1
|
Chen Z, Li W, Kama R, Nabi F, Kou Z, Qiu R, Yang X, Li H. Co-application of earthworms and arbuscular mycorrhizal fungi enhances arsenic tolerance of upland rice and improves soil health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125213. [PMID: 40220538 DOI: 10.1016/j.jenvman.2025.125213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Earthworms and arbuscular mycorrhizal fungi (AMF) are essential soil organisms that interactively shape soil-plant dynamics. This study elucidates the mechanistic basis of their co-inoculation in enhancing arsenic (As) tolerance in upland rice (Oryza sativa L.) and improving soil health in a pot experiment with As-contaminated soil (250.18 mg kg-1). This study revealed that the inoculation effects of co-inoculation on rice biomass, N uptake, and P uptake were 86 %, 109 %, and 177 %, respectively, while reducing As concentration in shoot by 38 %. Physiological analyses revealed a 40.17 % reduction in malondialdehyde (MDA) content and a 6 % increase in superoxide dismutase (SOD) activity, indicating enhanced antioxidant capacity. Subcellular As compartmentalization shifted markedly, with organelle-bound As decreasing by 27 % (roots) and 48 % (leaves), while soluble fraction and cell wall sequestration increased. Soil health metrics improved, evidenced by elevated catalase (38 %), urease (15 %), and acid phosphatase (39 %) activities, alongside a 13 % reduction in bioavailable As fractions (As-F1 and As-F2) due to increased As-F4 stabilization. These findings demonstrate that earthworm-AMF synergy mitigates As toxicity by dual strategies: (1) enhancing plant antioxidant defenses and subcellular As compartmentalization, and (2) promoting plant growth via soil enzyme activation and nutrient cycling. This integrated approach offers a scalable, eco-sustainable strategy for safe rice cultivation in As-contaminated agroecosystems.
Collapse
Affiliation(s)
- Zipeng Chen
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Wanlin Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Rakhwe Kama
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Farhan Nabi
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhansheng Kou
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xu Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Huashou Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Salari H, Amooaghaie R, Mozafari H, Ghorbanpour M, Sedaghati E. Impact of two arbuscular mycorrhizal fungi species on arsenic tolerance and accumulation in safflower (Carthamus tinctorius L.). BMC PLANT BIOLOGY 2024; 24:1174. [PMID: 39654066 PMCID: PMC11629533 DOI: 10.1186/s12870-024-05906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) can regulate metal(loid) tolerance in plants and their capacity for phytoremediation. These effects can vary depending on the host plant and the AMF species. The impact of different AMF species on the ability of safflower (Carthamus tinctorius L.) for arsenic (As) phytoremediation is still largely unknown. Therefore, this study aimed to assess the effect of two AMF species, Rhizophagus irregularis, and Funneliformis mosseae, on the tolerance and accumulation of As in safflower in soils spiked with varying arsenate concentrations (0, 25, 50, and 100 mg kg-1). RESULTS The results indicated that both AMF species established effective symbiotic relationships with safflower. However, plants inoculated with R. irregularis exhibited higher mycorrhizal dependency and root colonization, especially under 100 mg kg-1 As. Both AMF species significantly improved plant growth parameters, chlorophyll content, and phosphorus (P) nutrition, which resulted in increased P/As ratio and enhanced tolerance index in safflower plants. In addition, AMF inoculation reduced As-induced lipid peroxidation by enhancing catalase and peroxidase activity in leaves and roots. While the mycorrhizal symbiosis didn't affect As availability in soils, it significantly reduced shoot As concentration and the translocation factor under all As levels. Furthermore, mycorrhizal inoculation, especially with R. irregularis, increased As concentration and modified-bioconcentration factor in the roots and enhanced total As uptake per plant. CONCLUSIONS Based on the results and multivariate analyses, both AMF species, particularly R. irregularis, enhanced safflower's As tolerance by retaining As in roots, improving phosphorus nutrition, and increasing antioxidant enzyme activity, showcasing their potential to enhance phytostabilization in safflower plants.
Collapse
Affiliation(s)
- Hassan Salari
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Rayhaneh Amooaghaie
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Hossein Mozafari
- Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Ebrahim Sedaghati
- Department of Plant Protection, Faculty of Agriculture, Vali-E- Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
3
|
Hao S, Tian Y, Lin Z, Xie L, Zhou X, Bañuelos GS. Effects of arbuscular mycorrhizal fungi on the reduction of arsenic accumulation in plants: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1327649. [PMID: 38645396 PMCID: PMC11026667 DOI: 10.3389/fpls.2024.1327649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Arsenic (As) accumulation in plants is a global concern. Although the application of arbuscular mycorrhizal fungi (AMF) has been suggested as a potential solution to decrease As concentration in plants, there is currently a gap in a comprehensive, quantitative assessment of the abiotic and biotic factors influencing As accumulation. A meta-analysis was performed to quantitatively investigate the findings of 76 publications on the impacts of AMF, plant properties, and soil on As accumulation in plants. Results showed a significant dose-dependent As reduction with higher mycorrhizal infection rates, leading to a 19.3% decrease in As concentration. AMF reduced As(V) by 19.4% but increased dimethylarsenic acid (DMA) by 50.8%. AMF significantly decreased grain As concentration by 34.1%. AMF also improved plant P concentration and dry biomass by 33.0% and 62.0%, respectively. The most significant reducing effects of As on AMF properties were seen in single inoculation and experiments with intermediate durations. Additionally, the benefits of AMF were significantly enhanced when soil texture, soil organic carbon (SOC), pH level, Olsen-P, and DTPA-As were sandy soil, 0.8%-1.5%, ≥7.5, ≥9.1 mg/kg, and 30-60 mg/kg, respectively. AMF increased easily extractable glomalin-related soil protein (EE-GRSP) and total glomalin-related soil protein (T-GRSP) by 23.0% and 28.0%, respectively. Overall, the investigated factors had significant implications in developing AMF-based methods for alleviating the negative effects of As stress on plants.
Collapse
Affiliation(s)
- Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Ye Tian
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhiqing Lin
- Department of Environmental Sciences, Southern Illinois University, Edwardsville, IL, United States
- Department of Biological Sciences, Southern Illinois University, Edwardsville, IL, United States
| | - Linzhi Xie
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Gary S. Bañuelos
- Agricultural Research Service, United States Department of Agriculture, Parlier, CA, United States
| |
Collapse
|
4
|
Boorboori MR, Zhang HY. Arbuscular Mycorrhizal Fungi Are an Influential Factor in Improving the Phytoremediation of Arsenic, Cadmium, Lead, and Chromium. J Fungi (Basel) 2022; 8:176. [PMID: 35205936 PMCID: PMC8879560 DOI: 10.3390/jof8020176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing expansion of mines, factories, and agricultural lands has caused many changes and pollution in soils and water of several parts of the world. In recent years, metal(loid)s are one of the most dangerous environmental pollutants, which directly and indirectly enters the food cycle of humans and animals, resulting in irreparable damage to their health and even causing their death. One of the most important missions of ecologists and environmental scientists is to find suitable solutions to reduce metal(loid)s pollution and prevent their spread and penetration in soil and groundwater. In recent years, phytoremediation was considered a cheap and effective solution to reducing metal(loid)s pollution in soil and water. Additionally, the effect of soil microorganisms on increasing phytoremediation was given special attention; therefore, this study attempted to investigate the role of arbuscular mycorrhizal fungus in the phytoremediation system and in reducing contamination by some metal(loid)s in order to put a straightforward path in front of other researchers.
Collapse
Affiliation(s)
| | - Hai-Yang Zhang
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou 234000, China;
| |
Collapse
|
5
|
Deng F, Zeng F, Chen G, Feng X, Riaz A, Wu X, Gao W, Wu F, Holford P, Chen ZH. Metalloid hazards: From plant molecular evolution to mitigation strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124495. [PMID: 33187800 DOI: 10.1016/j.jhazmat.2020.124495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 05/25/2023]
Abstract
Metalloids such as boron and silicon are key elements for plant growth and crop productivity. However, toxic metalloids such as arsenic are increasing in the environment due to inputs from natural sources and human activities. These hazardous metalloids can cause serious health risks to humans and animals if they enter the food chain. Plants have developed highly regulated mechanisms to alleviate the toxicity of metalloids during their 500 million years of evolution. A better understanding the molecular mechanisms underlying the transport and detoxification of toxic metalloids in plants will shed light on developing mitigation strategies. Key transporters and regulatory proteins responsive to toxic metalloids have been identified through evolutionary and molecular analyses. Moreover, knowledge of the regulatory proteins and their pathways can be used in the breeding of crops with lower accumulation of metalloids. These findings can also assist phytoremediation by the exploration of plants such as fern species that hyperaccumulate metalloids from soils and water, and can be used to engineer plants with elevated uptake and storage capacity of toxic metalloids. In summary, there are solutions to remediate contamination due to toxic metalloids by combining the research advances and industrial technologies with agricultural and environmental practices.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guang Chen
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xue Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adeel Riaz
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
6
|
|
7
|
Zhang XF, Hu ZH, Yan TX, Lu RR, Peng CL, Li SS, Jing YX. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:352-360. [PMID: 30616152 DOI: 10.1016/j.ecoenv.2018.12.097] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal fungus (AMF) can relieve Cd phytotoxicity and improve plant growth, but the mechanisms involved in this process have still been not completely known. In the present work, a pot experiment was conducted to examine productions of glutathione (GSH) and phytochelatins (PCs), and absorption, chemical forms and subcellular distribution of Cd in maize (Zea mays) inoculated with or without AMF (Rhizophagus intraradices (Ri) and Glomus versiforme (Gv)) in Cd-amended soils (0, 1 and 5 mg Cd kg-1 soil). In general, both Ri and Gv inoculation dramatically enhanced biomass production and reduced Cd concentrations in shoots and roots of maize when compared to the non-mycorrhizal treatment. Moreover, both Ri and Gv symbiosis obviously increased contents of GSH and PCs, both in shoots and roots. Subcellular distribution of Cd in maize indicated that most of Cd (more than 90%) was accumulated in cell wall and soluble fraction. In addition, Cd proportions in soluble fractions in shoots of maize inoculated with Gv or Ri were considerably increased, but reduced in cell wall fractions compared to non-mycorrhizal maize, indicating that mycorrhizal symbiosis promoted Cd transfer to vacuoles. Furthermore, proportions of Cd in inorganic and water-soluble forms were declined, but elevated in pectates and proteins-integrated forms in mycorrhizal maize, which suggested that Gv and Ri could convert Cd into inactive forms. These observations could provide a further understanding of potential Cd detoxification mechanism in maize inoculated with AMF.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zun-He Hu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ting-Xiu Yan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Rui-Rui Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Chang-Lian Peng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shao-Shan Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yuan-Xiao Jing
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
8
|
Maldonado-Mendoza IE, Harrison MJ. RiArsB and RiMT-11: Two novel genes induced by arsenate in arbuscular mycorrhiza. Fungal Biol 2018; 122:121-130. [DOI: 10.1016/j.funbio.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
9
|
Mnasri M, Janoušková M, Rydlová J, Abdelly C, Ghnaya T. Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network. CHEMOSPHERE 2017; 171:476-484. [PMID: 28038419 DOI: 10.1016/j.chemosphere.2016.12.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/05/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
The effects of inoculation with an arbuscular mycorrhizal (AM) fungus on Cd and Ni tolerance and uptake in Medicago sativa, an AM host, and Sesuvium portulacastrum, a non-host plant, were investigated in a greenhouse experiment. The plants were cultivated in sterilized sand in a two-compartmented system, which prevented root competition but enabled colonization of the whole substrate by AM fungal extraradical mycelium. M. sativa was either left non-inoculated or inoculated with the AM fungus Rhizophagus irregularis, and both plants were either cultivated without heavy metal (HM) addition or supplied with cadmium (Cd) or nickel (Ni), each in two doses. Additional pots with singly cultivated plants were established to control for the effect of the co-cultivation. AM significantly enhanced the growth of M. sativa and substantially increased its uptake of both HMs. The roots of S. portulacastrum became colonized by AM fungal hyphae and vesicles. The presence of the AM fungus in the cultivation system tended to increase the HM uptake of S. portulacastrum, but the effect was less consistent and pronounced than that in M. sativa. We conclude that AM fungal mycelium radiating from M. sativa did not negatively affect the growth and HM uptake of S. portulacastrum. On the contrary, we hypothesize that it stimulated the absorption and translocation of Cd and Ni in the non-host species. Thus, our results suggest that AM fungal mycelium radiating from mycorrhizal plants does not decrease the HM uptake of non-host plants, many of which are considered promising candidate plants for phytoremediation.
Collapse
Affiliation(s)
- Mejda Mnasri
- Laboratoire des Plantes Extremophiles (LPE), Centre de Biotechnologies de la Technopole de Borj Cedria, BP 901, Hammam Lif, 2050, Tunisia; Université de Tunis El Manar, Tunisia; Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Martina Janoušková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Jana Rydlová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Chedly Abdelly
- Laboratoire des Plantes Extremophiles (LPE), Centre de Biotechnologies de la Technopole de Borj Cedria, BP 901, Hammam Lif, 2050, Tunisia
| | - Tahar Ghnaya
- Laboratoire des Plantes Extremophiles (LPE), Centre de Biotechnologies de la Technopole de Borj Cedria, BP 901, Hammam Lif, 2050, Tunisia.
| |
Collapse
|
10
|
Ferrol N, Tamayo E, Vargas P. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6253-6265. [PMID: 27799283 DOI: 10.1093/jxb/erw403] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal symbioses that involve most plants and Glomeromycota fungi are integral and functional parts of plant roots. In these associations, the fungi not only colonize the root cortex but also maintain an extensive network of hyphae that extend out of the root into the surrounding environment. These external hyphae contribute to plant uptake of low mobility nutrients, such as P, Zn, and Cu. Besides improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can alleviate heavy metal (HM) toxicity to their host plants. HMs, such as Cu, Zn, Fe, and Mn, play essential roles in many biological processes but are toxic when present in excess. This makes their transport and homeostatic control of particular importance to all living organisms. AMF play an important role in modulating plant HM acquisition in a wide range of soil metal concentrations and have been considered to be a key element in the improvement of micronutrient concentrations in crops and in the phytoremediation of polluted soils. In the present review, we provide an overview of the contribution of AMF to plant HM acquisition and performance under deficient and toxic HM conditions, and summarize current knowledge of metal homeostasis mechanisms in arbuscular mycorrhizas.
Collapse
Affiliation(s)
- Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| | - Elisabeth Tamayo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| | - Paola Vargas
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
11
|
Jakobsen I, Smith SE, Smith FA, Watts-Williams SJ, Clausen SS, Grønlund M. Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6173-6186. [PMID: 27811084 PMCID: PMC5100028 DOI: 10.1093/jxb/erw383] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Capturing the full growth potential in crops under future elevated CO2 (eCO2) concentrations would be facilitated by improved understanding of eCO2 effects on uptake and use of mineral nutrients. This study investigates interactions of eCO2, soil phosphorus (P), and arbuscular mycorrhizal (AM) symbiosis in Medicago truncatula and Brachypodium distachyon grown under the same conditions. The focus was on eCO2 effects on vegetative growth, efficiency in acquisition and use of P, and expression of phosphate transporter (PT) genes. Growth responses to eCO2 were positive at P sufficiency, but under low-P conditions they ranged from non-significant in M. truncatula to highly significant in B. distachyon Growth of M. truncatula was increased by AM at low P conditions at both CO2 levels and eCO2×AM interactions were sparse. Elevated CO2 had small effects on P acquisition, but enhanced conversion of tissue P into biomass. Expression of PT genes was influenced by eCO2, but effects were inconsistent across genes and species. The ability of eCO2 to partly mitigate P limitation-induced growth reductions in B. distachyon was associated with enhanced P use efficiency, and requirements for P fertilizers may not increase in such species in future CO2-rich climates.
Collapse
Affiliation(s)
- Iver Jakobsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Sally E Smith
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Soils Group, School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, SA 5005, Australia
| | - F Andrew Smith
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Soils Group, School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, SA 5005, Australia
| | - Stephanie J Watts-Williams
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Boyce Thompson Institute, Tower Rd, Ithaca, NY 14853, USA
| | - Signe S Clausen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Mette Grønlund
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Present address: Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Thorvaldsensvej 40, Frederiksberg C, Denmark
| |
Collapse
|
12
|
Chen L, Zhang D, Yang W, Liu Y, Zhang L, Gao S. Sex-specific responses of Populus deltoides to Glomus intraradices colonization and Cd pollution. CHEMOSPHERE 2016; 155:196-206. [PMID: 27115844 DOI: 10.1016/j.chemosphere.2016.04.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/28/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
The positive effects of arbuscular mycorrhizal fungi (AM) on the survival, growth and physiology of plants under various stress conditions have been widely recognized. However, whether sex-dependent susceptibility to AM colonization exists, which can induce a differential tolerance between the sexes to stress conditions, is still unclear. In this study, we investigated the effects of Glomus intraradices on Cd-stressed males and females of Populus deltoides (spiked with 10 mg Cd per kg dry substrate) in terms of morphology, physiology, biochemistry, ultrastructure, and toxin storage and translocation. Exposure to Cd promoted the colonization by G. intraradices in males, but not in females. Generally, females suffered more impairments than males in response to Cd stress, reflected by leaf symptoms, the extent of lipid peroxidation, and integrity of the cellular ultrastructure, whether they were inoculated or not. Inoculation with G. intraradices alleviated the phytotoxic effects of Cd in females by stimulating antioxidant enzymes, decreasing levels of reactive oxygen species (ROS) and restricting Cd transfer to the shoots. In contrast, these beneficial effects induced by AM were not detected in mycorrhizal males compared to non-mycorrhizal males, based on thiobarbituric acid-reactive substances (TBARS) and cellular ultrastructure. Inoculation with AM promoted Cd accumulation in males but not in females, and caused the sequestration of more toxic Cd in the root systems in both sexes. Therefore, our results suggest that inoculated males of P. deltoides are suitable candidates for phytostabilization in Cd-polluted soils, due to their higher accumulation ability and greater tolerance relative to inoculated females.
Collapse
Affiliation(s)
- Lianghua Chen
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Danju Zhang
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanqin Yang
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhang
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Gao
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
13
|
Zhang X, Wu S, Ren B, Chen B. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains. MYCORRHIZA 2016; 26:299-309. [PMID: 26585898 DOI: 10.1007/s00572-015-0669-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/09/2015] [Indexed: 05/15/2023]
Abstract
A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baihui Ren
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
14
|
Xu Z, Ban Y, Li Z, Chen H, Yang R, Tang M. Arbuscular mycorrhizal fungi play a role in protecting roots of Sophora viciifolia Hance. from Pb damage associated with increased phytochelatin synthase gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12671-12683. [PMID: 24958536 DOI: 10.1007/s11356-014-3209-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
Understanding the influence of arbuscular mycorrhizal (AM) fungi on the expressions of the dominant plant-related genes under heavy metal (HM) stress is important for developing strategies to reclaim polluted sites. In this study, we cloned full-length cDNAs of phytochelatin synthase gene (PCS1) and Actin of Sophora viciifolia Hance., a predominant plant in Qiandongshan lead and zinc mine, by rapid amplification of cDNA ends. Consequently, we studied the response of SvPCS1 to Funneliformis mosseae inoculation under lead stress (0, 50, and 200 μM Pb(NO3)2) at different durations (1, 3, and 7 days) using quantitative reverse-transcription polymerase chain-reaction (qRT-PCR) technique. The Pb concentrations and chlorophyll fluorescence parameters were also measured to assay Pb toxicity to Sophora viciifolia. We found that Pb concentrations in roots increased with increasing Pb application and the durations; the F v /F m , F v /F o , qP, and Y(II) decreased; NPQ rose with increasing Pb concentrations; mycorrhizal symbiosis alleviated the Pb toxicity to plants; and SvPCS1 was constitutively expressed in the roots. It was also found that F. mosseae inoculation could promote the expression of SvPCS1 with the concentration ≤ 200 μM at the exposure time shorter than 7 days.
Collapse
Affiliation(s)
- Zhouying Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
15
|
Facelli E, Duan T, Smith SE, Christophersen HM, Facelli JM, Smith FA. Opening the black box: outcomes of interactions between arbuscular mycorrhizal (AM) and non-host genotypes of Medicago depend on fungal identity, interplay between P uptake pathways and external P supply. PLANT, CELL & ENVIRONMENT 2014; 37:1382-1392. [PMID: 24236504 DOI: 10.1111/pce.12237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 06/02/2023]
Abstract
We investigated the physiology that underlies the influence of arbuscular mycorrhizal (AM) colonization on outcomes of interactions between plants. We grew Medicago truncatula A17 and its AM-defective mutant dmi1 in intragenotypic (two plants per pot of the same genotype, x2) or intergenotypic (one plant of each genotype, 1 + 1) combinations, inoculated or not with Rhizophagus irregularis (formerly Glomus intraradices) or Gigaspora margarita. We measured plant growth, colonization, contributions of AM and direct P uptake pathways using (32)P, and expression of plant Pi transporter genes at two levels of P supply. A17 (x2) responded positively to inoculation only at low P. The response was enhanced with 1 + 1 even at high P where colonization in A17 was reduced. With R. irregularis P uptake by the AM pathway was unaffected by P supply, whereas with G. margarita, the AM pathway was lower at high P, and direct uptake higher. Gene expression varied and was unrelated to P uptake through the two pathways. There was no evidence of plant control of P uptake via R. irregularis at high P but there was via G. margarita. Importantly, growth responses of plant genotypes grown alone did not predict outcomes of intergenotypic interactions.
Collapse
Affiliation(s)
- E Facelli
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Cicatelli A, Todeschini V, Lingua G, Biondi S, Torrigiani P, Castiglione S. Epigenetic control of heavy metal stress response in mycorrhizal versus non-mycorrhizal poplar plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1723-1737. [PMID: 23975714 DOI: 10.1007/s11356-013-2072-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
It was previously shown that arbuscular mycorrhizal fungi (AMF) exert a significant improvement of growth in a tolerant white poplar (Populus alba L.) clone (AL35) grown on Cu- and Zn-polluted soil via foliar alterations in the levels of defence/stress-related transcripts and molecules. However, nothing is known about the epigenetic changes which occur during tolerance acquisition in response to heavy metals (HMs) in the same mycorrhizal vs. non-mycorrhizal poplar plants. In order to analyse the epigenome in leaves of AL35 plants inoculated or not with AMF and grown in a greenhouse on multimetal polluted or unpolluted soil, the Methylation Sensitive Amplification Polymorphism (MSAP) approach was adopted to detect cytosine DNA methylation. Modest changes in cytosine methylation patterns were detected at first sampling (4 months from planting), whereas extensive alterations (hypomethylation) occurred at second sampling (after 6 months) in mycorrhizal plants grown in the presence of HMs. The sequencing of MSAP fragments led to the identification of genes belonging to several Gene Ontology categories. Seven MSAP fragments, selected on the basis of DNA methylation status in treated vs control AL35 leaves at the end of the experiment, were analysed for their transcript levels by means of qRT-PCR. Gene expression varied in treated samples relative to controls in response to HMs and/or AMF inoculation; in particular, transcripts of genes involved in RNA processing, cell wall and amino acid metabolism were upregulated in the presence of AMF with or without HMs.
Collapse
Affiliation(s)
- Angela Cicatelli
- Dipartimento di Chimica e Biologia, Università di Salerno, 84084, Fisciano, SA, Italy
| | - Valeria Todeschini
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121, Alessandria, Italy
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121, Alessandria, Italy
| | - Stefania Biondi
- Dipartimento BiGeA, Università di Bologna, 40126, Bologna, Italy
| | - Patrizia Torrigiani
- Dipartimento di Scienze Agrarie, Università di Bologna, 40127, Bologna, Italy
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia, Università di Salerno, 84084, Fisciano, SA, Italy.
| |
Collapse
|