1
|
Iaparov B, Baglaeva I, Zahradník I, Zahradníková A. Magnesium Ions Moderate Calcium-Induced Calcium Release in Cardiac Calcium Release Sites by Binding to Ryanodine Receptor Activation and Inhibition Sites. Front Physiol 2022; 12:805956. [PMID: 35145426 PMCID: PMC8821920 DOI: 10.3389/fphys.2021.805956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Ryanodine receptor channels at calcium release sites of cardiac myocytes operate on the principle of calcium-induced calcium release. In vitro experiments revealed competition of Ca2+ and Mg2+ in the activation of ryanodine receptors (RyRs) as well as inhibition of RyRs by Mg2+. The impact of RyR modulation by Mg2+ on calcium release is not well understood due to the technical limitations of in situ experiments. We turned instead to an in silico model of a calcium release site (CRS), based on a homotetrameric model of RyR gating with kinetic parameters determined from in vitro measurements. We inspected changes in the activity of the CRS model in response to a random opening of one of 20 realistically distributed RyRs, arising from Ca2+/Mg2+ interactions at RyR channels. Calcium release events (CREs) were simulated at a range of Mg2+-binding parameters at near-physiological Mg2+ and ATP concentrations. Facilitation of Mg2+ binding to the RyR activation site inhibited the formation of sparks and slowed down their activation. Impeding Mg-binding to the RyR activation site enhanced spark formation and speeded up their activation. Varying Mg2+ binding to the RyR inhibition site also dramatically affected calcium release events. Facilitation of Mg2+ binding to the RyR inhibition site reduced the amplitude, relative occurrence, and the time-to-end of sparks, and vice versa. The characteristics of CREs correlated dose-dependently with the effective coupling strength between RyRs, defined as a function of RyR vicinity, single-channel calcium current, and Mg-binding parameters of the RyR channels. These findings postulate the role of Mg2+ in calcium release as a negative modulator of the coupling strength among RyRs in a CRS, translating to damping of the positive feedback of the calcium-induced calcium-release mechanism.
Collapse
Affiliation(s)
| | | | | | - Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Immadisetty K, Sun B, Kekenes-Huskey PM. Structural Changes beyond the EF-Hand Contribute to Apparent Calcium Binding Affinities: Insights from Parvalbumins. J Phys Chem B 2021; 125:6390-6405. [PMID: 34115511 PMCID: PMC8848088 DOI: 10.1021/acs.jpcb.1c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the parvalbumin (PV) family of calcium (Ca2+) binding proteins (CBPs) share a relatively high level of sequence similarity. However, their Ca2+ affinities and selectivities against competing ions like Mg2+ can widely vary. We conducted molecular dynamics simulations of several α-parvalbumin (αPV) constructs with micromolar to nanomolar Ca2+ affinities to identify structural and dynamic features that contribute to their binding of ions. Specifically, we examined a D94S/G98E construct with a lower Ca2+ affinity (≈-18 kcal/mol) relative to the wild type (WT) (≈-22 kcal/mol) and an S55D/E59D variant with enhanced affinity (≈-24 kcal/mol). Additionally, we also examined the binding of Mg2+ to these isoforms, which is much weaker than Ca2+. We used mean spherical approximation (MSA) theory to evaluate ion binding thermodynamics within the proteins' EF-hand domains to account for the impact of ions' finite sizes and the surrounding electrolyte composition. While the MSA scores differentiated Mg2+ from Ca2+, they did not indicate that Ca2+ binding affinities at the binding loop differed between the PV isoforms. Instead, molecular mechanics generalized Born surface area (MM/GBSA) approximation energies, which we used to quantify the thermodynamic cost of structural rearrangement of the proteins upon binding ions, indicated that S55D/E59D αPV favored Ca2+ binding by -20 kcal/mol relative to WT versus 30 kcal/mol for D94S/G98E αPV. Meanwhile, Mg2+ binding was favored for the S55D/E59D αPV and D94S/G98E αPV variants by -18.32 and -1.65 kcal/mol, respectively. These energies implicate significant contributions to ion binding beyond oxygen coordination at the binding loop, which stemmed from changes in α-helicity, β-sheet character, and hydrogen bonding. Hence, Ca2+ affinity and selectivity against Mg2+ are emergent properties stemming from both local effects within the proteins' ion binding sites as well as non-local contributions elsewhere. Our findings broaden our understanding of the molecular bases governing αPV ion binding that are likely shared by members of the broad family of CBPs.
Collapse
Affiliation(s)
| | - Bin Sun
- Stritch School of Medicine, Maywood, Illinois 60153, United States
| | | |
Collapse
|
3
|
Abstract
Changes of intracellular Ca2+ concentration regulate many aspects of cardiac myocyte function. About 99% of the cytoplasmic calcium in cardiac myocytes is bound to buffers, and their properties will therefore have a major influence on Ca2+ signaling. This article considers the fundamental properties and identities of the buffers and how to measure them. It reviews the effects of buffering on the systolic Ca2+ transient and how this may change physiologically, and in heart failure and both atrial and ventricular arrhythmias, as well. It is concluded that the consequences of this strong buffering may be more significant than currently appreciated, and a fuller understanding is needed for proper understanding of cardiac calcium cycling and contractility.
Collapse
Affiliation(s)
- Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK (G.L.S.)
| | - David A Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, UK (D.A.E.)
| |
Collapse
|
4
|
Permyakov SE, Vologzhannikova AA, Khorn PA, Shevelyova MP, Kazakov AS, Emelyanenko VI, Denesyuk AI, Denessiouk K, Uversky VN, Permyakov EA. Comprehensive analysis of the roles of 'black' and 'gray' clusters in structure and function of rat β-parvalbumin. Cell Calcium 2018; 75:64-78. [PMID: 30176502 DOI: 10.1016/j.ceca.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 01/05/2023]
Abstract
Recently we found two highly conserved structural motifs in the proteins of the EF-hand calcium binding protein family. These motifs provide a supporting scaffold for the Ca2+ binding loops and contribute to the hydrophobic core of the EF-hand domain. Each structural motif forms a cluster of three amino acids called cluster I ('black' cluster) and cluster II ('grey' cluster). Cluster I is much more conserved and mostly incorporates aromatic amino acids. In contrast, cluster II includes a mix of aromatic, hydrophobic, and polar amino acids. The 'black' and 'gray' clusters in rat β-parvalbumin consist of F48, A100, F103 and G61, L64, M87, respectively. In the present work, we sequentially substituted these amino acids residues by Ala, except Ala100, which was substituted by Val. Physical properties of the mutants were studied by circular dichroism, scanning calorimetry, dynamic light scattering, chemical crosslinking, and fluorescent probe methods. The Ca2+ and Mg2+ binding affinities of these mutants were evaluated by intrinsic fluorescence and equilibrium dialysis methods. In spite of a rather complicated pattern of contributions of separate amino acid residues of the 'black' and 'gray' clusters into maintenance of rat β-parvalbumin structural and functional status, the alanine substitutions in the cluster I cause noticeably more pronounced changes in various structural parameters of proteins, such as hydrodynamic radius of apo-form, thermal stability of Ca2+/Mg2+-loaded forms, and total energy of Ca2+ binding in comparison with the changes caused by amino acid substitutions in the cluster II. These findings were further supported by the outputs of computational analysis of the effects of these mutations on the intrinsic disorder predisposition of rat β-parvalbumin, which also indicated that local intrinsic disorder propensities and the overall levels of predicted disorder were strongly affected by mutations in the cluster I, whereas mutations in cluster II had less pronounced effects. These results demonstrate that amino acids of the cluster I provide more essential contribution to the maintenance of structuraland functional properties of the protein in comparison with the residues of the cluster II.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alisa A Vologzhannikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Polina A Khorn
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Marina P Shevelyova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexei S Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Victor I Emelyanenko
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexander I Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, 20520, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
5
|
In search for globally disordered apo-parvalbumins: Case of parvalbumin β-1 from coho salmon. Cell Calcium 2017; 67:53-64. [DOI: 10.1016/j.ceca.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022]
|
6
|
Asp ML, Sjaastad FV, Siddiqui JK, Davis JP, Metzger JM. Effects of Modified Parvalbumin EF-Hand Motifs on Cardiac Myocyte Contractile Function. Biophys J 2017; 110:2094-105. [PMID: 27166817 DOI: 10.1016/j.bpj.2016.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022] Open
Abstract
Cardiac gene delivery of parvalbumin (Parv), an EF-hand Ca(2+) buffer, has been studied as a therapeutic strategy for diastolic heart failure, in which slow Ca(2+) reuptake is an important contributor. A limitation of wild-type (WT) Parv is the significant trade-off between faster relaxation and blunted contraction amplitude, occurring because WT-Parv sequesters Ca(2+) too early in the cardiac cycle and prematurely truncates sarcomere shortening in the facilitation of rapid relaxation. We recently demonstrated that an E → Q substitution (ParvE101Q) at amino acid 12 of the EF-hand Ca(2+)/Mg(2+) binding loop disrupts bidentate Ca(2+) binding, reducing Ca(2+) affinity by 99-fold and increasing Mg(2+) affinity twofold. ParvE101Q caused faster relaxation and not only preserved contractility, but unexpectedly increased it above untreated myocytes. To gain mechanistic insight into the increased contractility, we focused here on amino acid 12 of the EF-hand motif. We introduced an E → D substitution (ParvE101D) at this site, which converts bidentate Ca(2+) coordination to monodentate coordination. ParvE101D decreased Ca(2+) affinity by 114-fold and increased Mg(2+) affinity 28-fold compared to WT-Parv. ParvE101D increased contraction amplitude compared to both untreated myocytes and myocytes with ParvE101Q, with limited improvement in relaxation. Additionally, ParvE101D increased spontaneous contractions after pacing stress. ParvE101D also increased Ca(2+) transient peak height and was diffusely localized around the Z-line of the sarcomere, suggesting a Ca(2+)-dependent mechanism of enhanced contractility. Sarcoplasmic reticulum Ca(2+) load was not changed with ParvE101D, but postpacing Ca(2+) waves were increased. Together, these data show that inverted Ca(2+)/Mg(2+) binding affinities of ParvE101D increase myocyte contractility through a Ca(2+)-dependent mechanism without altering sarcoplasmic reticulum Ca(2+) load and by increasing unstimulated contractions and Ca(2+) waves. ParvE101D provides mechanistic insight into how changes in the Ca(2+)/Mg(2+) binding affinities of parvalbumin's EF-hand motif alter function of cardiac myocytes. These data are informative in developing new Ca(2+) buffering strategies for the failing heart.
Collapse
Affiliation(s)
- Michelle L Asp
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Frances V Sjaastad
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jalal K Siddiqui
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota.
| |
Collapse
|
7
|
Walton SD, Chakravarthy H, Shettigar V, O’Neil AJ, Siddiqui JK, Jones BR, Tikunova SB, Davis JP. Divergent Soybean Calmodulins Respond Similarly to Calcium Transients: Insight into Differential Target Regulation. FRONTIERS IN PLANT SCIENCE 2017; 8:208. [PMID: 28261258 PMCID: PMC5309217 DOI: 10.3389/fpls.2017.00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/03/2017] [Indexed: 05/07/2023]
Abstract
Plants commonly respond to stressors by modulating the expression of a large family of calcium binding proteins including isoforms of the ubiquitous signaling protein calmodulin (CaM). The various plant CaM isoforms are thought to differentially regulate the activity of specific target proteins to modulate cellular stress responses. The mechanism(s) behind differential target activation by the plant CaMs is unknown. In this study, we used steady-state and stopped-flow fluorescence spectroscopy to investigate the strategy by which two soybean CaMs (sCaM1 and sCaM4) have evolved to differentially regulate NAD kinase (NADK), which is activated by sCaM1 but inhibited by sCaM4. Although the isolated proteins have different cation binding properties, in the presence of Mg2+ and the CaM binding domains from proteins that are differentially regulated, the two plant CaMs respond nearly identically to rapid and slow Ca2+ transients. Our data suggest that the plant CaMs have evolved to bind certain targets with comparable affinities, respond similarly to a particular Ca2+ signature, but achieve different structural states, only one of which can activate the enzyme. Understanding the basis for differential enzyme regulation by the plant CaMs is the first step to engineering a vertebrate CaM that will selectively alter the CaM signaling network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jonathan P. Davis
- Department of Physiology and Cell Biology, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
8
|
Springer TI, Emerson CC, Johns CW, Finley NL. Interaction with adenylate cyclase toxin from Bordetella pertussis affects the metal binding properties of calmodulin. FEBS Open Bio 2016; 7:25-34. [PMID: 28097085 PMCID: PMC5221433 DOI: 10.1002/2211-5463.12138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022] Open
Abstract
Adenylate cyclase toxin domain (CyaA‐ACD) is a calmodulin (CaM)‐dependent adenylate cyclase involved in Bordetella pertussis pathogenesis. Calcium (Ca2+) and magnesium (Mg2+) concentrations impact CaM‐dependent CyaA‐ACD activation, but the structural mechanisms remain unclear. In this study, NMR, dynamic light scattering, and native PAGE were used to probe Mg2+‐induced transitions in CaM's conformation in the presence of CyaA‐ACD. Mg2+ binding was localized to sites I and II, while sites III and IV remained Ca2+ loaded when CaM was bound to CyaA‐ACD. 2Mg2+/2Ca2+‐loaded CaM/CyaA‐ACD was elongated, whereas mutation of site I altered global complex conformation. These data suggest that CyaA‐ACD interaction moderates CaM's Ca2+‐ and Mg2+‐binding capabilities, which may contribute to pathobiology.
Collapse
Affiliation(s)
| | - Corey C Emerson
- Department of Microbiology Miami University Oxford OH USA; Present address: Department of Pharmacology Cleveland Center for Membrane and Structural Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Christian W Johns
- Cell, Molecular, and Structural Biology Program Miami University Oxford OH USA
| | - Natosha L Finley
- Department of Microbiology Miami University Oxford OH USA; Cell, Molecular, and Structural Biology Program Miami University Oxford OH USA
| |
Collapse
|
9
|
Kucharski AN, Scott CE, Davis JP, Kekenes-Huskey PM. Understanding Ion Binding Affinity and Selectivity in β-Parvalbumin Using Molecular Dynamics and Mean Spherical Approximation Theory. J Phys Chem B 2016; 120:8617-30. [PMID: 27267153 DOI: 10.1021/acs.jpcb.6b02666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parvalbumin (PV) is a globular calcium (Ca(2+))-selective protein expressed in a variety of biological tissues. Our computational studies of the rat β-parvalbumin (β-PV) isoform seek to elucidate the molecular thermodynamics of Ca(2+) versus magnesium (Mg(2+)) binding at the protein's two EF-hand motifs. Specifically, we have utilized molecular dynamics (MD) simulations and a mean-field electrolyte model (mean spherical approximation (MSA) theory) to delineate how the EF-hand scaffold controls the "local" thermodynamics of Ca(2+) binding selectivity over Mg(2+). Our MD simulations provide the probability density of metal-chelating oxygens within the EF-hand scaffolds for both Ca(2+) and Mg(2+), as well the conformational strain induced by Mg(2+) relative to Ca(2+) binding. MSA theory utilizes the binding domain oxygen and charge distributions to predict the chemical potential of ion binding, as well as their corresponding concentrations within the binding domain. We find that the electrostatic and steric contributions toward ion binding were similar for Mg(2+) and Ca(2+), yet the latter was 5.5 kcal/mol lower in enthalpy when internal strain within the EF hand was considered. We therefore speculate that beyond differences in dehydration energies for the Ca(2+) versus Mg(2+), strain induced in the β-PV EF hand by cation binding significantly contributes to the nearly 10,000-fold difference in binding affinity reported in the literature. We further complemented our analyses of local factors governing cation binding selectivity with whole-protein (global) contributions, such as interhelical residue-residue contacts and solvent exposure of hydrophobic surface. These contributions were found to be comparable for both Ca(2+)- and Mg(2+)-bound β-PV, which may implicate local factors, EF-hand strain, and dehydration, in providing the primary means of selectivity. We anticipate these methods could be used to estimate metal binding thermodynamics across a broad range of PV sequence homologues and EF-hand-containing, Ca(2+) binding proteins.
Collapse
Affiliation(s)
- Amir N Kucharski
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Caitlin E Scott
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, Ohio State University , Columbus, Ohio 43210, United States
| | - Peter M Kekenes-Huskey
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| |
Collapse
|
10
|
Designing proteins to combat disease: Cardiac troponin C as an example. Arch Biochem Biophys 2016; 601:4-10. [PMID: 26901433 DOI: 10.1016/j.abb.2016.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 01/18/2023]
Abstract
Throughout history, muscle research has led to numerous scientific breakthroughs that have brought insight to a more general understanding of all biological processes. Potentially one of the most influential discoveries was the role of the second messenger calcium and its myriad of handling and sensing systems that mechanistically control muscle contraction. In this review we will briefly discuss the significance of calcium as a universal second messenger along with some of the most common calcium binding motifs in proteins, focusing on the EF-hand. We will also describe some of our approaches to rationally design calcium binding proteins to palliate, or potentially even cure cardiovascular disease. Considering not all failing hearts have the same etiology, genetic background and co-morbidities, personalized therapies will need to be developed. We predict designer proteins will open doors for unprecedented personalized, and potentially, even generalized medicines as gene therapy or protein delivery techniques come to fruition.
Collapse
|
11
|
E. Rohrback S, Wheatly MG, Gillen CM. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants. Comp Biochem Physiol B Biochem Mol Biol 2015; 179:57-63. [DOI: 10.1016/j.cbpb.2014.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
12
|
Permyakov SE, Kazakov AS, Avkhacheva NV, Permyakov EA. Parvalbumin as a metal-dependent antioxidant. Cell Calcium 2014; 55:261-8. [PMID: 24685310 DOI: 10.1016/j.ceca.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/23/2014] [Accepted: 03/01/2014] [Indexed: 11/25/2022]
Abstract
Parvalbumin (PA) is a Ca(2+)-binding protein of vertebrates massively expressed in tissues with high oxygen uptake and respectively elevated level of reactive oxygen species (ROS). To characterize antioxidant properties of PA, antioxidant capacity (AOC) of intact rat α-PA has been explored. ORAC, TEAC and hydrogen peroxide AOC assays evidence conformation-dependent oxidation of the PA. AOC value for the apo-PA 4-11-fold exceeds that for the Ca(2+)-loaded protein. Despite folded conformation of apo-PA, it has AOC equivalent to that of the proteolized protein. The most populated under resting conditions PA form, Mg(2+)-bound PA, has AOC similar to that of apo-PA. ROS-induced changes in absorption spectrum of PA evidence an oxidation of PA's phenylalanines in the ORAC assay. Sensitivity of PA oxidation to its conformation enabled characterization of its metal affinity and pH-dependent behavior: a transition with pKa of 7.6 has been revealed for the Ca(2+)-loaded PA. Since total AOC of PA under in vivo conditions may reach the level of reduced glutathione, we propose that PA might modulate intracellular redox equilibria and/or signaling in a calcium-dependent manner. We speculate that the oxidation-mediated damage of some of PA-GABAergic interneurons observed in schizophrenia is due to a decline in total AOC of the reduced glutathione-PA pair.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290, Russia
| | - Alexey S Kazakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia
| | - Nadezhda V Avkhacheva
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| | - Eugene A Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290, Russia
| |
Collapse
|
13
|
Liu B, Lee RS, Biesiadecki BJ, Tikunova SB, Davis JP. Engineered troponin C constructs correct disease-related cardiac myofilament calcium sensitivity. J Biol Chem 2012; 287:20027-36. [PMID: 22511780 DOI: 10.1074/jbc.m111.334953] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aberrant myofilament Ca(2+) sensitivity is commonly observed with multiple cardiac diseases, especially familial cardiomyopathies. Although the etiology of the cardiomyopathies remains unclear, improving cardiac muscle Ca(2+) sensitivity through either pharmacological or genetic approaches shows promise of alleviating the disease-related symptoms. Due to its central role as the Ca(2+) sensor for cardiac muscle contraction, troponin C (TnC) stands out as an obvious and versatile target to reset disease-associated myofilament Ca(2+) sensitivity back to normal. To test the hypothesis that aberrant myofilament Ca(2+) sensitivity and its related function can be corrected through rationally engineered TnC constructs, three thin filament protein modifications representing different proteins (troponin I or troponin T), modifications (missense mutation, deletion, or truncation), and disease subtypes (familial or acquired) were studied. A fluorescent TnC was utilized to measure Ca(2+) binding to TnC in the physiologically relevant biochemical model system of reconstituted thin filaments. Consistent with the pathophysiology, the restrictive cardiomyopathy mutation, troponin I R192H, and ischemia-induced truncation of troponin I (residues 1-192) increased the Ca(2+) sensitivity of TnC on the thin filament, whereas the dilated cardiomyopathy mutation, troponin T ΔK210, decreased the Ca(2+) sensitivity of TnC on the thin filament. Rationally engineered TnC constructs corrected the abnormal Ca(2+) sensitivities of the thin filament, reconstituted actomyosin ATPase activity, and force generation in skinned trabeculae. Thus, the present study provides a novel and versatile therapeutic strategy to restore diseased cardiac muscle Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Bin Liu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|