1
|
Tredicine M, Mucci M, Recchiuti A, Mattoscio D. Immunoregulatory mechanisms of the arachidonic acid pathway in cancer. FEBS Lett 2025; 599:927-951. [PMID: 39973474 PMCID: PMC11995684 DOI: 10.1002/1873-3468.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
The arachidonic acid (AA) pathway promotes tumor progression by modulating the complex interactions between cancer and immune cells within the microenvironment. In this Review, we summarize the knowledge acquired thus far concerning the intricate mechanisms through which eicosanoids either promote or suppress the antitumor immune response. In addition, we will discuss the impact of eicosanoids on immune cells and how they affect responsiveness to immunotherapy, as well as potential strategies for manipulating the AA pathway to improve anticancer immunotherapy. Understanding the molecular pathways and mechanisms underlying the role played by AA and its metabolites in tumor progression may contribute to the development of more effective anticancer immunotherapies.
Collapse
Affiliation(s)
- Maria Tredicine
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Matteo Mucci
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| |
Collapse
|
2
|
Serhan CN, Levy BD. Proresolving Lipid Mediators in the Respiratory System. Annu Rev Physiol 2025; 87:491-512. [PMID: 39303274 PMCID: PMC11810588 DOI: 10.1146/annurev-physiol-020924-033209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lung inflammation, infection, and injury can lead to critical illness and death. The current means to pharmacologically treat excessive uncontrolled lung inflammation needs improvement because many treatments are or will become immunosuppressive. The inflammatory response evolved to protect the host from microbes, injury, and environmental insults. This response brings phagocytes from the bloodstream to the tissue site to phagocytize and neutralize bacterial invaders and enables airway antimicrobial functions. This physiologic response is ideally self-limited with initiation and resolution phases. Polyunsaturated essential fatty acids are precursors to potent molecules that govern both phases. In the initiation phase, arachidonic acid is converted to prostaglandins and leukotrienes that activate leukocytes to transmigrate from postcapillary venules. The omega-3 fatty acids (e.g., DHA and EPA) are precursors to resolvins, protectins, and maresins, which are families of chemically distinct mediators with potent functions in resolution of acute and chronic inflammation in the respiratory system.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
3
|
Aldrich G, Evans JE, Davis R, Jurin L, Oberlin S, Niedospial D, Nkiliza A, Mullan M, Kenney K, Werner JK, Edwards K, Gill JM, Lindsey HM, Dennis EL, Walker WC, Wilde E, Crawford F, Abdullah L. APOE4 and age affect the brain entorhinal cortex structure and blood arachidonic acid and docosahexaenoic acid levels after mild TBI. Sci Rep 2024; 14:29150. [PMID: 39587176 PMCID: PMC11589616 DOI: 10.1038/s41598-024-80153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
A reduction in the thickness and volume of the brain entorhinal cortex (EC), together with changes in blood arachidonic acid (AA) and docosahexaenoic acid (DHA), are associated with Alzheimer's disease (AD) among apolipoprotein E ε4 carriers. Magnetic Resonance Imaging (n = 631) and plasma lipidomics (n = 181) were performed using the LIMBIC/CENC cohort to examine the influence of ε4 on AA- and DHA-lipids and EC thickness and volume in relation to mild traumatic brain injury (mTBI). Results showed that left EC thickness was higher among ε4 carriers with mTBI. Repeated mTBI (r-mTBI) was associated with reduced right EC thickness after controlling for ε4, age and sex. Age, plus mTBI chronicity were linked to increased EC White Matter Volume (WMV). After controlling for age and sex, the advancing age of ε4 carriers with blast mTBI was associated with reduced right EC Grey Matter Volume (GMV) and thickness. Among ε4 carriers, plasma tau and Aβ40 were associated with mTBI and blast mTBI, respectively. Chronic mTBI, ε4 and AA to DHA ratios in phosphatidylcholine, ethanolamides, and phosphatidylethanolamine were associated with decreased left EC GMV and WMV. Further research is needed to explore these as biomarkers for detecting AD pathology following mTBI.
Collapse
Grants
- I01 RX002172 RRD VA
- I01 RX002174 RRD VA
- I01 CX002097, I01 CX002096, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170, I01 CX001820 U.S. Department of Veterans Affairs
- I01 CX001135 CSRD VA
- UL1 TR002538 NCATS NIH HHS
- I01 RX003443 RRD VA
- I01 RX001880 RRD VA
- I01 RX002171 RRD VA
- I01 HX003155 HSRD VA
- I01 RX002076 RRD VA
- I01 CX001246 CSRD VA
- I01 RX002170 RRD VA
- UL1 TR000105 NCATS NIH HHS
- I01 RX002173 RRD VA
- AZ160065 Congressionally Directed Medical Research Programs
- UL1 TR001067 NCATS NIH HHS
- W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095 U.S. Department of Defense
- I01 RX003444 RRD VA
- UL1 RR025764 NCRR NIH HHS
- I01 RX003442 RRD VA
- I01 RX001774 RRD VA
- I01 CX002097 CSRD VA
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- I01 RX002767 RRD VA
- I01 RX001135 RRD VA
Collapse
Affiliation(s)
- Gregory Aldrich
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - James E Evans
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Roderick Davis
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Lucia Jurin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Sarah Oberlin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | - Aurore Nkiliza
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - J Kent Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | - Hannah M Lindsey
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Emily L Dennis
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - William C Walker
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisabeth Wilde
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA.
| |
Collapse
|
4
|
Kahnt AS, Häfner AK, Steinhilber D. The role of human 5-Lipoxygenase (5-LO) in carcinogenesis - a question of canonical and non-canonical functions. Oncogene 2024; 43:1319-1327. [PMID: 38575760 PMCID: PMC11065698 DOI: 10.1038/s41388-024-03016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
5-Lipoxygenase (5-LO), a fatty acid oxygenase, is the central enzyme in leukotriene (LT) biosynthesis, potent arachidonic acid-derived lipid mediators released by innate immune cells, that control inflammatory and allergic responses. In addition, through interaction with 12- and 15-lipoxgenases, the enzyme is involved in the formation of omega-3 fatty acid-based oxylipins, which are thought to be involved in the resolution of inflammation. The expression of 5-LO is frequently deregulated in solid and liquid tumors, and there is strong evidence that the enzyme plays an important role in carcinogenesis. However, global inhibition of LT formation and signaling has not yet shown the desired success in clinical trials. Curiously, the release of 5-LO-derived lipid mediators from tumor cells is often low, and the exact mechanism by which 5-LO influences tumor cell function is poorly understood. Recent data now show that in addition to releasing oxylipins, 5-LO can also influence gene expression in a lipid mediator-independent manner. These non-canonical functions, including modulation of miRNA processing and transcription factor shuttling, most likely influence cancer cell function and the tumor microenvironment and might explain the low clinical efficacy of pharmacological strategies that previously only targeted oxylipin formation and signaling by 5-LO. This review summarizes the canonical and non-canonical functions of 5-LO with a particular focus on tumorigenesis, highlights unresolved issues, and suggests future research directions.
Collapse
Affiliation(s)
- Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany.
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| |
Collapse
|
5
|
Mikutis S, Lawrinowitz S, Kretzer C, Dunsmore L, Sketeris L, Rodrigues T, Werz O, Bernardes GJL. Machine Learning Uncovers Natural Product Modulators of the 5-Lipoxygenase Pathway and Facilitates the Elucidation of Their Biological Mechanisms. ACS Chem Biol 2024; 19:217-229. [PMID: 38149598 PMCID: PMC10804367 DOI: 10.1021/acschembio.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Machine learning (ML) models have made inroads into chemical sciences, with optimization of chemical reactions and prediction of biologically active molecules being prime examples thereof. These models excel where physical experiments are expensive or time-consuming, for example, due to large scales or the need for materials that are difficult to obtain. Studies of natural products suffer from these issues─this class of small molecules is known for its wealth of structural diversity and wide-ranging biological activities, but their investigation is hindered by poor synthetic accessibility and lack of scalability. To facilitate the evaluation of these molecules, we designed ML models that predict which natural products can interact with a particular target or a relevant pathway. Here, we focused on discovering natural products that are capable of modulating the 5-lipoxygenase (5-LO) pathway that plays key roles in lipid signaling and inflammation. These computational approaches led to the identification of nine natural products that either directly inhibit the activity of the 5-LO enzyme or affect the cellular 5-LO pathway. Further investigation of one of these molecules, deltonin, led us to discover a new cell-type-selective mechanism of action. Our ML approach helped deorphanize natural products as well as shed light on their mechanisms and can be broadly applied to other use cases in chemical biology.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Stefanie Lawrinowitz
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Christian Kretzer
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Lavinia Dunsmore
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Laurynas Sketeris
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tiago Rodrigues
- Instituto
de Investigação do Medicamento (iMed), Faculdade de
Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Oliver Werz
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
Cerchia C, Küfner L, Werz O, Lavecchia A. Identification of selective 5-LOX and FLAP inhibitors as novel anti-inflammatory agents by ligand-based virtual screening. Eur J Med Chem 2024; 263:115932. [PMID: 37976708 DOI: 10.1016/j.ejmech.2023.115932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Inflammation is a multifaceted biological process in which the conversion of arachidonic acid to eicosanoids, including prostaglandins and leukotrienes (LTs), plays a crucial role. 5-Lipoxygenase (5-LOX) is a key enzyme in cellular LT biosynthesis, and it is supported by the accessory protein 5-lipoxygenase-activating protein (FLAP). Pharmacological interventions to modulate LTs aim at either decreasing their biosynthesis or at mitigating their biological effects. Therefore, inhibiting 5-LOX or FLAP represents a useful strategy to reduce inflammation. Herein we present the identification and pharmacological evaluation of novel inhibitors targeting 5-LOX or FLAP. By means of a ligand-based virtual screening approach, we selected 38 compounds for in vitro assays. Among them, ALR-38 exhibits direct 5-LOX inhibition, while ALR-6 and ALR-27 showed potential as FLAP inhibitors. These latter not only reduced LT production but also promoted the generation of specialized pro-resolving mediators in specific human macrophage phenotypes. Interestingly, the identified compounds turned out to be selective for their respective targets, as none of them displayed activity towards microsomal prostaglandin E2 synthase-1 and soluble epoxide hydrolase, which are other proteins involved in eicosanoid biosynthesis. Thus, these compounds are endowed with potential therapeutic utility in mitigating inflammatory responses and might offer a venue for tackling inflammation-based disorders.
Collapse
Affiliation(s)
- Carmen Cerchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Laura Küfner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|