1
|
Qi W, Cao X, Chen Y, Chen H, Zhang N, Liu R, Wang W, Liu Q, Zheng S, Li S, Li X, Zao X, Ye Y. JiGuCao capsule formula alleviates metabolic fatty liver disease by regulating the gut-liver axis and lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156559. [PMID: 40064115 DOI: 10.1016/j.phymed.2025.156559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a prevalent chronic liver condition globally, characterized by suboptimal treatment outcomes. Traditional therapies often fail to address the multifaceted pathogenesis of MAFLD, which involves lipid metabolism, inflammation, and gut-liver axis dysregulation. JiGuCao Capsule formula (JCF), a patented Chinese medicine, has demonstrated clinical efficacy in liver disease treatment, indicating its potential as a new therapeutic option for MAFLD. PURPOSE This study aimed to investigate the therapeutic effects and underlying mechanisms of JCF in treating MAFLD, particularly focusing on its impact on liver pathology, intestinal health, and gut microbiota composition. METHODS A MAFLD mouse model was developed by administering a high-fat diet and 5% fructose water for 16 weeks. At week 8, mice exhibited significant steatosis, inflammation, and insulin resistance. Fifty mice were allocated into two groups: the normal diet (ND) group with 19 mice and the high-fat feed diet (HFD) group with 31 mice. Seven mice from each group were sacrificed at week 8 for serological and histopathological assessments. The remaining mice were allocated into ND (n = 6), HFD (n = 6), HFD + JCFL (human equivalent dose,780 mg/kg, n = 6), HFD + JCFH (threefold the human equivalent dose, 2340 mg/kg, n = 6), HFD + Polyene Phosphatidylcholine (PPC) (human equivalent dose,177.84 mg/kg, n = 6) and ND+ JCF (human equivalent dose,780 mg/kg, n = 6) groups. Daily gavage started at week 9. At week 16, after fasting, body weight and liver condition were recorded, and mice were euthanized with pentobarbital sodium. Mouse tissues and feces were collected for histopathological, molecular biological, and multi-omics analyses. RESULTS JCF effectively slowed MAFLD progression in mice by decreasing hepatic lipid accumulation and inflammation. Treatment with JCF significantly reduced hepatic triglycerides and inflammatory markers, including TNF-α and IL-6. JCF enhanced lipid metabolism, repaired the intestinal barrier, and lowered inflammatory cytokines in the intestines, as indicated by reduced serum LPS and restored tight junction proteins expression, such as claudin-1 and occludin. Fecal microbiota analysis indicated that JCF treatment elevated Lactobacillus levels and reduced Colidextribacter levels, correlating with enhanced metabolic profiles. The primary bioactive compounds identified in JCF responsible for these therapeutic effects were betulinic acid, cholic acid, deoxycholic acid, oleanolic acid, and pectolinarigenin. Transcriptomic analysis showed that JCF regulated key pathways involved in lipid metabolism, including the pparγ-cd36 axis and modulation of ox-LDL levels. The results indicate that JCF effectively mitigates MAFLD by influencing the gut-liver axis and lipid metabolism. CONCLUSION JCF alleviates MAFLD by modulating the gut-liver axis and lipid metabolism. Its effects involve improving gut barrier function, regulating microbiota, and targeting the pparγ-cd36 axis. Active compounds like betulinic acid support its therapeutic potential. JCF shows promise as a novel treatment for MAFLD, with further clinical studies needed.
Collapse
Affiliation(s)
- Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Yue Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Ningyi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, PR China.
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, PR China; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, PR China.
| |
Collapse
|
2
|
Duan X, Wang N, Peng D. Application of network pharmacology in synergistic action of Chinese herbal compounds. Theory Biosci 2024; 143:195-203. [PMID: 38888845 DOI: 10.1007/s12064-024-00419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Herbal medicines are frequently blended in the form of multi-drug combinations primarily based on the precept of medicinal compatibility, to achieve the purpose of treating diseases. However, due to the lack of appropriate techniques and the multi-component and multi-target nature of Chinese medicine compounding, it is tough to explain how the drugs interact with each other. As a rising discipline, cyber pharmacology has formed a new approach characterized by using holistic and systematic "network targets" via the cross-fertilization of computer technology, bioinformatics, and different multidisciplinary disciplines. It can broadly screen the active ingredients of traditional Chinese medicine, enhance the effective utilization of drugs, and elucidate the mechanism of drug action. We will overview the principles of Chinese medicine compounding and dispensing, the research methods of network pharmacology, and the software of network pharmacology in the lookup of compounded Chinese medicines, aiming to supply thoughts for the better application of network pharmacology in the research of Chinese medicines.
Collapse
Affiliation(s)
- Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, 230038, People's Republic of China
| | - Ni Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
- Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, 230038, People's Republic of China.
| |
Collapse
|
3
|
Zheng S, Liang Y, Xue T, Wang W, Li S, Zhang P, Li X, Cao X, Liu Q, Qi W, Ye Y, Zao X. Application of network pharmacology in traditional Chinese medicine for the treatment of digestive system diseases. Front Pharmacol 2024; 15:1412997. [PMID: 39086391 PMCID: PMC11289720 DOI: 10.3389/fphar.2024.1412997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
With the general improvement in living standards in recent years, people's living habits, including their dietary habits, have changed. More people around the world do not follow a healthy diet, leading to an increase in morbidity and even mortality due to digestive system diseases, which shows an increasing trend every year. The advantage of traditional Chinese medicine (TCM) in treating digestive system diseases is evident. Consequently, the mechanisms of action of single Chinese herbs and compound Chinese medicines have become the focus of research. The research method of the network pharmacology system was highly consistent with the holistic concept of TCM, and provided a new perspective and theoretical basis for basic research on digestive system diseases. This article summarizes the common databases currently used in research on TCM. It also briefly introduces the basic methods and technologies of network pharmacology studies. It also summarizes the advancements of network pharmacology technology through a comprehensive literature search on PubMed. Based on this analysis, we further explored the role of TCM in treating digestive system diseases, including chronic gastritis, gastric cancer, ulcerative colitis, and liver cirrhosis. This study provides new ideas and references for treating digestive system diseases with TCM in the future and serves as a reference for relevant researchers.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yijun Liang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Xue
- First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Zhou L, Liu T, Yan T, Yang M, Wang P, Shi L. 'Nine Steaming Nine Sun-drying' processing enhanced properties of Polygonatum kingianum against inflammation, oxidative stress and hyperglycemia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3123-3138. [PMID: 38072675 DOI: 10.1002/jsfa.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Polygonatum kingianum Coll. & Hemsl (PK), a prominent medicine and food homology plant, has been consumed as a decoction from boiling water for thousands of years. 'Nine Steaming Nine Sun-drying' processing has been considered an effective method for enriching tonic properties, but studies investigating such impacts on PK and underlying mechanisms are extremely rare. RESULTS We first demonstrated substantial improvements in the anti-oxidative, anti-inflammatory and anti-hyperglycemia effects of the Nine Steaming Nine Sun-drying processed PK water extracts compared with crude PK in cell models (i.e., HepG2 and Raw 264.7 cells). We then integrated foodomics and network pharmacology analysis to uncover the key compounds responsible for the improved benefits. A total of 551 metabolites of PK extracts were identified, including polyphenols, flavonoids, alkaloids, and organic acids. During processing, 204 metabolites were enhanced, and 32 metabolites were recognized as key constituents of processed PK responsible for the improved health-promoting activities, which may affect PI3K-Akt-, MAPK-, and HIF-1 pathways. We further confirmed the high affinity between identified key constituents of processed PK and their predicted acting targets using molecular docking. CONCLUSION Our results provide novel insights into bioactive compounds of processed PK, elaborating the rationality of processing from the perspective of tonic effects. Consuming processed PK could be an efficacious strategy to combat the high prevalence of metabolic diseases that currently affect millions of people worldwide. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Tao Yan
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Minmin Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peng Wang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|