1
|
Torres-Isidro O, González-Montoya M, Vargas-Vargas MA, Florian-Rodriguez U, García-Berumen CI, Montoya-Pérez R, Saavedra-Molina A, Calderón-Cortés E, Rodríguez-Orozco AR, Cortés-Rojo C. Anti-Aging Potential of Avocado Oil via Its Antioxidant Effects. Pharmaceuticals (Basel) 2025; 18:246. [PMID: 40006059 PMCID: PMC11858862 DOI: 10.3390/ph18020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is a process characterized by tissue degeneration, increased susceptibility to chronic degenerative diseases, infections, and the appearance of neoplasms, which leads to disability and a reduction in the length and quality of life. This phenomenon is the result of the convergence of multiple processes, including mitochondrial dysfunction, fibrosis, inflammation, dysregulation of cell death processes, and immunosenescence. These processes have as their point of convergence an increase in the production of ROS. Avocado oil (Persea americana Mill.) contains a diverse array of bioactive compounds, including oleic acid, phytosterols, chlorophylls, xanthones, xanthines, and carotenoids. These bioactive compounds have the capacity to modulate the excessive production of ROS, thereby reducing the progression of age-related diseases and extending lifespan in experimental models of aging. In addition, several studies have demonstrated the efficacy of avocado oil in mitigating age-related diseases, including hypertension; insulin resistance; diabetes; non-alcoholic liver disease; and degenerative processes such as hearing loss, cognitive decline, neurodegeneration, and impaired wound healing. In light of these findings, it is hypothesized that avocado oil is a promising agent capable of promoting healthspan in later stages of life owing to its direct antioxidant actions and the activation of pathways that enhance endogenous antioxidant levels.
Collapse
Affiliation(s)
- Olin Torres-Isidro
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Marcela González-Montoya
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Ulises Florian-Rodriguez
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58240, Michoacán, Mexico;
| | - Claudia Isabel García-Berumen
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58260, Michoacán, Mexico;
| | - Alain Raimundo Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico;
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| |
Collapse
|
2
|
Yamamoto Y, Narumi K, Yamagishi N, Yonejima Y, Iseki K, Kobayashi M, Kanai Y. HYA ameliorated postprandial hyperglycemia in type 1 diabetes model rats with bolus insulin treatment. Acta Diabetol 2025:10.1007/s00592-025-02459-6. [PMID: 39899133 DOI: 10.1007/s00592-025-02459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
AIMS The oral administration of linoleic acid immediately before glucose tolerance test (OGTT) ameliorated postprandial hyperglycemia via GPR120 pathway in normal and type 1 diabetes (T1DM) rats. Linoleic acid could promote inflammatory mediators, but 10-hydroxy-cis-12-octadecenoic acid (HYA) converted from linoleic acid by Lactobacillus plantarum has higher GPR120 agonistic activity without promoting inflammatory mediators. This study examined whether the oral-administration of HYA immediately before OGTT also ameliorated the postprandial hyperglycemia in normal rats and T1DM rats injected with bolus insulin. METHODS Normal and T1DM male Sprague-Dawley rats received HYA immediately before OGTT. Other T1DM rats were given HYA and Humulin R immediately before OGTT. We measured the concentration of glucose, insulin, glucagon-like peptide 1 (GLP-1) and cholecystokinin in blood before and after OGTT. We also measured the amount of glucose in the gastric tract after OGTT, and the amount of uptake of methyl-α-D-glucopyranoside in CACO-2 cells. RESULTS Postprandial hyperglycemia was ameliorated by HYA in normal rats, and the postprandial blood glucose levels were slowly elevated by HYA in the T1DM model rats. HYA partially inhibited the uptake of methyl-α-D-glucopyranoside in CACO-2 cells. HYA slowed gastric motility and increased the plasma GLP-1 and cholecystokinin levels in normal rats. HYA also ameliorated the postprandial hyperglycemia in T1DM rats given bolus insulin. CONCLUSION Oral administration of HYA immediately before OGTT ameliorated postprandial hyperglycemia through inhibition of glucose absorption and slowing of gastric motility in normal rats. Furthermore, this beneficial effect of HYA was also revealed in T1DM rats injected with bolus insulin.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Anatomy and Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoko Yamagishi
- Department of Anatomy and Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | | | - Ken Iseki
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
3
|
Ruiz-Pozo VA, Guevara-Ramírez P, Paz-Cruz E, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Simancas-Racines D, Altuna-Roshkova Y, Reytor-González C, Zambrano AK. The role of the Mediterranean diet in prediabetes management and prevention: a review of molecular mechanisms and clinical outcomes. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2398042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Yekaterina Altuna-Roshkova
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Claudia Reytor-González
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
4
|
Yang Y, Fan C, Zhang Y, Kang T, Jiang J. Untargeted Metabolomics Reveals the Role of Lipocalin-2 in the Pathological Changes of Lens and Retina in Diabetic Mice. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 39656472 PMCID: PMC11636665 DOI: 10.1167/iovs.65.14.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Purpose To identify the role of lipocalin-2 (LCN2) in diabetic cataract (DC) and diabetic retinopathy (DR), diabetes models were established in wild-type (WT) and LCN2 gene knockout (LCN2-/-) mice by streptozotocin (STZ), this study aimed to investigate the metabolic alterations and underlying pathways in the lens and retina. Methods Untargeted metabolomic analysis was performed on the lenses and retinas of WT and LCN2-/- diabetic mice, and relevant pathways were predicted through bioinformatics analysis. Results LCN2 was notably elevated in the anterior capsules of DC and the vitreous humor of DR. Metabolic profiling of the lenses and retinas of diabetic mice indicated that the differential metabolites were mostly amino acids, fatty acids, carbohydrates, and their derivatives. In the lenses of STZ-induced WT mice, the differential abundance score (DA-score) revealed an increase in metabolites associated with the citrate (or TCA) cycle and glucagon signaling pathway, whereas a decrease was observed in metabolites related to cholesterol metabolism. After the knockout of LCN2, the DA-score indicated that the majority of metabolites involved in cholesterol metabolism, cysteine and methionine metabolism, and tryptophan metabolism were diminished. In the STZ-induced retina, there was an increase in metabolites associated with the mTOR signaling pathway, and this increase was inhibited by the knockout of LCN2. Conclusions Numerous metabolites exhibited substantial alterations in the lenses and retinas of diabetic mice. Untargeted metabolomics has provided insights into the function of LCN2 in DC and DR. These changes in metabolites, along with their related pathways, could be the mechanisms by which LCN2 modulated DC and DR.
Collapse
Affiliation(s)
- Yu Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yue Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyi Kang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Ortega-Regules AE, Martínez-Thomas JA, Schürenkämper-Carrillo K, de Parrodi CA, López-Mena ER, Mejía-Méndez JL, Lozada-Ramírez JD. Recent Advances in the Therapeutic Potential of Carotenoids in Preventing and Managing Metabolic Disorders. PLANTS (BASEL, SWITZERLAND) 2024; 13:1584. [PMID: 38931016 PMCID: PMC11207240 DOI: 10.3390/plants13121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Carotenoids constitute compounds of significant biological interest due to their multiple biological activities, such as antimicrobial, anticancer, antiadipogenic, antidiabetic, and antioxidant properties. Metabolic syndrome (MetS) comprehends a series of metabolic abnormalities (e.g., hypertension, obesity, and atherogenic dyslipidemia) that can affect children, adolescents, and the elderly. The treatment of MetS involves numerous medications, which, despite their efficacy, pose challenges due to prolonged use, high costs, and various side effects. Carotenoids and their derivatives have been proposed as alternative treatments to MetS because they reduce serum triglyceride concentrations, promote insulin response, inhibit adipogenesis, and downregulate angiotensin-converting enzyme activity. However, carotenoids are notably sensitive to pH, light exposure, and temperature. This review addresses the activity of carotenoids such as lycopene, lutein, fucoxanthin, astaxanthin, crocin, and β-carotene towards MetS. It includes a discussion of sources, extraction methods, and characterization techniques for analyzing carotenoids. Encapsulation approaches are critically reviewed as alternatives to prevent degradation and improve the biological performance of carotenoids. A brief overview of the physiopathology and epidemiology of the diseases, including MetS, is also provided.
Collapse
Affiliation(s)
- Ana E. Ortega-Regules
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico;
| | - Juan Alonso Martínez-Thomas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Karen Schürenkämper-Carrillo
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Zapopan 45121, Colonia Nuevo México, Mexico;
| | - Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - J. Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| |
Collapse
|
6
|
Sodum N, Mattila O, Sharma R, Kamakura R, Lehto VP, Walkowiak J, Herzig KH, Raza GS. Nutrient Combinations Sensed by L-Cell Receptors Potentiate GLP-1 Secretion. Int J Mol Sci 2024; 25:1087. [PMID: 38256160 PMCID: PMC10816371 DOI: 10.3390/ijms25021087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity is a risk factor for cardiometabolic diseases. Nutrients stimulate GLP-1 release; however, GLP-1 has a short half-life (<2 min), and only <10-15% reaches the systemic circulation. Human L-cells are localized in the distal ileum and colon, while most nutrients are absorbed in the proximal intestine. We hypothesized that combinations of amino acids and fatty acids potentiate GLP-1 release via different L-cell receptors. GLP-1 secretion was studied in the mouse enteroendocrine STC-1 cells. Cells were pre-incubated with buffer for 1 h and treated with nutrients: alpha-linolenic acid (αLA), phenylalanine (Phe), tryptophan (Trp), and their combinations αLA+Phe and αLA+Trp with dipeptidyl peptidase-4 (DPP4) inhibitor. After 1 h GLP-1 in supernatants was measured and cell lysates taken for qPCR. αLA (12.5 µM) significantly stimulated GLP-1 secretion compared with the control. Phe (6.25-25 mM) and Trp (2.5-10 mM) showed a clear dose response for GLP-1 secretion. The combination of αLA (6.25 µM) and either Phe (12.5 mM) or Trp (5 mM) significantly increased GLP-1 secretion compared with αLA, Phe, or Trp individually. The combination of αLA and Trp upregulated GPR120 expression and potentiated GLP-1 secretion. These nutrient combinations could be used in sustained-delivery formulations to the colon to prolong GLP-1 release for diminishing appetite and preventing obesity.
Collapse
Affiliation(s)
- Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Orvokki Mattila
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Remi Kamakura
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| | - Vesa-Pekka Lehto
- Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572 Poznań, Poland;
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572 Poznań, Poland;
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Biocentre of Oulu, Medical Research Center, University of Oulu, Oulu University Hospital, Aapistie 5, 90220 Oulu, Finland; (N.S.); (O.M.); (R.S.); (K.-H.H.)
| |
Collapse
|