1
|
Wu W, Chen D, Ruan X, Wu G, Deng X, Lawrence W, Lin X, Li Z, Wang Y, Lin Z, Zhu S, Deng X, Lin Q, Hao C, Du Z, Wei J, Zhang W, Hao Y. Residential greenness and chronic obstructive pulmonary disease in a large cohort in southern China: Potential causal links, risk trajectories, and mediation pathways. J Adv Res 2025; 71:355-367. [PMID: 38797475 DOI: 10.1016/j.jare.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Residential greenness may influence COPD mortality, but the causal links, risk trajectories, and mediation pathways between them remain poorly understood. OBJECTIVES We aim to comprehensively identify the potential causal links, characterize the dynamic progression of hospitalization or posthospital risk, and quantify mediation effects between greenness and COPD. METHODS This study was conducted using a community-based cohort enrolling individuals aged ≥ 18 years in southern China from January 1, 2009 to December 31, 2015. Greenness was characterized by normalized difference vegetation index (NDVI) around participants' residential addresses. We applied doubly robust Cox proportional hazards model, multi-state model, and multiple mediation method, to investigate the potential causal links, risk trajectories among baseline, COPD hospitalization, first readmission due to COPD or COPD-related complications, and all-cause death, as well as the multiple mediation pathways (particulate matter [PM], temperature, body mass index [BMI] and physical activity) connecting greenness exposure to COPD mortality. RESULTS Our final analysis included 581,785 participants (52.52% female; average age: 48.36 [Standard Deviation (SD): 17.56]). Each interquartile range (IQR: 0.06) increase in NDVI was associated with a reduced COPD mortality risk, yielding a hazard ratio (HR) of 0.88 (95 % CI: 0.81, 0.96). Furthermore, we observed per IQR (0.04) increase in NDVI was inversely associated with the risk of multiple transitions (baseline - COPD hospitalization, baseline - death, and readmission - death risks), especially a declined risk of all-cause death after readmission (HR = 0.66 [95 %CI: 0.44, 0.99]). Within the observed association between greenness and COPD mortality, three mediators were identified, namely PM, temperature, and BMI (HR for the total indirect effect: 0.773 [95 % CI: 0.703, 0.851]), with PM showing the highest mediating effect. CONCLUSIONS Our findings revealed greenness may be a beneficial factor for COPD morbidity, prognosis, and mortality. This protective effect is primarily attributed to the reduction in PM concentration.
Collapse
Affiliation(s)
- Wenjing Wu
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Dan Chen
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xingling Ruan
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Gonghua Wu
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xinlei Deng
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Wayne Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Xiao Lin
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Li
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Ziqiang Lin
- Department of Preventive Medicine, School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Shuming Zhu
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xueqing Deng
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Qiaoxuan Lin
- Guangzhou Health Technology Identification & Human Resources Assessment Center, Department of Statistics, China
| | - Chun Hao
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking, China; Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Peking, China.
| |
Collapse
|
2
|
Ding L, Gao J, Meng D, Zeng J, Yuan M, Yang J, Lyu G, Hu Q. Assessment of ecological and human health risks of heavy metals in soils and Polygonatum sibiricum plants from various cultivation areas in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:163. [PMID: 40208353 DOI: 10.1007/s10653-025-02477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/23/2025] [Indexed: 04/11/2025]
Abstract
In this study, we collected 528 samples from 7 important Polygonatum sibiricum (P. sibiricum) planting areas in China. The P. sibiricum samples were classified into P. sibiricum Red., P. cyrtonema Hua. and P. kiugianum Col.et Hemsl. The content of the Cu, As, Zn, Cd, Pb, and Cr in P. sibiricum and soil were determined using inductively coupled plasma mass spectrometry, and the ecological and health risks were evaluated. The results showed that addition to Cu, the soil exhibits varying degrees of excessive pollution from Zn, As, Pb, Cd, and Cr exceeding permissible levels (GB15618 - 2018, Soil environmental quality-Risk control standard for soil contamination of agricultural land in China). Among them, 31.56% Zn, 22.43% As, and 22.05% Cd in soil exceeded the GB 15618 - 2018 standard. Additionally, three types of P. sibiricum soil have risks, with the risk level being P. cyrtonema Hua. > P. kiugianum Col.et Hemsl. > P. sibiricum Red. It was worth noting that the practice of artificial cultivation management may reduce the amount of As, Cd, and Cr in the soil while increasing the amount of Zn. The order of P. sibiricum bioaccumulating ability in different heavy metals was: Cd > Zn > Cu > Cr > As > Pb, and it had good tolerance to As, Pb, and Cr. In addition, the chronic daily intake, hazard quotient and hazard indexes indicate that the current Cu, Hg, As, Cd and Pb contents of P. sibiricum in China do not pose a health risk to humans. In summary, the impact of Cd in P. sibiricum should be given attention.
Collapse
Affiliation(s)
- Longzhen Ding
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingyang Gao
- College of Engineering, Peking University, Beijing, 100871, China
| | - Dele Meng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianwei Zeng
- Leshan Economic Crop Station, Leshan, 614000, Sicuan, China
| | - Mingju Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guangfeng Lyu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Gu JM, Zhang SN, Xiao SY, Jia MY, Tu JF, Han GL. Effect of Chinese herbal medicine (CHM) as an adjunctive therapy in distinct stages of patients with COVID-19: A systematic review and meta-analysis. PLoS One 2025; 20:e0318892. [PMID: 39946361 PMCID: PMC11825027 DOI: 10.1371/journal.pone.0318892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has led to millions of infected cases and deaths worldwide. Clinical practice and clinical trials in China suggested that integrated Chinese herbal medicine (CHM) and conventional Western monotherapy (ICW) have achieved significant clinical effectiveness in treating COVID-19 patients. OBJECTIVES This article aims to systematically evaluate the effects of ICW in treating patients at distinct stages of COVID-19. The most frequently used components of the CHM formulas have been summarized to define the most promising drug candidates. METHODS In this meta-analysis, seven databases up to May 20, 2024, were systematically searched to collect relevant randomized controlled trials (RCTs) and cohort studies (CSs). Difference in mean (MD) or ratio risk (RR) with 95% confidence interval (CI) was utilized for data processing analysis. RESULTS A total of 46 studies, consisting of 24 RCTs and 22 CSs, and 10492 patients were included. ICW group showed significant improvement over the conventional Western monotherapy (CWM) group at all stages of COVID-19 patients. ICW therapy was effective in improving recovery rate of chest CT (RR = 1.21, 95%CI [1.13,1.29]), shortening negativity time of nucleic acid (MD = -2.14,95% CI [-3.70, -0.58]), suppressing the transition of mild/moderate patients into severe conditions (RR = 0.45, 95% CI [0.33,0.62]), and reducing mortality (RR = 0.45, 95% CI [0.37,0.55]) for severe/critical COVID-19. Furthermore, compared with severe/critical patients, mild/moderate COVID-19 patients proved more effective after being treated with ICW therapy. They had a higher recovery rate of chest CT manifestations (75.4% vs. 69.1%), shorter negativity time of nucleic acid (9.21 d vs. 14.89 d), reduced time to clinical symptom reduction (3.85d vs. 11d) and shortened days of hospital stays (15.9d vs 19.1d). As for inflammatory markers analysis, ICW regimens decreased the level of lymphocytes in mild/moderate and severe/critical patients (MD = -0.15, 95% CI [-0.18, -0.13]), but no statistical difference was observed in white blood cell count and neutrophils count (MD = 0.02, 95% CI [-0.14, -0.18]; MD = 0.22,95% CI [-0.7, 1.15], respectively). A different tendency was found in the C-reactive protein level, which significantly decreased at the early stage of COVID-19 in the ICW group (MD = 2.56, 95%CI [1.28,3.83]). CONCLUSION This meta-analysis demonstrates the significant superiority of ICW over single western monotherapy in improving clinical efficacy at distinct stages of Chinese COVID-19 patients. Subgroup analysis further showed that the earlier intervention of CHM may contribute to a better therapeutic effect. TRIAL REGISTRATION PROSPERO ID: CRD42023401200.
Collapse
Affiliation(s)
- Jin-Min Gu
- Institute of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
- Respiratory Department, China-Japan Friendship Hospital, Beijing, China
| | - Shu-Nan Zhang
- Respiratory Department, China-Japan Friendship Hospital, Beijing, China
| | - Si-Yao Xiao
- Respiratory Department, China-Japan Friendship Hospital, Beijing, China
| | - Ming-Yue Jia
- Respiratory Department, China-Japan Friendship Hospital, Beijing, China
| | - Jian-Feng Tu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Gui-Ling Han
- Respiratory Department, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Wang BH, Yu KY, Zhang XN, Sun XH, Tang LL, Shi XL. Fu Tu Sheng Jin Rehabilitation Formula Mitigate Airway Inflammation, Mucus Secretion and Immune Dysfunction Induced by SARS-CoV-2 Spike Protein. J Inflamm Res 2025; 18:1053-1065. [PMID: 39871960 PMCID: PMC11771161 DOI: 10.2147/jir.s480112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 01/29/2025] Open
Abstract
Objective To evaluate the effects of Fu Tu Sheng Jin Rehabilitation Formula (FTSJRF) on airway inflammation, mucus secretion, and immunoreaction in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein-induced mouse model. Methods Forty-two mice were randomly divided into seven groups: normal, D1, D3, D10, D10H, D10M and D10L, according to the days of modeling and different dosages of FTSJRF. D1, D3, D10, D10H, D10M and D10L group mice were intratracheally administered with 15 µg SARS-CoV-2 spike protein; mice in the D10H, D10M, and D10L groups were intragastrically administered FTSJRF (46, 23 and 11.5 g/kg, respectively). Observe the pathological changes in lung tissues, expression of inflammatory factors, and mucins in different groups of mice using HE and PAS staining methods, as well as ELISA and RT-qPCR. Flow cytometry was used to detect T helper 17 (Th17)/regulatory T (Treg) cells and T helper 1(Th1)/T helper 2 (Th2) lymphocyte ratios and the proportions of conventional myeloid dendritic cells (cDCs), plasma cell-like DCs, CD80 and CD86 cells in mouse spleens. Results HE and PAS staining showed that, compared to that in the normal group, the lung tissue of the D1 group mice showed a significant inflammatory damage response, whereas the D3 and D10 groups showed a gradual recovery trend. Groups D1 and D3 showed mild mucus secretion, whereas the D10 group had excessive mucus secretion. The D10 group of mice displayed increased levels of IL-4, TNF-α, IL-33 and mucin genes such as MUC1, MUC4, etc, and FTSJRF inhibited the expression of these molecules, mucus secretion and lung damage in SARS-CoV-2 spike protein-induced mouse model. Flow cytometry results showed a decrease in the number of cDCs and an abnormal recovery of DC mature cells in the D10 group. FTSJRF increased the number of cDCs and promoted DC maturation. A higher Th17/Treg ratio was observed in the D3 and D10 groups than in the normal group, whereas this ratio decreases under the effect of FTSJRF. D10 had significantly lower Th1/Th2 ratio than normal, D1 and D3 groups, and high doses of FTSJRF increased it. Conclusion FTSJRF mitigates airway inflammation and mucus secretion induced by SARS-CoV-2 spike protein. Additionally, FTSJRF regulates immune functions by promoting DC maturation and Th17/Treg and Th1/Th2 cell homeostasis.
Collapse
Affiliation(s)
- Bo-Han Wang
- NanJing JiangNing Hospital of Chinese Medicine/Affiliated jiangning Hospital of Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Ke-Yao Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Xiao-Na Zhang
- Nanjing Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Xian-Hong Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Ling-Ling Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Xiao-Lu Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| |
Collapse
|
5
|
Li C, Deng L, Pu M, Ye X, Lu Q. Coptisine alleviates colitis through modulating gut microbiota and inhibiting TXNIP/NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118680. [PMID: 39117021 DOI: 10.1016/j.jep.2024.118680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches certified that COP is a prospective remedy for colitis, but the mechanism of colitis and the therapeutical target of COP are deficiently elucidated. AIM OF THIS STUDY In this follow-up study, we adopted dextran sulfate sodium (DSS)-elicited UC model to further elucidate the possible mechanism of COP on UC in mice. MATERIALS AND METHODS COP and the positive drug sulfasalazine (SASP) were administered by oral gavage in DSS-induced colitis mouse model. Oxidative stress, inflammatory cytokines, intestinal barrier permeability, protein expression of the TXNIP/NLRP3 inflammasome pathway and intestinal microbiome structure were assessed. RESULTS Among this investigation, our team discovered that COP could mitigate DSS-elicited UC in murines, with prominent amelioration in weight loss, disease activity index, intestinal permeability (serum diamine oxidase and D-lactate), contracted colonal length and histologic alterations. Furthermore, COP greatly lowered the generation of pro-inflammatory factors, malondialdehyde (MDA) activity and reactive oxygen species (ROS) level, while increased superoxide dismutase (SOD) activity in colonal tissues. Additionally, COP downmodulated the proteic expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, IL-1β and IL-18. Enteric microbiome sequencing displayed that DSS and COP tremendously influenced the constitution and diversity of enteric microbes in DSS-elicited UC murines. Besides, COP elevated the abundance of probiotic bacteria Bacteroidota, Akkermansia_muciniphila and Bacteroides_acidifaciens, lowered the proportions of potential pathogenic bacteria, such as Lachnospiraceae, Acetatifactor_muris, Clostridium_XlVa, Alistipes and Oscillibacter, and reduced the ratio of Bacillota/Bacteroidota, which vastly helped to reverse the enteric microbiome to a balanceable condition. Alterations in these bacteria were strongly correlated with the colitis relative index. CONCLUSION The mechanism of COP against UC is connected with the suppression of TXNIP/NLRP3 inflammasome signalling pathway and the adjustment of the enteric microbiome profiles. The proofs offer new understandings upon the anti-UC function of COP, which might be a prospective candidate against UC.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Li Deng
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Min Pu
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Xuanlin Ye
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|
6
|
Gupta P, Dev K, Kaur G. Phytoconstituents as modulator of inflammatory pathways for COVID-19: A comprehensive review and recommendations. Phytother Res 2024; 38:5389-5416. [PMID: 39246209 DOI: 10.1002/ptr.8302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024]
Abstract
SARS-CoV-2 infection causes disruptions in inflammatory pathways, which fundamentally contribute to COVID-19 pathophysiology. The present review critically evaluates the gaps in scientific literature and presents the current status regarding the inflammatory signaling pathways in COVID-19. We propose that phytoconstituents can be used to treat COVID-19 associated inflammation, several already formulated in traditional medications. For this purpose, extensive literature analysis was conducted in the PubMed database to collect relevant in vitro, in vivo, and human patient studies where inflammation pathways were shown to be upregulated in COVID-19. Parallelly, scientific literature was screened for phytoconstituents with known cellular mechanisms implicated for inflammation or COVID-19 associated inflammation. Studies with insufficient evidence on cellular pathways for autophagy and mitophagy were considered out of scope and excluded from the study. The final analysis was visualized in figures and evaluated for accuracy. Our findings demonstrate the frequent participation of NF-κB, a transcription factor, in inflammatory signaling pathways linked to COVID-19. Moreover, the MAPK signaling pathway is also implicated in producing inflammatory molecules. Furthermore, it was also analyzed that the phytoconstituents with flavonoid and phenolic backbones could inhibit either the TLR4 receptor or its consecutive signaling molecules, thereby, decreasing NF-κB activity and suppressing cytokine production. Although, allopathy has treated the early phase of COVID-19, anti-inflammatory phytoconstituents and existing ayurvedic formulations may act on the COVID-19 associated inflammatory pathways and provide an additional treatment strategy. Therefore, we recommend the usage of flavonoids and phenolic phytoconstituents for the treatment of inflammation associated with COVID-19 infection and similar viral ailments.
Collapse
Affiliation(s)
- Pragati Gupta
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Kamal Dev
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
- Department of Pharmacology & Toxicology, Wright State University, Dayton, Ohio, USA
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
- National Center cum Department of Human Genome Research Center and Studies, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
7
|
Chang WK, Wang CJ, Tsai TH, Sun FJ, Chen CH, Kuo KC, Chung HP, Tang YH, Chen YT, Wu KL, Wu JC, Lin CY, Zhang HB. The clinical application of traditional Chinese medicine NRICM101 in hospitalized patients with COVID-19. Expert Rev Anti Infect Ther 2024; 22:587-595. [PMID: 38288986 DOI: 10.1080/14787210.2024.2313054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The aim of this study was to assess the efficacy and safety of NRICM101 in hospitalized patients with COVID-19. RESEARCH DESIGN AND METHODS We conducted a retrospective study from 20 April 2021 to 8 July 2021, and evaluated the safety and outcomes (mortality, hospital stay, mechanical ventilation, oxygen support, diarrhea, serum potassium) in COVID-19 patients. Propensity score matching at a 1:2 ratio was performed to reduce confounding factors. RESULTS A total of 201 patients were analyzed. The experimental group (n = 67) received NRICM101 and standard care, while the control group (n = 134) received standard care alone. No significant differences were observed in mortality (10.4% vs. 14.2%), intubation (13.8% vs. 11%), time to intubation (10 vs. 11 days), mechanical ventilation days (0 vs. 9 days), or oxygen support duration (6 vs. 5 days). However, the experimental group had a shorter length of hospitalization (odds ratio = 0.12, p = 0.043) and fewer mechanical ventilation days (odds ratio = 0.068, p = 0.008) in initially severe cases, along with an increased diarrhea risk (p = 0.035). CONCLUSION NRICM101 did not reduce in-hospital mortality. However, it shortened the length of hospitalization and reduced mechanical ventilation days in initially severe cases. Further investigation is needed.
Collapse
Affiliation(s)
- Wen-Kuei Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Ju Sun
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Chao-Hsien Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Kuan-Chih Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Hsin-Pei Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Ting Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Kuo-Lun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jou-Chun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Hai-Bo Zhang
- Anesthesia, Medicine and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Liu G, Wang YH, Zhang T, Li YQ, Chen XY, Dong W, Li W, Miao QX, Qiao WB, Tian HQ, Yin SL. Astragaloside-IV promotes autophagy via the Akt/mTOR pathway to improve cellular lipid deposition. Medicine (Baltimore) 2024; 103:e37846. [PMID: 38640324 PMCID: PMC11030007 DOI: 10.1097/md.0000000000037846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024] Open
Abstract
The current study aimed to investigate the potential role of astragaloside IV (AS-IV) in improving cellular lipid deposition and its underlying mechanism. A fatty liver cell model was established by treating hepatoma cells with palmitic acid. AS-IV and SC79 were used for treatment. Oil Red O staining was applied to detect intracellular lipid deposition, and transmission electron microscopy was utilized to assess autophagosome formation. Immunofluorescence double staining was applied to determine microtubule-associated proteins 1A/1B light chain 3 (LC3) expression. Western blot analysis was performed to detect the expression of LC3, prostacyclin, Beclin-1, V-akt murine thymoma viral oncogene homolog (Akt), phosphorylated Akt, mTOR, and phosphorylated mTOR. Oil Red O staining revealed that AS-IV reduced intracellular lipid accumulation. Further, it increased autophagosome synthesis and the expression of autophagy proteins LC3 and Beclin-1 in the cells. It also reduced the phosphorylation levels of Akt and mTOR and the levels of prostacyclin. However, the effects of AS-IV decreased with SC79 treatment. In addition, LC3B + BODIPY493/503 fluorescence double staining showed that AS-IV reduced intracellular lipid deposition levels by enhancing autophagy. AS-IV can reduce lipid aggregation in fatty liver cells, which can be related to enhanced hepatocyte autophagy by inhibiting the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Guo Liu
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Ye-Hui Wang
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
- Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ting Zhang
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Ya-Qiong Li
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Xin-Yue Chen
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Wei Dong
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Wei Li
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Qi-Xiang Miao
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Wen-Bo Qiao
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Hui-Qiang Tian
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| | - Shi-Long Yin
- Qionglai Hospital of Traditional Chinese Medicine, Qionglai, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Chu BY, Lin C, Nie PC, Xia ZY. Research Status in the Use of Surface-Enhanced Raman Scattering (SERS) to Detect Pesticide Residues in Foods and Plant-Derived Chinese Herbal Medicines. Int J Anal Chem 2024; 2024:5531430. [PMID: 38250173 PMCID: PMC10798841 DOI: 10.1155/2024/5531430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Surface-enhanced Raman scattering (SERS) technology has unique advantages in the rapid detection of pesticides in plant-derived foods, leading to reduced detection limits and increased accuracy. Plant-derived Chinese herbal medicines have similar sources to plant-derived foods; however, due to the rough surfaces and complex compositions of herbal medicines, the detection of pesticide residues in this context continues to rely heavily on traditional methods, which are time consuming and laborious and are unable to meet market demands for portability. The application of flexible nanomaterials and SERS technology in this realm would allow rapid and accurate detection in a portable format. Therefore, in this review, we summarize the underlying principles and characteristics of SERS technology, with particular focus on applications of SERS for the analysis of pesticide residues in agricultural products. This paper summarizes recent research progress in the field from three main directions: sample pretreatment, SERS substrates, and data processing. The prospects and limitations of SERS technology are also discussed, in order to provide theoretical support for rapid detection of pesticide residues in Chinese herbal medicines.
Collapse
Affiliation(s)
- Bing-Yan Chu
- School of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Chi Lin
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Peng-Cheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zheng-Yan Xia
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|