1
|
Wang J, Zhou T. Unveiling gut microbiota's role: Bidirectional regulation of drug transport for improved safety. Med Res Rev 2025; 45:311-343. [PMID: 39180410 DOI: 10.1002/med.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.
Collapse
Affiliation(s)
- Jinyi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Zhou Y, Chi M, Zhou Z, Wang L, Yuan L, Zheng L, Huang Y. Herb-drug interactions: Quantitative analysis of levofloxacin absorption and transporter expression in the rat intestine following combined treatment with Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross. J Pharm Biomed Anal 2024; 245:116156. [PMID: 38636190 DOI: 10.1016/j.jpba.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, a traditional Chinese medicinal plant, is often used to treat various urologic disorders in China. P. capitata extracts (PCE) have been used in combination with levofloxacin (LVFX) to treat urinary tract infections (UTIs) for a long time. However, little is known about the absorption of LVFX and transporter expression in the intestine after combined treatment with PCE, restricting the development and utilization of PCE. In view of this, a UPLC-MS/MS method was established for the determination of LVFX in intestinal sac fluid samples and in situ intestinal circulation perfusate samples to explore the effect of PCE on the intestinal absorption characteristics of LVFX ex vivo and in vivo. To further evaluate the interaction between LVFX and PCE, western blotting, immunohistochemistry, and RT-qPCR were utilized to determine the expression levels of drug transporters (OATP1A2, P-gp, BCRP, and MRP2) involved in the intestinal absorption of LVFX after combined treatment with PCE. Using the everted intestinal sac model, the absorption rate constant (Ka) and cumulative drug absorption (Q) of LVFX in each intestinal segment were significantly lower in groups treated with PCE than in the control group. Ka at 2 h decreased most in the colon segment (from 0.088 to 0.016 µg/h·cm2), and Q at 2 h decreased most in the duodenum (from 213.29 to 33.92 µg). Using the intestinal circulation perfusion model, the Ka value and percentage absorption rate (A) of LVFX in the small intestine decreased significantly when PCE and LVFX were used in combination. These results showed that PCE had a strong inhibitory effect on the absorption of LVFX in the rat small intestine (ex vivo and in vivo intestinal segments). In addition, PCE increased the protein and mRNA expression levels of efflux transporters (P-gp, BCRP, and MRP2) and decreased the expression of the uptake transporter OATP1A2 significantly. The effects increased as the PCE concentration increased. These findings indicated that PCE changed the absorption characteristics of levofloxacin, possibly by affecting the expression of transporters in the small intestine. In addition to revealing a herb-drug interaction (HDI) between PCE and LVFX, these results provide a basis for further studies of their clinical efficacy and mechanism of action.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Mingyan Chi
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Ling Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Li Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China.
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
3
|
Qiu S, Pan Y, Cui Y, Li M, Yue T, Pu S, Zhang Q, Wang M. HNF4α improves hepatocyte regeneration by upregulating PXR. FASEB J 2024; 38:e23830. [PMID: 39072875 DOI: 10.1096/fj.202400459rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) and the pregnane X receptor (PXR) are involved in hepatocyte regeneration. It is not clear whether HNF4α is involved in hepatocyte regeneration through the regulation of PXR. This study aims to explore the regulatory relationship between HNF4a and PXR, and whether it affects hepatocyte regeneration. A mouse PXR gene reporter and an HNF4α overexpression plasmid were constructed and transfected into mouse hepatoma cells (Hepa1-6). Overexpression of HNF4α, detection of the PXR gene reporter fluorescence value, PXR gene, and protein expression analysis were conducted to explore the regulatory relationship between HNF4α and PXR. Apoptosis and cell cycle data were measured to verify whether HNF4α is involved in hepatocyte regeneration through PXR. The luciferase gene reporter assay results indicated when HNF4α was overexpressed, the fluorescence value of the PXR gene reporter was higher than that in the control at 24 h. With increasing HNF4α expression, the PXR gene and protein expression increased, indicating that HNF4α binds to the PXR promoter and upregulates PXR expression. Apoptosis and cell cycle analysis results demonstrated that when the expression of HNF4α increased, the expression of PXR increased, the apoptosis rate decreased, and the proliferation rate increased. Meanwhile, when the upward trend of PXR gene expression was inhibited by ketoconazole, the proliferation rate decreased. By inhibiting HNF4α and creating a partial hepatectomy (PHx), we demonstrated that HNF4α can upregulate PXR to promote liver regeneration in vivo. Therefore, HNF4α is shown to improve hepatocyte regeneration by upregulating PXR, which provides a reference for future research on the combined application of drugs for the treatment of liver injury.
Collapse
Affiliation(s)
- Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tao Yue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sisi Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Zhang X, Mu H, Zhong Y, Wang R, Li W. Effect of High Altitude Environment on Pharmacokinetic and Pharmacodynamic of Warfarin in Rats. Curr Drug Metab 2024; 25:54-62. [PMID: 38409697 DOI: 10.2174/0113892002277930240201101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND High altitude environment affects the pharmacokinetic (PK) parameters of drugs and the PK parameters are an important theoretical basis for guiding the rational clinical use of drugs. Warfarin is an oral anticoagulant of the coumarin class commonly used in clinical practice, but it has a narrow therapeutic window and wide individual variation. However, the effect of high altitude environment on PK and pharmacodynamic (PD) of warfarin is unclear. OBJECTIVE The objective of this study is to investigate the effect of a high altitude environment on PK and PD of warfarin in rats. METHOD Rats were randomly divided into plain group and high altitude group and blood samples were collected through the orbital venous plexus after administration of 2 mg/kg warfarin. Warfarin concentrations in plasma samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PK parameters were calculated by the non-compartment model using WinNonlin 8.1 software. Meanwhile, the expression of PXR, P-gp and CYP2C9 in liver tissues was also determined by western blotting. The effect of high altitude environment on PD of warfarin was explored by measuring activated partial thromboplastin time (APTT) and prothrombin time (PT) values and then calculated international normalized ratio (INR) values based on PT. RESULTS Significant changes in PK behaviors and PD of warfarin in high altitude-rats were observed. Compared with the plain-rats, the peak concentration (Cmax) and the area under the plasma concentration-time curve (AUC) increased significantly by 50.9% and 107.46%, respectively. At the same time, high altitude environment significantly inhibited the expression of PXR, P-gp and CYP2C9 in liver tissues. The results of the PD study showed that high altitude environments significantly prolonged PT, APTT and INR values. CONCLUSION High altitude environment inhibited the metabolism and increased the absorption of warfarin in rats and increased the effect of anticoagulant effect, suggesting that the optimal dose of warfarin for patients at high altitude should be reassessed.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Hongfang Mu
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Yan Zhong
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Rong Wang
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| |
Collapse
|
5
|
Duo D, Duan Y, Zhu J, Bai X, Yang J, Liu G, Wang Q, Li X. New strategy for rational use of antihypertensive drugs in clinical practice in high-altitude hypoxic environments. Drug Metab Rev 2023; 55:388-404. [PMID: 37606301 DOI: 10.1080/03602532.2023.2250930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
High-altitude hypoxic environments have critical implications on cardiovascular system function as well as blood pressure regulation. Such environments place patients with hypertension at risk by activating the sympathetic nervous system, which leads to an increase in blood pressure. In addition, the high-altitude hypoxic environment alters the in vivo metabolism and antihypertensive effects of antihypertensive drugs, which changes the activity and expression of drug-metabolizing enzymes and drug transporters. The present study reviewed the pharmacodynamics and pharmacokinetics of antihypertensive drugs and its effects on patients with hypertension in a high-altitude hypoxic environment. It also proposes a new strategy for the rational use of antihypertensive drugs in clinical practice in high-altitude hypoxic environments. The increase in blood pressure on exposure to a high-altitude hypoxic environment was mainly dependent on increased sympathetic nervous system activity. Blood pressure also increased proportionally to altitude, whilst ambulatory blood pressure increased more than conventional blood pressure, especially at night. High-altitude hypoxia can reduce the activities and expression of drug-metabolizing enzymes, such as CYP1A1, CYP1A2, CYP3A1, and CYP2E1, while increasing those of CYP2D1, CYP2D6, and CYP3A6. Drug transporter changes were related to tissue type, hypoxic degree, and hypoxic exposure time. Furthermore, the effects of high-altitude hypoxia on drug-metabolism enzymes and transporters altered drug pharmacokinetics, causing changes in pharmacodynamic responses. These findings suggest that high-altitude hypoxic environments affect the blood pressure, pharmacokinetics, and pharmacodynamics of antihypertensive drugs. The optimal hypertension treatment plan and safe and effective medication strategy should be formulated considering high-altitude hypoxic environments.
Collapse
Affiliation(s)
- Delong Duo
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Qinghai Provincial People's Hospital, Xining, China
| | - Yabin Duan
- Qinghai University Affiliated Hospital, Xining, China
| | - Junbo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Qian Wang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
6
|
Zhao ZS, Yang LY, Li FX, Cun W, Wang XY, Cao CQ, Zhang QL. Gut flora alterations among aquatic firefly Aquatica leii inhabiting various dissolved oxygen in fresh water. iScience 2023; 26:107809. [PMID: 37744031 PMCID: PMC10514463 DOI: 10.1016/j.isci.2023.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Knowledge about the impact of different dissolved oxygen (DO) on the composition and function of gut bacteria of aquatic insects is largely unknown. Herein, we constructed freshwater environments with different DOs (hypoxia: 2.50 ± 0.50, normoxia: 7.00 ± 0.50, and hyperoxia: 13.00 ± 0.50 mg/L) where aquatic firefly Aquatica leii larvae lived for three months. Their gut flora was analyzed using the combination of 16S rRNA amplicon sequencing and metagenomics. The results showed no difference in alpha diversity of the gut flora between A. leii inhabiting various DOs. However, the relative abundance of several bacterial lineages presented significant changes, such as Pseudomonas. In addition, bacterial genes with an altered relative abundance in response to various DOs were primarily related to metabolism. The alteration of these functions correlated with the DO change. This is the first to uncover structure of gut flora under various DOs in aquatic insect larvae.
Collapse
Affiliation(s)
- Zi-Shun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Fu-Xin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Cun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xing-Yan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng-Quan Cao
- College of Life Sciences, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|