1
|
Bouissane L, Elfardi Y, Khatib S, Fatimi A, Pereira C, Cruz-Martins N. Medicinal plants and their derivatives for skin and hair: a Mediterranean perspective of women care. Arch Dermatol Res 2025; 317:710. [PMID: 40221958 PMCID: PMC11994543 DOI: 10.1007/s00403-025-04202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Since olden days, medicinal and aromatic plants have been consumed due to their well-known therapeutic, ornamental, culinary, and cosmetic properties. Plant-based cosmetics comprise a growing market offering brands of sustainable products with the ultimate goal of responding to the woman needs to boost their natural beauty, such as soothing, toning, moisturizing and protecting skin and hair. The increasing focus on body and beauty care, combined with a better understanding of the diverse biological effects of plants and their derivatives, has revitalized their significance in aesthetic, cosmetic, and dermatological contexts. Concurrently, the increasing prevalence of allergies and hypersensitivity reactions to synthetic additives commonly found in cosmetics and other skin products has spurred interest in seeking healthier and more efficacious natural alternatives. An intense investigation has been stated around the formulation of medicinal plants- and other plant-based cosmetic products for dermatological and aesthetic purposes. Similarly, a raising awareness by cosmetics' manufacturers and related industries have been progressively stated, culminating with the emergence of a line of plant-based cosmetics increasingly safe and with reliable quality features for multiple purposes. Although a high demand for natural-based products for cosmetic purposes has been stated, further studies are required to deepening knowledge on their beneficial properties, safety and quality features and to identify the main limitations and likelihood of side effects occurrence. In this review, an outlook of the current scenario regarding the use of medicinal and aromatic plants as cosmetic ingredients in the formulation of skin care and other dermatological products traditionally used by the Mediterranean woman for prevention and even cure of skin and hair diseases or for beautification is provided.
Collapse
Affiliation(s)
- Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000, Beni-Mellal, Morocco.
| | - Yahya Elfardi
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000, Beni-Mellal, Morocco
| | - Sohaib Khatib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000, Beni-Mellal, Morocco
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Mghila Campus, P.O. Box 592, 23000, Beni Mellal, Morocco
| | - Carla Pereira
- CIMO, La SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319, Porto, Portugal.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
| |
Collapse
|
2
|
Elhak S, El-Shabrawy Y, Belal F, Magdy G. Rapid Microwave-Assisted Synthesis of Nitrogen-Doped Carbon Quantum Dots as Fluorescent Nanoprobe for Sensitive Estimation of Tizanidine in Human Urine and Dosage Forms: Application to Content Uniformity Testing. LUMINESCENCE 2025; 40:e70160. [PMID: 40170516 DOI: 10.1002/bio.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
This study introduces a novel sensitive and environment-friendly spectrofluorimetric method for determination of an important muscle relaxant drug, tizanidine, with no need for using organic solvents or any pre-derivatization steps. This strategy depends on tizanidine quenching effect on the native fluorescence of newly synthesized nitrogen-doped carbon quantum dots (N-CQDs) from Tetraclinis articulata extract, for the first time, using a microwave-assisted synthetic strategy in only 4 min. Full characterization of the synthesized N-CQDs was performed by different microscopic and spectroscopic techniques. The synthesized N-CQDs showed good fluorescence emission at 380 nm when excited at 312 nm. This method is the first one for tizanidine analysis spectrofluorimetrically using N-CQDs as nanosensors. The developed approach demonstrated good linearity within the range of 0.1-1.0 μg/mL with a correlation coefficient of 0.9997 and a detection limit of 0.024 μg/mL. The developed approach was successfully applied for tizanidine estimation in its tablets and human urine samples with high % recoveries (98.04-101.67) and low %RSD (< 1.5) values. Furthermore, the content uniformity testing of the tizanidine tablets was performed in accordance with the USP guidelines. The method's eco-friendliness was evaluated using AGREE and ComplexGAPI metrics. Validation of the method was performed according to ICHQ2 (R2) guidelines.
Collapse
Affiliation(s)
- Sara Elhak
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Yasser El-Shabrawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| |
Collapse
|
3
|
Khatib S, Mahdi I, Drissi B, Fahsi N, Bouissane L, Sobeh M. Tetraclinis articulata (Vahl) Mast.: Volatile constituents, antioxidant, antidiabetic and wound healing activities of its essential oil. Heliyon 2024; 10:e24563. [PMID: 38317922 PMCID: PMC10839871 DOI: 10.1016/j.heliyon.2024.e24563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic syndrome known to contribute to impaired wound healing. This condition can be further worsened by excessive melanin production, elastin degradation, and chronic infections at the wound site, potentially leading to melasma and diabetic dermopathy. The purpose of this study was to investigate the phytochemical profile and inhibitory effects of Tetraclinis articulata essential oil (TAEO) on target enzymes involved in diabetes pathogenesis and chronic wound remodeling, namely α-amylase, α-glucosidase, tyrosinase, and elastase, as well as its in vitro antibacterial activity. Gas chromatography and mass spectrometry (GC-MS) analysis of TAEO led to the identification of 46 volatile compounds, representing 96.61 % of TAEO. The major metabolites were bornyl acetate (29.48 %), α-pinene (8.96 %), germacrene D (7.70 %), and d-limonene (5.90 %). TAEO exhibited limited scavenging activity against DPPH free radicals, whereas the FRAP and ABTS assays indicated a relatively higher antioxidant activity. Remarkably, TAEO disclosed a promising in vitro antidiabetic activity against α-glucosidase with an IC50 value of 178 ± 1.6 μg/mL, which is comparable to the standard inhibitor acarbose (IC50 = 143 ± 1.1 μg/mL). In silico, molecular docking analysis against α-glucosidase identified 15 compounds that interacted with the enzyme's active site, whereas skin permeability and sensitization assessments indicated that 26 out of the 44 identified volatile compounds were predicted to be free from any skin sensitivity risk. On the other hand, moderate inhibitory activity was recorded against α-amylase, tyrosinase, and elastase. Notably, TAEO at 5 % significantly suppressed biofilm formation by P. aeruginosa, S. aureus, and E. faecalis, common skin pathogens associated with wound infections, and reduced their swarming motility. Our findings suggest that TAEO may hold the potential as a natural remedy for type 2 diabetes and its associated co-morbidities, especially chronic wounds.
Collapse
Affiliation(s)
- Sohaib Khatib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Badreddine Drissi
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Nidal Fahsi
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
4
|
Zhao ZJ, Sun YL, Ruan XF. Bornyl acetate: A promising agent in phytomedicine for inflammation and immune modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154781. [PMID: 37028250 DOI: 10.1016/j.phymed.2023.154781] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Bornyl acetate (BA), as a bicyclic monoterpene, is an active volatile component widely found in plants across the globe. BA can be used as essence and food flavor agent and is widely used in perfumes and food additives. It remains a key component in several proprietary Chinese medicines. PURPOSE This review summarized the pharmacological activity and research prospects of BA, making it the first of its kind to do so. Our aim is to provide a valuable resource for those pursuing research on BA. METHODS Databases including PubMed, Web of Science, and CNKI were used based on search formula "(bornyl acetate) NOT (review)" from 1967 to 2022. For the relevant knowledge of TCM, we quoted Chinese literature. Articles related to agriculture, industry, and economics were excluded. RESULTS BA showed rich pharmacological activities: It inhibits the NF-κB signal pathway via affecting the phosphorylation of IKB and the production of IKKs, inhibits the MAPK signal pathway via inhibiting the phosphorylation of ERK, JNK, and p38, down-regulates pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, up-regulates IL-11, reduces NO production, regulates immune response via up-regulating CD86+, decreases catecholamine secretion, and reduces tau protein phosphorylation. In addition to the pharmacological activities of BA, its toxicity and pharmacokinetics were also discussed in this paper. CONCLUSION BA has promising pharmacological properties, especially anti-inflammatory and immunomodulatory effects. It also has sedative properties and potential for use in aromatherapy. Compared to traditional NSAIDs, it has a more favorable safety profile while maintaining efficacy. BA has potential for developing novel drugs for treating various conditions.
Collapse
Affiliation(s)
- Zhe-Jun Zhao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Long Sun
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Fen Ruan
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Khatib S, Sobeh M, Faraloni C, Bouissane L. Tanacetum species: Bridging empirical knowledge, phytochemistry, nutritional value, health benefits and clinical evidence. Front Pharmacol 2023; 14:1169629. [PMID: 37153781 PMCID: PMC10157496 DOI: 10.3389/fphar.2023.1169629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: The Tanacetum genus consists of 160 accepted flowering species thriving throughout temperate regions, mainly in the Mediterranean Basin, Northern America, and southwestern and eastern Asia. Tanacetum species bear a long-standing record of use in the folk medicine of indigenous tribes and communities worldwide, along with multitudinous applications in traditional cuisines, cosmeceuticals, and agricultural fields. Methods: Up-to-date data related to traditional uses, phytochemistry, biological activities, toxicity and clinical trials of the genus Tanacetum were systematically reviewed from several online scientific engines, including PubMed, Web of Science, Scopus, SciFinder, Wiley Online, Science Direct, and Cochrane library. Results and discussion: Over the past three decades, 241 metabolites have been isolated from nearly twenty species, including phenolic acids, flavonoids, coumarins, fatty acids and alkanes, aldehydes, volatile compounds, and naphthoquinones. Some unique metabolites have also been identified, such as the ceramides tanacetamide (A-D) from T. artemisioides, pyrethrins from T. cinerariifolium, and sesquiterpene lactones from several species. However, these secondary metabolites are still poorly studied despite in vitro clues highlighting their colossal pharmacological properties, especially as hypotensive, neuroprotective, anticancer, and antimicrobial agents. Scientific studies have validated some traditional claims of the plant, such as antidiabetic, anticancer, anthelmintic, insecticide, antioxidant, and hepatoprotective activities, as well as against festering wounds, skin ulcers, urinary tract infections, and sexually transmitted diseases. Other ethnomedicinal uses for arthritis, gout, rheumatism, anemia, and as a litholytic, antivenom and diaphoretic have not yet been supported and would constitute the subject of further research.
Collapse
Affiliation(s)
- Sohaib Khatib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- *Correspondence: Latifa Bouissane, ; Mansour Sobeh,
| | - Cecilia Faraloni
- Institute of BioEconomy, IBE, National Research Council, Florence, Italy
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- *Correspondence: Latifa Bouissane, ; Mansour Sobeh,
| |
Collapse
|