1
|
Han L, Tian X, Yang X, Li T, Wang S, Bao Y, Meng X. The pathogenesis of hepatocellular carcinoma: ERK/ULK1/NCOA4-mediated inhibition of iron autophagy, and Epimedium extract targeted modulation of this pathway to treat hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156666. [PMID: 40121885 DOI: 10.1016/j.phymed.2025.156666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The pathogenesis of hepatocellular carcinoma (HCC) is characterized by its complexity and diversity, involving processes such as glycolysis, autophagy, and cellular immunity. Notably, the role of ERK/ULK1/NCOA4-mediated inhibition of iron autophagy in HCC pathogenesis has not been previously reported. This study provides a novel elucidation of HCC pathogenesis and identifies the clinical adjuvant therapy drug, Epimedium, as a potential treatment based on this mechanism. The research clarifies the regulatory effects of Epimedium on the ERK/ULK1/NCOA4-mediated inhibition of iron autophagy pathway in the treatment of HCC, thereby offering a scientific foundation for clinical treatment strategies and the development of innovative drugs. PURPOSE The objective of this study is to uncover a new aspect of HCC pathogenesis, ERK/ULK1/NCOA4-mediated inhibition of iron autophagy, and to screen for clinical targeted adjuvant therapy drugs based on this mechanism. METHODS A HCC rat model was induced with N-Nitrosodiethylamine (DEN). The physiological status of the HCC rats was assessed through indicators such as body weight and organ index. Liver damage in HCC rats was evaluated using hematoxylin and eosin (HE) staining and biochemical markers. Additionally, untargeted metabolomics was employed to explore the pathogenesis of HCC. UPLC-Q-TOF-MS combined with network pharmacology was employed to elucidate novel mechanisms, predict pathway targets, filtrate active ingredients and analyze the biological processes and signaling pathways modulated by EPME. DEN liver cancer rats were treated with different concentrations of EPME and protein expression levels were assessed by Western blot analysis. Molecular docking techniques were utilized to assess the binding affinity between the core components of EPME and target proteins. A HepG2 liver cancer in vitro model, in combination with inhibitor (SBI-0206965), was employed to verify the modulatory effects of EPME and its active ingredients on the ERK/ULK1/NCOA4 signaling pathway. Microscale thermophoretic (MST) was employed to verify the binding ability of the EPME core components to the ULK1 protein. RESULTS Metabolomics combined with network pharmacology revealed a novel pathogenesis of HCC, which is ERK/ULK1/NCOA4-mediated iron autophagy inhibition. EPME can activate iron autophagy mediated by ERK/ULK1/NCOA4 through active ingredients such as icaritin, astragalin, and emodin, thereby enhancing the survival conditions of HCC-afflicted rats and mitigating liver damage and carcinogenesis, ultimately achieving therapeutic outcomes in HCC treatment. CONCLUSION The ERK/ULK1/NCOA4-mediated iron autophagy inhibition represents a novel therapeutic mechanism for HCC. The clinical adjuvant drug EPME may exert therapeutic effects on HCC by activating ERK/ULK1/NCOA4-mediated iron autophagy.
Collapse
Affiliation(s)
- Liying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| | - Xiangmu Tian
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| | - Xinxin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang 110036, China.
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang 110036, China.
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang 110036, China.
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.
| |
Collapse
|
2
|
Li J, Zhang S, Yu C, Chen X, Zhong W, Shen Y. Arjunolic acid inhibits Wnt3a-mediated macrophage M2 polarization to suppress osteosarcoma progression. GENES & NUTRITION 2025; 20:11. [PMID: 40399780 PMCID: PMC12096606 DOI: 10.1186/s12263-025-00771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Osteosarcoma (OS) is a bone tumor characterized by a high recurrence rate and poor prognosis. Arjunolic acid (AA), the most abundant triterpene component in Cyclocarya paliurus, is reported to have anti-tumor effects. Its specific role in OS is still unknown, which we aim to investigate in our study. METHODS An OS mouse model was established to investigate the effects of AA. Subsequently, M2 macrophages and M0 macrophages pretreated with AA were co-cultured with OS cells. The impact of AA on OS cell behavior (proliferation, apoptosis, migration, and invasion) was evaluated via EdU staining, flow cytometry, and Transwell assays. Concurrently, the expression of M1- and M2-associated genes (CD86, CD163, IL-6, Arg1) was quantified to assess AA's regulatory role in macrophages within the tumor microenvironment (TME). Knockdown or overexpression of Wnt3a in AA-treated M0 macrophages to determine whether AA modulates Wnt3a-mediated M2 polarization, which was further validated in vivo. RESULTS In vivo, AA inhibited tumor progression in OS mice. Concurrently, AA-treated macrophages inhibited OS cell malignant behavior, and AA inhibited OS cell-mediated macrophage M2-type polarization. Mechanistically, AA inhibits the malignant behavior of OS cells and inhibits tumor progression in OS mice by suppressing Wnt3a-mediated macrophage M2 polarization. Additionally, AA-induced macrophage conversion to a pro-inflammatory phenotype in the TME of OS mice. CONCLUSION Our experiment demonstrated that AA from Cyclocarya paliurus inhibits Wnt3a-mediated M2 macrophage polarization to suppress the progression of osteosarcoma, providing a pharmacological foundation for developing therapies against OS.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, Changsha, Hunan, China
| | - Shuang Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, Changsha, Hunan, China
| | - Chao Yu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, Changsha, Hunan, China
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, Changsha, Hunan, China
| | - Weiye Zhong
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, Changsha, Hunan, China
| | - Yi Shen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, Changsha, Hunan, China.
| |
Collapse
|
3
|
Liu WJ, Ma SB, Li JX, Fan BS, Du Y, Xu ZH, Li XQ, Cao W, Tang YP. Explore the key targets and mechanism of Danggui Buxue decoction against ulcerative colitis: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119580. [PMID: 40043827 DOI: 10.1016/j.jep.2025.119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese herbal formula, Danggui Buxue decoction (DBD), is known for its ability in tonifying Qi and promoting the production of blood. It is extensively utilized in treating menstrual anemia and chronic non-healing ulcers. Whereas the impact of DBD on ulcerative colitis (UC) has not been explored, and its therapeutic mechanisms are not well comprehended. AIM OF THE STUDY The research sought to investigate the impacts and mechanisms of DBD on UC through a blend of network pharmacology and experimental confirmation. MATERIALS AND METHODS A network pharmacology approach was utilized to predict DBD's potential mechanisms of action on UC, which were then validated through experimental studies using a dextran sulfate sodium (DSS)-induced UC mouse model to assess its protective effects on intestinal injury. Western blot analysis was conducted to examine changes in protein expression within the primary pathway affected by DBD. RESULTS A total of 27 active chemical components, 265 potential targets, and 5867 UC target genes were identified through screening. Of these, 172 common targets were found between DBD and UC. Additionally, 2359 GO biological process items and 157 KEGG signal pathways were identified through analysis. Molecular docking revealed strong binding ability between the main compounds and target proteins. In the DSS-induced UC mouse model, DBD reduced intestinal inflammation and attenuated colonic pathological damage, which is associated with DBD's inhibition of the PI3K/AKT pathway. CONCLUSIONS DBD significantly attenuates colonic inflammation and preserves the integrity of the intestinal mucosa. Furthermore, the anti-UC efficacy of DBD is intricately linked to the suppression of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Shan-Bo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, 710032, Xi'an, China
| | - Jia-Xin Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Bei-Sheng Fan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yan Du
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhi-Hui Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China
| | - Wei Cao
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
4
|
Zhang Z, Mao Q, Gu Y, Shang X, Huang Y, Fang S. Ploidy levels influence cold tolerance of Cyclocarya paliurus: insight into the roles of WRKY genes. BMC Genomics 2025; 26:31. [PMID: 39806283 PMCID: PMC11730173 DOI: 10.1186/s12864-025-11218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited. Based on the ploidy identification of tested materials, an imitation experiment was conducted to investigate the variation in freezing injury index and expression of the CpaWRKY family members in diploid and tetraploid C. paliurus seedlings. The results indicated a significant difference in freezing injury index between diploids and tetraploids under the imitating temperature of southern warm temperate zone, with diploids showing better cold tolerance than the tetraploids. A total of 88 CpaWRKY genes were identified from the C. paliurus genome, and RNA-Seq results showed significant differences in WRKY gene expression in C. paliurus under cold stress. Correlation analysis between differentially expressed genes and freezing injury index suggested that CpaWRKY14, CpaWRKY26 and CpaWRKY86 play essential roles in the diploids to respond to cold stress. In contrast, the major genes involved in the cold stress response in tetraploids were CpaWRKY14, CpaWRKY60, CpaWRKY63 and CpaWRKY81. Moreover, CpaWRKY14 expression was considerably higher in diploids compared to tetraploids. The results from this study not only enhance our comprehension of the role of the CpaWRKY genes in cold stress, but also provide a foundation for the genetic improvement of C. paliurus.
Collapse
Affiliation(s)
- Zanpei Zhang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
| | - Qianxing Mao
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
| | - Yueying Gu
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
| | - Xulan Shang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing, 210037, China
| | - Yanmeng Huang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China
| | - Shengzuo Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China.
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing, 210037, China.
| |
Collapse
|
5
|
Wang C, Li M, Zhang J, Li H, Li Y, Huang S, Zhu H, Liu Z. Associations of the Intake of Individual and Multiple Flavonoids with Metabolic Dysfunction Associated Steatotic Liver Disease in the United States. Nutrients 2025; 17:205. [PMID: 39861335 PMCID: PMC11768006 DOI: 10.3390/nu17020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Evidence regarding the individual and combined impact of dietary flavonoids on the risk of metabolic dysfunction associated with steatotic liver disease (MASLD) remains scarce. Our objective is to evaluate the association between individual and multiple dietary flavonoids with MASLD in adults. METHODS Data sets were obtained from the National Health and Nutrition Examination Survey (NHANES), 2017-2018. In total, 2581 participants aged over 18 years, with complete information on dietary flavonoid intake, MASLD, and covariates, were included. Flavonoid intake was energy-adjusted using the residual method. Logistic regression analysis was employed to examine the impact of total flavonoid intake on MASLD. Weighted quantile sum (WQS) analyses were used to evaluate the combined and individual effects of flavonoids on MASLD and to identify the predominant types with the most significant contribution to MASLD prevention. RESULTS The highest tertile of total flavonoid intake was associated with a 29% reduction in the risk of MASLD compared to the lowest tertile after multivariable adjustments (OR: 0.71, 95% CI: 0.51-0.97). The WQS analysis revealed that anthocyanidins, flavones, and flavanones were the most critical contributors among six subclasses (weights = 0.317, 0.279, and 0.227, respectively) and naringenin, apigenin, and delphinidin were the most critical contributors among 29 monomers. (weights = 0.240, 0.231, and 0.114, respectively). Also, a higher intake of anthocyanidins, flavones, naringenin, apigenin, and delphinidin was linked to a reduced risk of MASLD (p < 0.05). CONCLUSIONS Our findings suggested that a higher flavonoid intake is associated with a lower risk of MASLD, with anthocyanidins, flavones, flavanones, naringenin, apigenin, delphinidin, and myricetin contributing most to the protective effects of flavonoids.
Collapse
Affiliation(s)
- Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (C.W.); (M.L.); (J.Z.); (S.H.); (H.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengchu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (C.W.); (M.L.); (J.Z.); (S.H.); (H.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiali Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (C.W.); (M.L.); (J.Z.); (S.H.); (H.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongguang Li
- Department of Clinical Nutrition, Zhongshan City People’s Hospital, Zhongshan 528400, China; (H.L.); (Y.L.)
| | - Yue Li
- Department of Clinical Nutrition, Zhongshan City People’s Hospital, Zhongshan 528400, China; (H.L.); (Y.L.)
| | - Siyu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (C.W.); (M.L.); (J.Z.); (S.H.); (H.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (C.W.); (M.L.); (J.Z.); (S.H.); (H.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (C.W.); (M.L.); (J.Z.); (S.H.); (H.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
6
|
Qian Y, Xu Y, Zhang Q, Huang C, Li H, Gao L, Wu S, Qi C, Wen X, Zhou X, Ying C. Jaranol alleviates cognitive impairment in db/db mice through the PI3K/AKT pathway. Metab Brain Dis 2025; 40:88. [PMID: 39760807 DOI: 10.1007/s11011-024-01527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
The widely used Radix Astragali (RA) has significant therapeutic effects on cognitive impairment (CI) caused by type 2 diabetes (T2DM). However, the effective active ingredients and the precise mechanism underly RA alleviation of T2DM-induced CI still require further study. In this study, we aim to elucidate whether and how jaranol, a key effective active ingredient in RA, influences CI in db/db mice. We used various online databases and Cytoscape to screen jaranol as the most active ingredient of RA in the treatment of T2DM-induced CI. The fear conditioning experiment, new object recognition (NOR) test, and Morris water maze (MWM) test were conducted to assess the improvement effect of jaranol on CI in diabetic mice. The protein-protein interaction (PPI) network, Cytoscape, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify key genes. The levels of AKT and caspase-3 were determined by Western blotting. The number of surviving hippocampal neurons was verified through Nissl staining. AutoDock was utilized for predicting potential binding sites between jaranol and key genes.As a result, jaranol attenuated CI in db/db mice probably through activation of PI3K-AKT signaling pathway by inhibiting cell apoptosis in hippocampus. Furthermore, A329 near the active site of AKT1 had hydrogen bond with jaranol. In conclusion, we suggest that jaranol may have therapeutic applications in T2DM-induced CI by targeting the PI3K-AKT signaling pathway directly via key sites. Our study provides alternative drugs and potential therapeutic targets for the prevention and treatment of T2DM-induced CI.
Collapse
Affiliation(s)
- Ye Qian
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yue Xu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Endocrinology, Shuyang County Hospital of Traditional Chinese Medicine, Jiangsu, 223600, China
| | - Qiuyu Zhang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chengyu Huang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hui Li
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Gao
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shidi Wu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chengyu Qi
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiangru Wen
- Department of Chemistry, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xiaoyan Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Changjiang Ying
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
7
|
Chen D, Chen X, Zheng X, Zhu J, Xue T. Combined metabolomic and transcriptomic analysis reveals the key genes for triterpenoid biosynthesis in Cyclocarya paliurus. BMC Genomics 2024; 25:1197. [PMID: 39695362 PMCID: PMC11654178 DOI: 10.1186/s12864-024-11125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cyclocarya paliurus is a high-value tree, and it contains a variety of bioactive secondary metabolites which have broad application prospects in medicine, food and health care. Triterpenoids can improve the bioactive function of C. paliurus health tea and also improve the efficacy of health care tea. RESULTS The results of this study showed that there were 69 kinds were terpenoids, and triterpenoids accounted for more than 80%. We excavated 5 kinds of triterpenoid metabolites with high content and significant difference dynamics, namely, corosolic acid, asiatic acid, maslinic acid, ursolic acid and oleanolic acid. The co-expression analysis identified CYP71D8 and CYP716A15 co-expressed with β-AS may generate oleanane type triterpenoids by modifying β-amyrin, while CYP71AN24 and CYP98A2 co-expressed with LUS may play a key role in lupine type triterpenoids biosynthesis. MYB,Whirly,WRKY and bHLH families, which showed strong correlation with function genes, may play an important role in the regulation of P450 and OSC expression. A total of 20 modules were identified by WGCNA analysis, and CYP71AU50 and CYP716A15 in tan and orange modules may play a major role in the synthesis of oleanolic acid, ursolic acid and asiatic acid, while CYP82D47 in lightcyan 1 module may be the hub gene for the biosynthesis of corosolic acid and maslinic acid. CONCLUSIONS Our findings mined candidate genes closely related to triterpenoid synthesis in C. paliurus. The results of this paper can provide scientific reference for breeding high-content triterpenoid varieties of C. paliurus.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Xupeng Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
8
|
Ma J, Mo J, Feng Y, Wang L, Jiang H, Li J, Jin C. Combination of transcriptomic and proteomic approaches helps unravel the mechanisms of luteolin in inducing liver cancer cell death via targeting AKT1 and SRC. Front Pharmacol 2024; 15:1450847. [PMID: 39234106 PMCID: PMC11371790 DOI: 10.3389/fphar.2024.1450847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Luteolin, a natural compound commonly used in traditional Chinese medicine, shows clinical potential as an anti-liver cancer agent. The mechanisms underlying the anti-liver cancer effect of luteolin are limited versus those reported for other cancers. Accordingly, this study was conducted to bridge the existing knowledge gap. Methods Transcriptomic and proteomic analyses of the response of the hepatocellular carcinoma cell line HuH-7 to luteolin were conducted, and a possible pathway was elucidated using confocal laser scanning microscopy (CLSM), flow cytometry, western blotting, qRT-PCR and bio-layer interferometry assay to systematically explore the possible mechanisms underlying the inhibition of the proliferation of liver cancer cells by luteolin. Results and Discussion Results showed that luteolin significantly inhibited HuH-7 cell proliferation. Transcriptomic and proteomic analyses collectively revealed that luteolin could promote cell cycle arrest and apoptosis in HuH-7 cells through transcription factors p53, nuclear factor kappa B (NF-κB), FOXO, ATF2, and TCF/LEF via AKT1, as well as the KEAP-NRF and SRC-STAT3 pathways. Furthermore, AKT1 and SRC were identified as the 2 targets of luteolin. Nuclear translocation of transcription factors p53 and NF-κB were affected by luteolin administration. Additionally, AKT1 activity affected normal metabolism in HuH-7 cells and resulted in the accumulation of reactive oxygen species, which activated MOMP and further promoted apoptosis. Our results systematically elucidate the mechanism of luteolin in inhibiting the proliferation of liver cancer cells, mainly through cell cycle arrest and apoptosis via targeting AKT1 and SRC.
Collapse
Affiliation(s)
- Junxia Ma
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Yifu Feng
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Junmin Li
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
9
|
Wang Y, Ma J, Tong Y, Li N, Li J, Qi Z. Antidiabetic effects and mechanisms of Cyclocarya paliurus leaf flavonoids via PIK3CA. J Funct Foods 2024; 113:106031. [DOI: 10.1016/j.jff.2024.106031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
10
|
Saengboonmee C, Thithuan K, Mahalapbutr P, Taebprakhon C, Aman A, Rungrotmongkol T, Kamkaew A, Schevenels FT, Chompupong T, Wongkham S, Lekphrom R. Anti-proliferative Effects of Pinocembrin Isolated From Anomianthus dulcis on Hepatocellular Carcinoma Cells. Integr Cancer Ther 2024; 23:15347354241237519. [PMID: 38462928 PMCID: PMC10929038 DOI: 10.1177/15347354241237519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/20/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer. Anomianthus dulcis (Dunal) J.Sinclair (syn. Uvaria dulcis) has been used in Thai traditional medicine in various therapeutic indications. Phytochemical constituents of A. dulcis have been isolated and identified. However, their effects on liver cancer and the associated mechanisms have not been elucidated. METHODS Dry flowers of A. dulcis were extracted using organic solvents, and chromatographic methods were used to purify the secondary metabolites. The chemical structures of the pure compounds were elucidated by analysis of spectroscopic data. Cytotoxicity against HCC cells was examined using SRB assay, and the effects on cell proliferation were determined using flow cytometry. The mechanisms underlying HCC inhibition were examined by molecular docking and verified by Western blot analysis. RESULTS Among 3 purified flavonoids, pinocembrin, pinostrobin, and chrysin, and 1 indole alkaloid (3-farnesylindole), only pinocembrin showed inhibitory effects on the proliferation of 2 HCC cell lines, HepG2 and Li-7, whereas chrysin showed specific toxicity to HepG2. Pinocembrin was then selected for further study. Flow cytometric analyses revealed that pinocembrin arrested the HCC cell cycle at the G1 phase with a minimal effect on cell death induction. Pinocembrin exerted the suppression of STAT3, as shown by the molecular docking on STAT3 with a better binding affinity than stattic, a known STAT3 inhibitor. Pinocembrin also suppressed STAT3 phosphorylation at both Tyr705 and Ser727. Cell cycle regulatory proteins under the modulation of STAT3, namely cyclin D1, cyclin E, CDK4, and CDK6, are substantially suppressed in their expression levels. CONCLUSION Pinocembrin extracted from A. dulcis exerted a significant growth inhibition on HCC cells via suppressing STAT3 signaling pathways and its downstream-regulated genes.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanyarat Thithuan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Cheerapinya Taebprakhon
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | - Tanakiat Chompupong
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ratsami Lekphrom
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|