 38784391 PMCID: PMC11114114 DOI: 10.7717/peerj.17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Background Osteosarcoma is the most common primary malignant bone tumor, but its pathogenesis remains unclear. Ubiquitin-specific processing peptidase 22 (USP22) is reported to be highly expressed and associated with tumor malignancy and prognosis in cancers. However, the role and mechanism of USP22 in osteosarcoma is not fully understood. This study aims to investigate the function and potential mechanism of USP22 in osteosarcoma using bioinformatics analysis combined with experimental validation. Methods We first integrated transcriptomic datasets and clinical information of osteosarcoma from GEO and TCGA databases to assess the expression and prognostic value of USP22 in osteosarcoma. Then, differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify USP22-related co-expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the biological functions and signaling pathways of USP22 co-expressed genes. To validate the accuracy of bioinformatics analyses, we downregulated USP22 expression in osteosarcoma cell line Sao-2 using siRNA and assessed its effect on cell proliferation, migration, invasion, apoptosis, and regulation of key signaling pathways. Results We found that USP22 was highly expressed in osteosarcoma tissues and correlated with poor prognosis in osteosarcoma patients. USP22 also showed potential as a diagnostic marker for osteosarcoma. In addition, 344 USP22-related co-expressed genes were identified, mainly involved in signaling pathways such as glycolysis, oxidative phosphorylation, spliceosome, thermogenesis, and cell cycle. The in vitro experiments confirmed the accuracy and reliability of bioinformatics analyses. We found that downregulation of USP22 could inhibit Sao-2 cell proliferation, migration, invasion, and induce apoptosis. Furthermore, downregulation of USP22 significantly reduced aerobic glycolysis levels in Sao-2 cells and inhibited the expression of key enzymes and transporters in aerobic glycolysis pathways such as HK2, PKM2, and GLUT1. Conclusions USP22 plays a critical role in the occurrence, development, and prognosis of osteosarcoma. USP22 could influence Sao-2 cell proliferation, apoptosis, migration, and invasion by regulating the glycolysis pathway, thereby promoting osteosarcoma progression. Therefore, USP22 may be a potential therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yurong Gu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lu Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Fanelli G, Alloisio G, Lelli V, Marini S, Rinalducci S, Gioia M. Mechano-induced cell metabolism disrupts the oxidative stress homeostasis of SAOS-2 osteosarcoma cells. Front Mol Biosci 2024; 10:1297826. [PMID: 38726050 PMCID: PMC11079223 DOI: 10.3389/fmolb.2023.1297826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 05/12/2024] Open
Abstract
There has been an increasing focus on cancer mechanobiology, determining the underlying-induced changes to unlock new avenues in the modulation of cell malignancy. Our study used LC-MS untargeted metabolomic approaches and real-time polymerase chain reaction (PCR) to characterize the molecular changes induced by a specific moderate uniaxial stretch regimen (i.e., 24 h-1 Hz, cyclic stretch 0,5% elongation) on SAOS-2 osteosarcoma cells. Differential metabolic pathway analysis revealed that the mechanical stimulation induces a downregulation of both glycolysis and the tricarboxylic acid (TCA) cycle. At the same time, the amino acid metabolism was found to be dysregulated, with the mechanical stimulation enhancing glutaminolysis and reducing the methionine cycle. Our findings showed that cell metabolism and oxidative defense are tightly intertwined in mechanically stimulated cells. On the one hand, the mechano-induced disruption of the energy cell metabolism was found correlated with an antioxidant glutathione (GSH) depletion and an accumulation of reactive oxygen species (ROS). On the other hand, we showed that a moderate stretch regimen could disrupt the cytoprotective gene transcription by altering the expression levels of manganese superoxide dismutase (SOD1), Sirtuin 1 (SIRT1), and NF-E2-related factor 2 (Nrf2) genes. Interestingly, the cyclic applied strain could induce a cytotoxic sensitization (to the doxorubicin-induced cell death), suggesting that mechanical signals are integral regulators of cell cytoprotection. Hence, focusing on the mechanosensitive system as a therapeutic approach could potentially result in more effective treatments for osteosarcoma in the future.
Collapse
Affiliation(s)
- Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Veronica Lelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
9
|
Heberle A, Cappuccio E, Andric A, Kuen T, Simonini A, Weiss AKH. Mitochondrial enzyme FAHD1 reduces ROS in osteosarcoma. Sci Rep 2024; 14:9231. [PMID: 38649439 PMCID: PMC11035622 DOI: 10.1038/s41598-024-60012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
This study investigated the impact of overexpressing the mitochondrial enzyme Fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) in human osteosarcoma epithelial cells (U2OS) in vitro. While the downregulation or knockdown of FAHD1 has been extensively researched in various cell types, this study aimed to pioneer the exploration of how increased catalytic activity of human FAHD1 isoform 1 (hFAHD1.1) affects human cell metabolism. Our hypothesis posited that elevation in FAHD1 activity would lead to depletion of mitochondrial oxaloacetate levels. This depletion could potentially result in a decrease in the flux of the tricarboxylic acid (TCA) cycle, thereby accompanied by reduced ROS production. In addition to hFAHD1.1 overexpression, stable U2OS cell lines were established overexpressing a catalytically enhanced variant (T192S) and a loss-of-function variant (K123A) of hFAHD1. It is noteworthy that homologs of the T192S variant are present in animals exhibiting increased resistance to oxidative stress and cancer. Our findings demonstrate that heightened activity of the mitochondrial enzyme FAHD1 decreases cellular ROS levels in U2OS cells. However, these results also prompt a series of intriguing questions regarding the potential role of FAHD1 in mitochondrial metabolism and cellular development.
Collapse
Affiliation(s)
- Anne Heberle
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Elia Cappuccio
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andreas Andric
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Tatjana Kuen
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Anna Simonini
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander K H Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Zhou P, Zhang J, Feng J, Wang G. Construction of an oxidative phosphorylation-related gene signature for predicting prognosis and identifying immune infiltration in osteosarcoma. Aging (Albany NY) 2024; 16:5311-5335. [PMID: 38506898 PMCID: PMC11006489 DOI: 10.18632/aging.205650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Osteosarcoma is a prevalent malignant tumor that originates from mesenchymal tissue. It typically affects children and adolescents. Although it is known that the growth of osteosarcoma relies on oxidative phosphorylation for energy production, limited attention has been paid to exploring the potential of oxidative phosphorylation-related genes in predicting the prognosis of individuals suffering from osteosarcoma. METHODS All the data were retrieved from the UCSC Xena and GEO (GENE EXPRESSION OMNIBUS). Identification of the oxidative phosphorylation genes linked to the prognosis of individuals with osteosarcoma was done by means of univariate COX and LASSO regression analyses. Following that, patients were categorized into a high-risk group and a low-risk group as per the risk score determined by the identified oxidative phosphorylation genes. Furthermore, a comparison was made in terms of the survival and immune infiltration between both groups, and the prognostic model was established. RESULTS Five oxidative phosphorylation genes (ATP6V0D1, LHPP, COX6A2, MTHFD2, NDUFB9) associated with the prognosis of individuals with osteosarcoma were identified and the risk prognostic models were constructed. In the current research, the analysis of the ROC curves indicated a superior predictive accuracy exhibited by the risk model. The prognosis was adversely affected by immune infiltration in the high-risk group in comparison with the low-risk group. The function of the oxidative phosphorylation-related prognostic gene set was verified by GO and KEGG analysis. Furthermore, the link between oxidative phosphorylation-related genes and osteosarcoma immune infiltration was examined by GSEA analysis. CONCLUSIONS In this study, a prognostic model that demonstrated good predictive performance was constructed. Additionally, this study highlighted a correlation between oxidative phosphorylation-related genes and immune infiltration.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jinyan Feng
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
11
|
An F, Chang W, Song J, Zhang J, Li Z, Gao P, Wang Y, Xiao Z, Yan C. Reprogramming of glucose metabolism: Metabolic alterations in the progression of osteosarcoma. J Bone Oncol 2024; 44:100521. [PMID: 38288377 PMCID: PMC10823108 DOI: 10.1016/j.jbo.2024.100521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an adaptive response of tumour cells under hypoxia and low nutrition conditions. There is increasing evidence that glucose metabolism reprogramming can regulate the growth and metastasis of osteosarcoma (OS). Reprogramming in the progress of OS can bring opportunities for early diagnosis and treatment of OS. Previous research mainly focused on the glycolytic pathway of glucose metabolism, often neglecting the tricarboxylic acid cycle and pentose phosphate pathway. However, the tricarboxylic acid cycle and pentose phosphate pathway of glucose metabolism are also involved in the progression of OS and are closely related to this disease. The research on glucose metabolism in OS has not yet been summarized. In this review, we discuss the abnormal expression of key molecules related to glucose metabolism in OS and summarize the glucose metabolism related signaling pathways involved in the occurrence and development of OS. In addition, we discuss some of the targeted drugs that regulate glucose metabolism pathways, which can lead to effective strategies for targeted treatment of OS.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Zhonghong Li
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yujie Wang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Zhipan Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| |
Collapse
|
12
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
13
|
Mei Z, Shen Z, Pu J, Liu Q, Liu G, He X, Wang Y, Yue J, Ge S, Li T, Yuan Y, Yang L. NAT10 mediated ac4C acetylation driven m 6A modification via involvement of YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma. Cell Commun Signal 2024; 22:51. [PMID: 38233839 PMCID: PMC10795323 DOI: 10.1186/s12964-023-01321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 01/19/2024] Open
Abstract
The dynamic changes of RNA N6-methyladenosine (m6A) during cancer progression participate in various cellular processes. However, less is known about a possible direct connection between upstream regulator and m6A modification, and therefore affects oncogenic progression. Here, we have identified that a key enzyme in N4-acetylcytidine (ac4C) acetylation NAT10 is highly expressed in human osteosarcoma tissues, and its knockdown enhanced m6A contents and significantly suppressed osteosarcoma cell growth, migration and invasion. Further results revealed that NAT10 silence inhibits mRNA stability and translation of m6A reader protein YTHDC1, and displayed an increase in glucose uptake, a decrease in lactate production and pyruvate content. YTHDC1 recognizes differential m6A sites on key enzymes of glycolysis phosphofructokinase (PFKM) and lactate dehydrogenase A (LDHA) mRNAs, which suppress glycolysis pathway by increasing mRNA stability of them in an m6A methylation-dependent manner. YTHDC1 partially abrogated the inhibitory effect caused by NAT10 knockdown in tumor models in vivo, lentiviral overexpression of YTHDC1 partially restored the reduced stability of YTHDC1 caused by lentiviral depleting NAT10 at the cellular level. Altogether, we found ac4C driven RNA m6A modification can positively regulate the glycolysis of cancer cells and reveals a previously unrecognized signaling axis of NAT10/ac4C-YTHDC1/m6A-LDHA/PFKM in osteosarcoma. Video Abstract.
Collapse
Affiliation(s)
- Zhongting Mei
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhihua Shen
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaying Pu
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Liu
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guoxin Liu
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xuting He
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Wang
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinrui Yue
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiyu Ge
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tao Li
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ye Yuan
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
- National Key Laboratory of Frigid Cardiovascular Disease, Harbin, China.
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
14
|
Wu C, Tan J, Shen H, Deng C, Kleber C, Osterhoff G, Schopow N. Exploring the relationship between metabolism and immune microenvironment in osteosarcoma based on metabolic pathways. J Biomed Sci 2024; 31:4. [PMID: 38212768 PMCID: PMC10785352 DOI: 10.1186/s12929-024-00999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Metabolic remodeling and changes in tumor immune microenvironment (TIME) in osteosarcoma are important factors affecting prognosis and treatment. However, the relationship between metabolism and TIME needs to be further explored. METHODS RNA-Seq data and clinical information of 84 patients with osteosarcoma from the TARGET database and an independent cohort from the GEO database were included in this study. The activity of seven metabolic super-pathways and immune infiltration levels were inferred in osteosarcoma patients. Metabolism-related genes (MRGs) were identified and different metabolic clusters and MRG-related gene clusters were identified using unsupervised clustering. Then the TIME differences between the different clusters were compared. In addition, an MRGs-based risk model was constructed and the role of a key risk gene, ST3GAL4, in osteosarcoma cells was explored using molecular biological experiments. RESULTS This study revealed four key metabolic pathways in osteosarcoma, with vitamin and cofactor metabolism being the most relevant to prognosis and to TIME. Two metabolic pathway-related clusters (C1 and C2) were identified, with some differences in immune activating cell infiltration between the two clusters, and C2 was more likely to respond to two chemotherapeutic agents than C1. Three MRG-related gene clusters (GC1-3) were also identified, with significant differences in prognosis among the three clusters. GC2 and GC3 had higher immune cell infiltration than GC1. GC3 is most likely to respond to immune checkpoint blockade and to three commonly used clinical drugs. A metabolism-related risk model was developed and validated. The risk model has strong prognostic predictive power and the low-risk group has a higher level of immune infiltration than the high-risk group. Knockdown of ST3GAL4 significantly inhibited proliferation, migration, invasion and glycolysis of osteosarcoma cells and inhibited the M2 polarization of macrophages. CONCLUSION The metabolism of vitamins and cofactors is an important prognostic regulator of TIME in osteosarcoma, MRG-related gene clusters can well reflect changes in osteosarcoma TIME and predict chemotherapy and immunotherapy response. The metabolism-related risk model may serve as a useful prognostic predictor. ST3GAL4 plays a critical role in the progression, glycolysis, and TIME of osteosarcoma cells.
Collapse
Affiliation(s)
- Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hong Shen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chao Deng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christian Kleber
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Georg Osterhoff
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Nikolas Schopow
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
Luo Y, Sun M, Tan L, Li T, Min L. Nano-Based Drug Delivery Systems: Potential Developments in the Therapy of Metastatic Osteosarcoma-A Narrative Review. Pharmaceutics 2023; 15:2717. [PMID: 38140058 PMCID: PMC10747574 DOI: 10.3390/pharmaceutics15122717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Osteosarcoma, a predominant malignant bone tumor, poses significant challenges due to its high metastatic and recurrent nature. Although various therapeutic strategies are currently in use, they often inadequately target osteosarcoma metastasis. This review focuses on the potential of nanoscale drug delivery systems to bridge this clinical gap. It begins with an overview of the molecular mechanisms underlying metastatic osteosarcoma, highlighting the limitations of existing treatments. The review then transitions to an in-depth examination of nanoscale drug delivery technologies, emphasizing their potential to enhance drug bioavailability and reduce systemic toxicity. Central to this review is a discussion of recent advancements in utilizing nanotechnology for the potential intervention of metastatic osteosarcoma, with a critical analysis of several preclinical studies. This review aims to provide insights into the potential applications of nanotechnology in metastatic osteosarcoma therapy, setting the stage for future clinical breakthroughs and innovative cancer treatments.
Collapse
Affiliation(s)
- Yuanrui Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Minghao Sun
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Tao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Zheng C, Li R, Zheng S, Fang H, Xu M, Zhong L. The knockdown of lncRNA DLGAP1-AS2 suppresses osteosarcoma progression by inhibiting aerobic glycolysis via the miR-451a/HK2 axis. Cancer Sci 2023; 114:4747-4762. [PMID: 37817462 PMCID: PMC10728003 DOI: 10.1111/cas.15989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Osteosarcoma (OS) is one of the most aggressive bone tumors worldwide. Emerging documents have shown that long noncoding RNAs (lncRNAs) elicit crucial regulatory functions in the process of tumorigenesis. LncRNA DLGAP1-AS2 is recognized as a regulator in several types of cancers, but its biological functions and molecular mechanisms in OS remain to be elucidated. RT-qPCR and In situ hybridization (ISH) were used to evaluate DLGAP1-AS2 expression in OS samples. Western blotting was used for the measurement of the protein levels of hexokinase 2 (HK2) and epithelial-mesenchymal transition (EMT)-related markers. The proliferation of OS cells was determined using a CCK-8 assay and EdU assay. TUNEL assay and flow cytometry were performed to assess OS cell apoptosis. Glucose metabolism in vitro assays were used. The binding relations among miR-451a, HK2, and DLGAP1-AS2 were validated by luciferase reporter assay. The cellular distribution of DLGAP1-AS2 in OS cells was determined by FISH and subcellular fractionation assays. Mouse xenograft models were established to perform the experiments in vivo. We found that DLGAP1-AS2 expression was upregulated in OS tissues and cells. Downregulation of DLGAP1-AS2 expression suppressed the malignancy of OS cells by restraining cell proliferation, the EMT process, invasiveness, migration, and aerobic glycolysis and accelerating apoptotic behaviors. Of note, silenced DLGAP1-AS2 restrained tumor growth and metastasis in vivo. However, DLGAP1-AS2 overexpression accelerated the progression of OS. We further found that DLGAP1-AS2 upregulation was induced by hypoxia and low glucose. Additionally, DLGAP1-AS2 bound to miR-451a to upregulate HK2 expression. Rescue assays revealed that the DLGAP1-AS2/miR-451a/HK2 axis contributed to OS cell malignancy by promoting aerobic glucose metabolism. Overall, these findings revealed a new regulatory pathway where DLGAP1-AS2 upregulated HK2 expression by sponging miR-451a to accelerate OS development.
Collapse
Affiliation(s)
- Changjun Zheng
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Ronghang Li
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Shuang Zheng
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Hongjuan Fang
- Department of Electric DiagnosticThe Fourth Hospital of Jilin UniversityChangchunChina
| | - Meng Xu
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Lei Zhong
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
17
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
18
|
Carbó R, Rodríguez E. Relevance of Sugar Transport across the Cell Membrane. Int J Mol Sci 2023; 24:ijms24076085. [PMID: 37047055 PMCID: PMC10094530 DOI: 10.3390/ijms24076085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sugar transport through the plasma membrane is one of the most critical events in the cellular transport of nutrients; for example, glucose has a central role in cellular metabolism and homeostasis. The way sugars enter the cell involves complex systems. Diverse protein systems participate in the membrane traffic of the sugars from the extracellular side to the cytoplasmic side. This diversity makes the phenomenon highly regulated and modulated to satisfy the different needs of each cell line. The beautiful thing about this process is how evolutionary processes have diversified a single function: to move glucose into the cell. The deregulation of these entrance systems causes some diseases. Hence, it is necessary to study them and search for a way to correct the alterations and utilize these mechanisms to promote health. This review will highlight the various mechanisms for importing the valuable sugars needed to create cellular homeostasis and survival in all kinds of cells.
Collapse
Affiliation(s)
- Roxana Carbó
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55557-32911 (ext. 25704)
| | - Emma Rodríguez
- Cardiology Laboratory at Translational Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
19
|
Facchin C, Fraga-Timiraos AB, Schmitt J, Babaa N, Pannu N, Aliaga A, Larroque AL, Jean-Claude BJ. Molecular Analysis of the Superior Efficacy of a Dual Epidermal Growth Factor Receptor (EGFR)-DNA-Targeting Combi-Molecule in Comparison with Its Putative Prodrugs 6-Mono-Alkylamino- and 6,6-Dialkylaminoquinazoline in a Human Osteosarcoma Xenograft Model. Cells 2023; 12:914. [PMID: 36980255 PMCID: PMC10046901 DOI: 10.3390/cells12060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Background: ZR2002 is a dual EGFR-DNA-targeting combi-molecule that carries a chloroethyl group at the six-position of the quinazoline ring designed to alkylate DNA. Despite its good pharmacokinetics, ZR2002 is metabolized in vivo into dechlorinated metabolites, losing the DNA-alkylating function required to damage DNA. To increase the DNA damage activity in tumor cells in vivo, we compared ZR2002 with two of its 6-N,N-disubstituted analogs: "JS61", with a nitrogen mustard function at the six-position of the quinazoline ring, and "JS84", with an N-methyl group. Methods: Tumor xenografts were performed with the human Saos-2 osteosarcoma cell line expressing EGFR. Mice were treated with ZR2002, JS84 or JS61, and the tumor burden was measured with a caliper and CT/PET imaging. Drug metabolism was analyzed with LC-MS. EGFR and ɣ-H2AX phosphorylation were quantified via Western blot analysis and immunohistochemistry. Results: In vivo analysis showed that significant tumor growth inhibition was only achieved when ZR2002 was administered in its naked form. The metabolic dealkylation of JS61 and JS84 did not release sufficient concentrations of ZR2002 for the intratumoral inhibition of P-EGFR or enhanced levels of P-H2AX. Conclusions: The results in toto suggest that intratumoral concentrations of intact ZR2002 are correlated with the highest inhibition of P-EGFR and induction of DNA damage in vivo. ZR2002 may well represent a good drug candidate for the treatment of EGFR-expressing osteosarcoma.
Collapse
Affiliation(s)
- Caterina Facchin
- Cancer Drug Research Laboratory, The Research Institute of the McGill University Health Center (RI-MUHC), Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | | | | | | | | | | | | | - Bertrand J. Jean-Claude
- Cancer Drug Research Laboratory, The Research Institute of the McGill University Health Center (RI-MUHC), Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
20
|
Zhang J, Wang X, Song C, Li Q. Identification of four metabolic subtypes and key prognostic markers in lung adenocarcinoma based on glycolytic and glutaminolytic pathways. BMC Cancer 2023; 23:152. [PMID: 36782138 PMCID: PMC9926575 DOI: 10.1186/s12885-023-10622-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Glucose and glutamine are the main energy sources for tumor cells. Whether glycolysis and glutaminolysis play a critical role in driving the molecular subtypes of lung adenocarcinoma (LUAD) is unknown. This study attempts to identify LUAD metabolic subtypes with different characteristics and key genes based on gene transcription profiling data related to glycolysis and glutaminolysis, and to construct prognostic models to facilitate patient outcome prediction. METHODS LUAD related data were obtained from the Cancer Genome Atlas and Gene Expression Omnibus, including TCGA-LUAD, GSE42127, GSE68465, GSE72094, GSE29013, GSE31210, GSE30219, GSE37745, GSE50081. Unsupervised consensus clustering was used for the identification of LUAD subtypes. Differential expression analysis, weighted gene co-expression network analysis (WGCNA) and CytoNCA App in Cytoscape 3.9.0 were used for the screening of key genes. The Cox proportional hazards model was used for the construction of the prognostic risk model. Finally, qPCR analysis, immunohistochemistry and immunofluorescence colocalization were used to validate the core genes of the model. RESULT This study identified four distinct characterized LUAD metabolic subtypes, glycolytic, glutaminolytic, mixed and quiescent types. The glycolytic type had a worse prognosis than the glutaminolytic type. Nine genes (CXCL8, CNR1, AGER, ALB, S100A7, SLC2A1, TH, SPP1, LEP) were identified as hub genes driving the glycolytic/glutaminolytic LUAD. In addition, the risk assessment model constructed based on three genes (SPP1, SLC2A1 and AGER) had good predictive performance and could be validated in multiple independent external LUAD cohorts. These three genes were differentially expressed in LUAD and lung normal tissues, and might be potential prognostic markers for LUAD. CONCLUSION LUAD can be classified into four different characteristic metabolic subtypes based on the glycolysis- and glutaminolysis-related genes. Nine genes (CXCL8, CNR1, AGER, ALB, S100A7, SLC2A1, TH, SPP1, LEP) may play an important role in the subtype-intrinsic drive. This metabolic subtype classification, provides new biological insights into the previously established LUAD subtypes.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, Puren Hospital Affiliated to Wuhan Uiversity of Science and Technology, Wuhan, 430081 China
| | - Xiaopeng Wang
- Department of Respiratory and Critical Care Medicine, Puren Hospital Affiliated to Wuhan Uiversity of Science and Technology, Wuhan, 430081 China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Puren Hospital Affiliated to Wuhan Uiversity of Science and Technology, Wuhan, 430081, China.
| |
Collapse
|
21
|
Du X, Wei H, Zhang B, Wang B, Li Z, Pang LK, Zhao R, Yao W. Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front Oncol 2023; 13:1117867. [PMID: 37197432 PMCID: PMC10183593 DOI: 10.3389/fonc.2023.1117867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In osteosarcoma patients, metastasis of the primary cancer is the leading cause of death. At present, management options to prevent metastasis are limited and non-curative. In this study, we review the current state of knowledge on the molecular mechanisms of metastasis and discuss promising new therapies to combat osteosarcoma metastasis. Genomic and epigenomic changes, metabolic reprogramming, transcription factors, dysregulation of physiologic pathways, and alterations to the tumor microenvironment are some of the changes reportedly involved in the regulation of osteosarcoma metastasis. Key factors within the tumor microenvironment include infiltrating lymphocytes, macrophages, cancer-associated fibroblasts, platelets, and extracellular components such as vesicles, proteins, and other secreted molecules. We conclude by discussing potential osteosarcoma-limiting agents and their clinical studies.
Collapse
Affiliation(s)
- Xinhui Du
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
- *Correspondence: Xinhui Du,
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zhang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Bangmin Wang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Zhehuang Li
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Lon Kai Pang
- Baylor College of Medicine, Houston, TX, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Weitao Yao
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| |
Collapse
|