1
|
Vasileva F, Font-Lladó R, Carreras-Badosa G, López-Ros V, Ferrusola-Pastrana A, López-Bermejo A, Prats-Puig A. Increased Salivary BDNF and Improved Fundamental Motor Skills in Children Following a 3-Month Integrated Neuromuscular Training in Primary School. J Funct Morphol Kinesiol 2024; 9:154. [PMID: 39311262 PMCID: PMC11417929 DOI: 10.3390/jfmk9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a protein involved in synaptic transmission and neuronal plasticity, which underlie the processes of learning and memory formation. Acute exercise and exercise training increase BDNF concentration. We aimed to evaluate the effects of a 3-month integrated neuromuscular training (INT) on salivary BDNF concentration and the mastery of fundamental motor skills in school-aged children. An additional goal was to explore the associations between potential changes in BDNF and fundamental motor skills. Sixty-seven primary school-aged children were randomly allocated to control (N = 32; 7.52 ± 0.31 y) or INT groups (N = 35; 7.56 ± 0.29 y). A 3-month INT was applied during the warm-up of physical education (PE) classes, twice weekly. Salivary BDNF was measured using a sandwich-enzyme-linked immunosorbent assay and the mastery of fundamental motor skills was assessed using the CAMSA test, at baseline and after 3 months. The children in the INT group, as compared to the children in the control group, exhibited higher salivary BDNF (F = 8.865; p = 0.004), higher scores for sidestep (F = 13.240, p = 0.001), 1-foot hop (F = 11.684, p = 0.001), kick (F = 4.010, p = 0.050), the sum of locomotor skills (F = 18.799, p < 0.0001), and the sum of control and manipulative skills (F = 8.151, p = 0.006), as well as the total sum of fundamental motor skills (F = 11.266, p = 0.001) after the 3 months. Interestingly, the increase in salivary BDNF concentration after the 3-month INT was associated with an improvement in locomotor skills (beta = 0.385; p = 0.039; adjusted R2 = 0.088) and the total improvement in fundamental motor skills (beta = 0.428; p = 0.020; adjusted R2 = 0.124). A school-based 3-month INT increased salivary BDNF and improved the mastery of fundamental motor skills in children, highlighting the positive impact of this intervention for a pediatric population.
Collapse
Affiliation(s)
- Fidanka Vasileva
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, 17190 Girona, Spain; (F.V.); (G.C.-B.); (A.L.-B.)
- University School of Health and Sport, University of Girona, 17190 Girona, Spain; (R.F.-L.); (A.F.-P.)
| | - Raquel Font-Lladó
- University School of Health and Sport, University of Girona, 17190 Girona, Spain; (R.F.-L.); (A.F.-P.)
- Faculty of Education and Psychology, University of Girona, 17004 Girona, Spain;
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, 17004 Girona, Spain
- Chair of Sport and Physical Education—Centre of Olympic Studies, University of Girona, 17004 Girona, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, 17190 Girona, Spain; (F.V.); (G.C.-B.); (A.L.-B.)
- Department of Biology, University of Girona, 17003 Girona, Spain
| | - Víctor López-Ros
- Faculty of Education and Psychology, University of Girona, 17004 Girona, Spain;
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, 17004 Girona, Spain
- Chair of Sport and Physical Education—Centre of Olympic Studies, University of Girona, 17004 Girona, Spain
| | - Anna Ferrusola-Pastrana
- University School of Health and Sport, University of Girona, 17190 Girona, Spain; (R.F.-L.); (A.F.-P.)
- New Therapeutic Targets Group, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17071 Girona, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, 17190 Girona, Spain; (F.V.); (G.C.-B.); (A.L.-B.)
- Department of Medical Sciences, University of Girona, 17071 Girona, Spain
- Pediatric Endocrinology, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Anna Prats-Puig
- University School of Health and Sport, University of Girona, 17190 Girona, Spain; (R.F.-L.); (A.F.-P.)
- Research Group of Clinical Anatomy, Embryology and Neuroscience, Department of Medical Sciences, University of Girona, 17071 Girona, Spain
| |
Collapse
|
2
|
Suggitt JO, Eaves BE, Spranger MD. What are the cardiovascular responses during blood flow-restricted resistance exercise? Front Physiol 2024; 15:1417855. [PMID: 38966227 PMCID: PMC11222610 DOI: 10.3389/fphys.2024.1417855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Affiliation(s)
| | | | - Marty D. Spranger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Ghantous E, Shetrit A, Erez Y, Noam N, Zamanzadeh RS, Zahler D, Granot Y, Levi E, Perl ML, Banai S, Topilsky Y, Havakuk O. The Mechanism of Effort Intolerance in Patients with Peripheral Arterial Disease: A Combined Stress Echocardiography and Cardiopulmonary Exercise Test. J Clin Med 2023; 12:5817. [PMID: 37762757 PMCID: PMC10531883 DOI: 10.3390/jcm12185817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
AIM We used a combined stress echocardiography and cardiopulmonary exercise test (CPET) to explore effort intolerance in peripheral arterial disease (PAD) patients. METHODS Twenty-three patients who had both PAD and coronary artery disease (CAD) were compared with twenty-four sex- and age-matched CAD patients and fifteen normal controls using a symptom-limited ramp bicycle CPET on a tilting dedicated ergometer. Echocardiographic images were obtained concurrently with gas exchange measurements along predefined stages of exercise. Oxygen extraction was calculated using the Fick equation at each activity level. RESULTS Along the stages of exercise (unloaded; anaerobic threshold; peak), in PAD + CAD patients compared with CAD or controls, diastolic function worsened (p = 0.051 and p = 0.013, respectively), and oxygen consumption (p < 0.001 and p < 0.001, respectively) and oxygen pulse (p = 0.0024 and p = 0.0027, respectively) were reduced. Notably, oxygen pulse was blunted due to an insufficient increase in both stroke volume (p = 0.025 and p = 0.028, respectively) and peripheral oxygen extraction (p = 0.031 and p = 0.038, respectively). Chronotropic incompetence was more prevalent in PAD patients and persisted after correction for beta-blocker use (62% vs. 42% and 11%, respectively). CONCLUSIONS In PAD patients, exercise limitation is associated with diastolic dysfunction, chronotropic incompetence and peripheral factors.
Collapse
Affiliation(s)
- Eihab Ghantous
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - Aviel Shetrit
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - Yonatan Erez
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - Natalie Noam
- Vascular Surgery Department, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Ryan S. Zamanzadeh
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - David Zahler
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - Yoav Granot
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - Erez Levi
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - Michal Laufer Perl
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - Shmuel Banai
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - Yan Topilsky
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| | - Ofer Havakuk
- Cardiology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (A.S.); (Y.E.); (R.S.Z.); (D.Z.); (Y.G.); (E.L.); (M.L.P.); (S.B.); (Y.T.)
| |
Collapse
|
4
|
Wang Y, Anesi J, Maier MC, Myers MA, Oqueli E, Sobey CG, Drummond GR, Denton KM. Sympathetic Nervous System and Atherosclerosis. Int J Mol Sci 2023; 24:13132. [PMID: 37685939 PMCID: PMC10487841 DOI: 10.3390/ijms241713132] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Atherosclerosis is characterized by the narrowing of the arterial lumen due to subendothelial lipid accumulation, with hypercholesterolemia being a major risk factor. Despite the recent advances in effective lipid-lowering therapies, atherosclerosis remains the leading cause of mortality globally, highlighting the need for additional therapeutic strategies. Accumulating evidence suggests that the sympathetic nervous system plays an important role in atherosclerosis. In this article, we reviewed the sympathetic innervation in the vasculature, norepinephrine synthesis and metabolism, sympathetic activity measurement, and common signaling pathways of sympathetic activation. The focus of this paper was to review the effectiveness of pharmacological antagonists or agonists of adrenoceptors (α1, α2, β1, β2, and β3) and renal denervation on atherosclerosis. All five types of adrenoceptors are present in arterial blood vessels. α1 blockers inhibit atherosclerosis but increase the risk of heart failure while α2 agonism may protect against atherosclerosis and newer generations of β blockers and β3 agonists are promising therapies against atherosclerosis; however, new randomized controlled trials are warranted to investigate the effectiveness of these therapies in atherosclerosis inhibition and cardiovascular risk reduction in the future. The role of renal denervation in atherosclerosis inhibition in humans is yet to be established.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Michelle C. Maier
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Mark A. Myers
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3350, Australia
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3216, Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kate M. Denton
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
5
|
Sukhanova KY, Koirala A, Elmslie KS. Na V1.9 current in muscle afferent neurons is enhanced by substances released during muscle activity. J Neurophysiol 2022; 128:739-750. [PMID: 36043704 PMCID: PMC9512110 DOI: 10.1152/jn.00116.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle contraction triggers the exercise pressor reflex (EPR) to regulate the cardiovascular system response to exercise. During muscle contraction, substances are released that generate action potential activity in group III and IV afferents that mediate the EPR. Some of these substances increase afferent activity via G-protein-coupled receptor (GPCR) activation, but the mechanisms are incompletely understood. We were interested in determining if tetrodotoxin-resistant (TTX-R) voltage-dependent sodium channels (NaV) were involved and investigated the effect of a mixture of such compounds (bradykinin, prostaglandin, norepinephrine, and ATP, called muscle metabolites). Using whole cell patch-clamp electrophysiology, we show that the muscle metabolites significantly increased TTX-R NaV currents. The rise time of this enhancement averaged ∼2 min, which suggests the involvement of a diffusible second messenger pathway. The effect of muscle metabolites on the current-voltage relationship, channel activation and inactivation kinetics support NaV1.9 channels as the target for this enhancement. When applied individually at the concentration used in the mixture, only prostaglandin and bradykinin significantly enhanced NaV current, but the sum of these enhancements was <1/3 that observed when the muscle metabolites were applied together. This suggests synergism between the activated GPCRs to enhance NaV1.9 current. When applied at a higher concentration, all four substances could enhance the current, which demonstrates that the GPCRs activated by each metabolite can enhance channel activity. The enhancement of NaV1.9 channel activity is a likely mechanism by which GPCR activation increases action potential activity in afferents generating the EPR.NEW & NOTEWORTHY G-protein-coupled receptor (GPCR) activation increases action potential activity in muscle afferents to produce the exercise pressor reflex (EPR), but the mechanisms are incompletely understood. We provide evidence that NaV1.9 current is synergistically enhanced by application of a mixture of metabolites potentially released during muscle contraction. The enhancement of NaV1.9 current is likely one mechanism by which GPCR activation generates the EPR and the inappropriate activation of the EPR in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Khrystyna Yu Sukhanova
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Ankeeta Koirala
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| |
Collapse
|
6
|
Qin L, Cui J, Li J. Sympathetic Nerve Activity and Blood Pressure Response to Exercise in Peripheral Artery Disease: From Molecular Mechanisms, Human Studies, to Intervention Strategy Development. Int J Mol Sci 2022; 23:ijms231810622. [PMID: 36142521 PMCID: PMC9505475 DOI: 10.3390/ijms231810622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sympathetic nerve activity (SNA) regulates the contraction of vascular smooth muscle and leads to a change in arterial blood pressure (BP). It was observed that SNA, vascular contractility, and BP are heightened in patients with peripheral artery disease (PAD) during exercise. The exercise pressor reflex (EPR), a neural mechanism responsible for BP response to activation of muscle afferent nerve, is a determinant of the exaggerated exercise-induced BP rise in PAD. Based on recent results obtained from a series of studies in PAD patients and a rat model of PAD, this review will shed light on SNA-driven BP response and the underlying mechanisms by which receptors and molecular mediators in muscle afferent nerves mediate the abnormalities in autonomic activities of PAD. Intervention strategies, particularly non-pharmacological strategies, improving the deleterious exercise-induced SNA and BP in PAD, and enhancing tolerance and performance during exercise will also be discussed.
Collapse
|
7
|
Qin L, Li Q, Li J. ASIC3 knockout alters expression and activity of P2X3 in muscle afferent nerves of rat model of peripheral artery disease. FASEB Bioadv 2022; 4:329-341. [PMID: 35520394 PMCID: PMC9065578 DOI: 10.1096/fba.2021-00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
In peripheral artery disease (PAD), the metaboreceptor and mechanoreceptor in muscle afferent nerves contribute to accentuated sympathetic outflow via a neural reflex termed exercise pressor reflex (EPR). Particularly, lactic acid and adenosine triphosphate (ATP) produced in exercising muscles respectively stimulate acid sensing ion channel subtype 3 (ASIC3) and P2X3 receptors (P2X3) in muscle afferent nerves, inducing the reflex sympathetic and BP responses. Previous studies indicated that those two receptors are spatially close to each other and AISC3 may have a regulatory effect on the function of P2X3. This inspired our investigation on the P2X3‐mediated EPR response following AISC3 abolished, which was anticipated to shed light on the future pharmacological and genetic treatment strategy for PAD. Thus, we tested the experimental hypothesis that the pressor response to P2X3 stimulation is greater in PAD rats with 3 days of femoral artery occlusion and the sensitizing effects of P2X3 are attenuated following ASIC3 knockout (KO) in PAD. Our data demonstrated that in wild type (WT) rats femoral occlusion exaggerated BP response to activation of P2X3 using α,β‐methylene ATP injected into the arterial blood supply of the hindlimb, meanwhile the western blot analysis suggested upregulation of P2X3 expression in dorsal root ganglion supplying the afferent nerves. Using the whole cell patch‐clamp method, we also showed that P2X3 stimulation enhanced the amplitude of induced currents in muscle afferent neurons of PAD rats. Of note, amplification of the P2X3 evoked‐pressor response and expression and current response of P2X3 was attenuated in ASIC3 KO rats. We concluded that the exaggerated P2X3‐mediated pressor response in PAD rats is blunted by ASIC3 KO due to the decreased expression and activities of P2X3 in muscle afferent neurons.
Collapse
Affiliation(s)
- Lu Qin
- Heart and Vascular Institute The Pennsylvania State University College of Medicine Hershey PA 17033 USA
| | - Qin Li
- Heart and Vascular Institute The Pennsylvania State University College of Medicine Hershey PA 17033 USA
| | - Jianhua Li
- Heart and Vascular Institute The Pennsylvania State University College of Medicine Hershey PA 17033 USA
| |
Collapse
|
8
|
Li Q, Qin L, Li J. Effects of bradykinin on voltage-gated K V 4 channels in muscle dorsal root ganglion neurons of rats with experimental peripheral artery disease. J Physiol 2021; 599:3567-3580. [PMID: 34036586 PMCID: PMC8284427 DOI: 10.1113/jp281704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During exercise, bradykinin (BK), a muscle metabolite in ischaemic muscles, exaggerates autonomic responses to activation of muscle afferent nerves in peripheral artery disease (PAD). We examined whether BK inhibits activity of KV 4 channels in muscle afferent neurons of PAD rats induced by femoral artery occlusion. We demonstrated that: 1) femoral occlusion attenuates KV 4 currents in dorsal root ganglion (DRG) neurons innervating the hindlimb muscles and decreases the threshold of action potential firing; 2) BK has a greater inhibitory effect on KV 4 currents in muscle DRG neurons of PAD rats; and 3) expression of KV 4.3 is downregulated in DRGs of PAD rats and inhibition of KV 4.3 significantly decreases activity of KV 4 currents in muscle DRG neurons. Femoral artery occlusion-induced limb ischaemia and/or ischaemia-induced metabolites (i.e. BK) inhibit activity of KV 4 channels in muscle afferent neurons and this is likely involved in the exaggerated exercise pressor reflex in PAD. ABSTRACT Muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses are exaggerated during exercise in patients with peripheral artery diseases (PAD) and in PAD rats induced by femoral artery occlusion. However, the precise signalling pathways and molecular mediators responsible for these abnormal autonomic responses in PAD are poorly understood. A-type voltage-gated K+ (KV ) channels are quintessential regulators of cellular excitability in the various tissues. Among KV channels, KV 4 (i.e. KV 4.1 and KV 4.3) in primary sensory neurons mainly participate in physiological functions in regulation of mechanical and chemical sensation. However, little is known about the role of KV 4 in regulating neuronal activity in muscle afferent neurons of PAD. In addition, bradykinin (BK) is considered as a muscle metabolite contributing to the exaggerated exercise pressor reflex in PAD rats with femoral artery occlusion. Our data demonstrated that: 1) KV 4 currents are attenuated in dorsal root ganglion (DRG) neurons innervating the hindlimb muscles of PAD rats, along with a decreasing threshold of action potential firing; 2) KV 4 currents are inhibited by application of BK onto muscle DRG neurons of PAD rats to a greater degree; and 3) expression of KV 4.3 is downregulated in the DRGs of PAD rats and KV 4.3 channel is a major contributor to the activity of KV 4 currents in muscle DRG neurons. In conclusion, data suggest that femoral artery occlusion-induced limb ischaemia and/or ischaemia-induced metabolites (i.e. BK) inhibit the activity of KV 4 channels in muscle afferent neurons likely leading to the exaggerated exercise pressor reflex observed in PAD.
Collapse
Affiliation(s)
- Qin Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lu Qin
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jianhua Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
9
|
Wright AB, Sukhanova KY, Elmslie KS. K V7 channels are potential regulators of the exercise pressor reflex. J Neurophysiol 2021; 126:1-10. [PMID: 34038189 DOI: 10.1152/jn.00700.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The exercise pressor reflex (EPR) originates in skeletal muscle and is activated by exercise-induced signals to increase arterial blood pressure and cardiac output. Muscle ischemia can elicit the EPR, which can be inappropriately activated in patients with peripheral vascular disease or heart failure to increase the incidence of myocardial infarction. We seek to better understand the receptor/channels that control excitability of group III and group IV muscle afferent fibers that give rise to the EPR. Bradykinin (BK) is released within contracting muscle and can evoke the EPR. However, the mechanism is incompletely understood. KV7 channels strongly regulate neuronal excitability and are inhibited by BK. We have identified KV7 currents in muscle afferent neurons by their characteristic activation/deactivation kinetics, enhancement by the KV7 activator retigabine, and block by KV7 specific inhibitor XE991. The blocking of KV7 current by different XE991 concentrations suggests that the KV7 current is generated by both KV7.2/7.3 (high affinity) and KV7.5 (low affinity) channels. The KV7 current was inhibited by 300 nM BK in neurons with diameters consistent with both group III and group IV afferents. The inhibition of KV7 by BK could be a mechanism by which this metabolic mediator generates the EPR. Furthermore, our results suggest that KV7 channel activators such as retigabine, could be used to reduce cardiac stress resulting from the exacerbated EPR in patients with cardiovascular disease.NEW & NOTEWORTHY KV7 channels control neuronal excitability. We show that these channels are expressed in muscle afferents and generate currents that are blocked by XE991 and bradykinin (BK). The XE991 block suggests that KV7 current is generated by KV7.2/3 and KV7.5 channels. The BK inhibition of KV7 channels may explain how BK activates the exercise pressor reflex (EPR). Retigabine can enhance KV7 current, which could help control the inappropriately activated EPR in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew B Wright
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Khrystyna Yu Sukhanova
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| |
Collapse
|
10
|
Qin L, Li J. Sympathetic Nerve Control of Blood Pressure Response during Exercise in Peripheral Artery Disease and Current Application of Experimental Disease Models. AMERICAN JOURNAL OF BIOMEDICAL SCIENCE & RESEARCH 2021; 9:204-209. [PMID: 33392512 DOI: 10.34297/ajbsr.2020.09.001387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In patients with peripheral artery disease (PAD), the blood supply directed to the lower limbs is reduced. This results in severe limb ischemia and thereby intermittent claudicating which is characterized by pain in lower limbs that occurs with walking and is relieved by rest. Of note, PAD can extremely affect the quality of living of patients and increase high risk of coronary and cerebral vascular accidents. However, effective treatments of PAD are still challenging in clinics. A number of reports have demonstrated the beneficial effects of supervised exercise on symptoms of PAD patients. This review will summarize results obtained from recent human and animal studies, which include the abnormalities in sympathetic control of blood pressure response during exercise in PAD, and rationality of animal models used for study human PAD. Nonetheless, additional in-depth studies are necessary to better explore the underlying mechanisms of the exaggerated responses of sympathetic nerve and blood pressure in PAD at molecular and cellular levels.
Collapse
Affiliation(s)
- Lu Qin
- Heart & Vascular Institute, The Penn State University College of Medicine, US
| | - Jianhua Li
- Heart & Vascular Institute, The Penn State University College of Medicine, US
| |
Collapse
|
11
|
Qin L, Li J. HIF-1α inhibition alleviates the exaggerated exercise pressor reflex in rats with peripheral artery disease induced by femoral artery occlusion. Physiol Rep 2021; 8:e14676. [PMID: 33356010 PMCID: PMC7757375 DOI: 10.14814/phy2.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor mediating adaptive responses to hypoxia and ischemia. Our previous work showed that HIF-1α is increased in muscle sensory nerves of rats with peripheral artery disease (PAD) induced by femoral artery occlusion. The present study was further to examine the role played by HIF-1α in regulating the response of arterial blood pressure (BP) to the activation of muscle afferent nerve during static muscle contraction in rats with femoral artery occlusion. A rat model of femoral artery ligation was used to study PAD in this study. Western blot analysis was employed to examine the protein levels of HIF-1α in the dorsal root ganglion (DRG) tissues. BAY87, a synthesized compound with the characteristics of highly potent and specific suppressive effects on expression and activity of HIF-1α, was given into the arterial blood supply of the ischemic hindlimb muscles before the exercise pressor reflex was evoked by static muscle contraction. First, HIF-1α was increased in the DRG of occluded limbs (optical density: 0.89 ± 0.13 in control versus 1.5 ± 0.05 in occlusion; p < 0.05, n = 6 in each group). Arterial injection of BAY87 (0.2 mg/kg) then inhibited expression of HIF-1α in the DRG of occluded limbs 3 hr following its injection (optical density: 1.02 ± 0.09 in occluded limbs with BAY87 versus 1.06 ± 0.1 in control limbs; p > 0.05, n = 5 in each group). In addition, muscle contraction evoked a greater increase in BP in occluded rats. BAY87 attenuated the enhanced BP response in occluded rats to a greater degree than in control rats. Our data suggest that the inhibition of HIF-1α alleviates the exaggeration of the exercise pressor reflex in rats under ischemic circumstances of the hindlimbs in PAD induced by femoral artery occlusion.
Collapse
Affiliation(s)
- Lu Qin
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPAUSA
| | - Jianhua Li
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPAUSA
| |
Collapse
|
12
|
Peçanha T, Meireles K, Pinto AJ, Rezende DAN, Iraha AY, Mazzolani BC, Smaira FI, Sales ARK, Bonfiglioli K, Sá-Pinto ALD, Lima FR, Irigoyen MC, Gualano B, Roschel H. Increased sympathetic and haemodynamic responses to exercise and muscle metaboreflex activation in post-menopausal women with rheumatoid arthritis. J Physiol 2020; 599:927-941. [PMID: 33180998 DOI: 10.1113/jp280892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Rheumatoid arthritis (RA) patients present exacerbated blood pressure responses to exercise, but little is known regarding the underlying mechanisms involved. This study assessed autonomic and haemodynamic responses to exercise and to the isolated activation of muscle metaboreflex in post-menopausal women with RA. Participants with RA showed augmented pressor and sympathetic responses to exercise and to the activation of muscle metaboreflex. These responses were associated with multiple pro- and anti-inflammatory cytokines and with pain. The results of the present study support the suggestion that an abnormal reflex control of circulation is an important mechanism underlying the exacerbated cardiovascular response to exercise and increased cardiovascular risk in RA. ABSTRACT Studies have reported abnormal cardiovascular responses to exercise in rheumatoid arthritis (RA) patients, but little is known regarding the underlying mechanisms involved. This study assessed haemodynamic and sympathetic responses to exercise and to the isolated activation of muscle metaboreflex in women diagnosed with RA. Thirty-three post-menopausal women diagnosed with RA and 10 matched controls (CON) participated in this study. Mean arterial pressure (MAP), heart rate (HR) and muscle sympathetic nerve activity (MSNA frequency and incidence) were measured during a protocol of isometric knee extension exercise (3 min, 30% of maximal voluntary contraction), followed by post-exercise ischaemia (PEI). Participants with RA showed greater increases in MAP and MSNA during exercise and PEI than CON (ΔMAPexercise = 16 ± 11 vs. 9 ± 6 mmHg, P = 0.03; ΔMAPPEI = 15 ± 10 vs. 5 ± 5 mmHg, P = 0.001; ΔMSNAexercise = 17 ± 14 vs. 7 ± 9 bursts min-1 , P = 0.04; ΔMSNAPEI = 14 ± 10 vs. 6 ± 4 bursts min-1 , P = 0.04). Autonomic responses to exercise showed significant (P < 0.05) association with pro- (i.e. IFN-γ, IL-8, MCP-1 and TNFα) and anti-inflammatory (i.e. IL-1ra and IL-10) cytokines and with pain. In conclusion, post-menopausal women with RA showed augmented pressor and sympathetic responses to exercise and to the activation of muscle metaboreflex. These findings provide mechanistic insights that may explain the abnormal cardiovascular responses to exercise in RA.
Collapse
Affiliation(s)
- Tiago Peçanha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kamila Meireles
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Jéssica Pinto
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Diego Augusto Nunes Rezende
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda Yuri Iraha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Caruso Mazzolani
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabiana Infante Smaira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Allan Robson Kluser Sales
- Heart Institute, Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Karina Bonfiglioli
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Lúcia de Sá-Pinto
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Rodrigues Lima
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Cláudia Irigoyen
- Heart Institute, Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
Qin L, Li J. One-Time Acute Heat Treatment Is Effective for Attenuation of the Exaggerated Exercise Pressor Reflex in Rats With Femoral Artery Occlusion. Front Physiol 2020; 11:942. [PMID: 32848871 PMCID: PMC7424045 DOI: 10.3389/fphys.2020.00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/14/2020] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to determine the effects of one-time acute heat treatment (HT) on the exaggerated exercise pressor reflex in a model of peripheral arterial insufficiency induced by ligation of the femoral artery and was to further examine the underlying mechanism of ATP-P2X3 signal activity during this process. The blood pressure (BP) response to static muscle contraction and muscle tendon stretch was recorded to determine the exercise pressor reflex. Also, αβ-methylene ATP (αβ-me ATP) was injected into the arterial blood supply of the hindlimb muscles to stimulate P2X3 receptors in the muscle afferent nerves. To process one-time acute HT, a heating pad was placed locally on the hindlimb and the muscle temperature (Tm) was increased by ~1.5°C and maintained for 5 min. Compared with control rats, a greater mean arterial pressure (MAP) response to muscle contraction was observed in rats with femoral occlusion in a pre-heat control session (28 ± 2 mmHg in occluded rats/n = 12 vs. 18 ± 2 mmHg in control rats/n = 9; p < 0.05). The one-time acute HT attenuated the amplification of the BP response in rats with femoral artery occlusion (MAP response: 19 ± 8 mmHg in occluded rats + HT/n = 11; p < 0.05 vs. occluded rats). In contrast, HT did not significantly attenuate amplification of MAP response to muscle stretch and αβ-me ATP injection in rats with femoral artery occlusion and controls (all p > 0.05). Our data suggest that one-time acute HT selectively attenuates the amplified pressor response induced by activation of the metabolic and mechanical components of the reflex in rats after femoral artery occlusion. The suppressing effects of acute HT on the exaggerated exercise pressor reflex are likely mediated through a reduction in metabolites (e.g., ATP) stimulating the muscle afferent nerves in contracting muscle, but unlikely through direct alteration of P2X receptors per se.
Collapse
Affiliation(s)
- Lu Qin
- Heart and Vascular Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Jianhua Li
- Heart and Vascular Institute, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
14
|
Qin L, Li Q, Li J. Heat treatment improves the exaggerated exercise pressor reflex in rats with femoral artery occlusion via a reduction in the activity of the P2X receptor pathway. J Physiol 2020; 598:1491-1503. [PMID: 32052864 DOI: 10.1113/jp279230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS During exercise, the blood pressure (BP) response is exaggerated in peripheral artery disease (PAD). We examined whether heat treatment (HT) has beneficial effects on the exaggerated exercise pressor reflex in PAD rats. With HT (increase in basal muscle temperature of ∼1.5°C for 30 min, twice daily for three continuous days), the amplified BP response to muscle contraction is alleviated in PAD. We demonstrated that HT attenuates the enhancement of the BP response induced by stimulation of P2X in muscle afferent nerves of PAD rats. HT also attenuates the upregulation of the P2X3 and the increase in P2X currents in the muscle afferent neurons of PAD rats. Previous heat exposure plays a beneficial role in modifying the exaggeration of the exercise pressor reflex in PAD and a reduction in the activity of the P2X receptor pathway is probably a part of the mechanism mediating this improvement. ABSTRACT The current study was performed to examine if heat treatment (HT) has beneficial effects on the exaggerated exercise pressor reflex in rats with peripheral artery disease (PAD). We further determined if the temperature-sensitive P2X receptor is involved in the effects of HT. The pressor response to static muscle contraction and α,β-methylene ATP (αβ-me ATP, a P2X agonist) was examined. Western blot analysis was used to determine the protein levels of P2X3 in the dorsal root ganglion (DRG), and the whole cell patch clamp was used to examine the amplitude of P2X currents in the DRG neurons. The basal muscle temperature (Tm ) was lower in PAD rats than in control rats. Tm was increased by ∼1.5°C and this increase was maintained for 30 min. This HT protocol was performed tweice daily for three continuous days. A greater blood pressure (BP) response to contraction was observed in PAD rats. HT attenuated the amplification of the BP response in PAD rats. HT also attenuated the enhancement of the BP response induced by the arterial injection of αβ-me ATP in PAD rats. In addition, HT attenuated the upregulation of the P2X3 and increased P2X currents in the DRG neurons of PAD rats. In conclusion, previous heat exposure plays an inhibitory role in modifying the exaggeration of the exercise pressor reflex in PAD and a reduction of the activity of the P2X receptor pathway is probably a part of mechanisms leading to the beneficial effects of HT.
Collapse
Affiliation(s)
- Lu Qin
- Heart & Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Qin Li
- Heart & Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jianhua Li
- Heart & Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
15
|
Wei X, Sun C, Zhou RP, Ma GG, Yang Y, Lu C, Hu W. Nerve growth factor promotes ASIC1a expression via the NF-κB pathway and enhances acid-induced chondrocyte apoptosis. Int Immunopharmacol 2020; 82:106340. [PMID: 32146316 DOI: 10.1016/j.intimp.2020.106340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Nerve growth factor (NGF) is a neurotrophic factor that is thought to have a broad role in the nervous system and tumors, and has recently been described as a mediator of inflammation. It is not clear whether or not NGF participates in apoptosis of articular chondrocytes. In this study, we determined if NGF affects ASIC1a expression and NF-κB P65 activation in rat chondrocytes, and measured the effectiveness of NGF on apoptotic protein expression in acid-induced chondrocytes. NGF was shown to up-regulate the level of ASIC1a in a dose- and time-dependent fashion. Simultaneously, NGF activated NF-κB P65 in chondrocytes. Additionally, the elevated ASIC1a expression induced by NGF was eliminated by the NF-κB inhibitor (PDTC) in chondrocytes. Moreover, NGF reduced cell viability and induced LDH release under the premise of acid-induced articular chondrocytes. Furthermore, NGF could enhance cleaved-caspase 9 and cleaved-PARP expression in acid-pretreated chondrocytes, and which could be inhibited by using psalmotoxin 1(PcTX1) or PDTC. Together, these results indicated that NGF may up-regulate ASIC1a expression through the NF-κB signaling pathway, and further promote acid-induced apoptosis of chondrocytes.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Sun
- Department of Pharmacology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
16
|
Li Q, Qin L, Li J. Enhancement by TNF-α of TTX-resistant Na V current in muscle sensory neurons after femoral artery occlusion. Am J Physiol Regul Integr Comp Physiol 2020; 318:R772-R780. [PMID: 32101460 DOI: 10.1152/ajpregu.00338.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Femoral artery occlusion in rats has been used to study human peripheral artery disease (PAD). Using this animal model, a recent study suggests that increases in levels of tumor necrosis factor-α (TNF-α) and its receptor lead to exaggerated responses of sympathetic nervous activity and arterial blood pressure as metabolically sensitive muscle afferents are activated. Note that voltage-dependent Na+ subtype NaV1.8 channels (NaV1.8) are predominately present in chemically sensitive thin fiber sensory nerves. The purpose of this study was to examine the role played by TNF-α in regulating activity of NaV1.8 currents in muscle dorsal root ganglion (DRG) neurons of rats with PAD induced by femoral artery occlusion. DRG neurons from control and occluded limbs of rats were labeled by injecting the fluorescent tracer DiI into the hindlimb muscles 5 days before the experiments. A voltage patch-clamp mode was used to examine TTX-resistant (TTX-R) NaV currents. Results were as follows: 72 h of femoral artery occlusion increased peak amplitude of TTX-R [1,922 ± 139 pA in occlusion (n = 11 DRG neurons) vs. 1,178 ± 39 pA in control (n = 10), means ± SE; P < 0.001 between the 2 groups] and NaV1.8 currents [1,461 ± 116 pA in occlusion (n = 11) and 766 ± 48 pA in control (n = 10); P < 0.001 between groups] in muscle DRG neurons. TNF-α exposure amplified TTX-R and NaV1.8 currents in DRG neurons of occluded muscles in a dose-dependent manner. Notably, the amplification of TTX-R and NaV1.8 currents induced by TNF-α was attenuated in DRG neurons with preincubation with respective inhibitors of the intracellular signaling pathways p38-MAPK, JNK, and ERK. In conclusion, our data suggest that NaV1.8 is engaged in the role of TNF-α in amplifying muscle afferent inputs as the hindlimb muscles are ischemic; p38-MAPK, JNK, and ERK pathways are likely necessary to mediate the effects of TNF-α.
Collapse
Affiliation(s)
- Qin Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lu Qin
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jianhua Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
17
|
A dual role for peripheral GDNF signaling in nociception and cardiovascular reflexes in the mouse. Proc Natl Acad Sci U S A 2019; 117:698-707. [PMID: 31848242 DOI: 10.1073/pnas.1910905116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Group III/IV muscle afferents transduce nociceptive signals and modulate exercise pressor reflexes (EPRs). However, the mechanisms governing afferent responsiveness to dually modulate these processes are not well characterized. We and others have shown that ischemic injury can induce both nociception-related behaviors and exacerbated EPRs in the same mice. This correlated with primary muscle afferent sensitization and increased expression of glial cell line-derived neurotrophic factor (GDNF) in injured muscle and increased expression of GDNF family receptor α1 (GFRα1) in dorsal root ganglia (DRG). Here, we report that increased GDNF/GFRα1 signaling to sensory neurons from ischemia/reperfusion-affected muscle directly modulated nociceptive-like behaviors and increased exercise-mediated reflexes and group III/IV muscle afferent sensitization. This appeared to have taken effect through increased cyclic adenosine monophosphate (cAMP) response element binding (CREB)/CREB binding protein-mediated expression of the purinergic receptor P2X5 in the DRGs. Muscle GDNF signaling to neurons may, therefore, play an important dual role in nociception and sympathetic reflexes and could provide a therapeutic target for treating complications from ischemic injuries.
Collapse
|
18
|
Cristina-Oliveira M, Meireles K, Spranger MD, O'Leary DS, Roschel H, Peçanha T. Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. Am J Physiol Heart Circ Physiol 2019; 318:H90-H109. [PMID: 31702969 DOI: 10.1152/ajpheart.00468.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood flow restriction training (BFRT) is an increasingly widespread method of exercise that involves imposed restriction of blood flow to the exercising muscle. Blood flow restriction is achieved by inflating a pneumatic pressure cuff (or a tourniquet) positioned proximal to the exercising muscle before, and during, the bout of exercise (i.e., ischemic exercise). Low-intensity BFRT with resistance training promotes comparable increases in muscle mass and strength observed during high-intensity exercise without blood flow restriction. BFRT has expanded into the clinical research setting as a potential therapeutic approach to treat functionally impaired individuals, such as the elderly, and patients with orthopedic and cardiovascular disease/conditions. However, questions regarding the safety of BFRT must be fully examined and addressed before the implementation of this exercise methodology in the clinical setting. In this respect, there is a general concern that BFRT may generate abnormal reflex-mediated cardiovascular responses. Indeed, the muscle metaboreflex is an ischemia-induced, sympathoexcitatory pressor reflex originating in skeletal muscle, and the present review synthesizes evidence that BFRT may elicit abnormal cardiovascular responses resulting from increased metaboreflex activation. Importantly, abnormal cardiovascular responses are more clearly evidenced in populations with increased cardiovascular risk (e.g., elderly and individuals with cardiovascular disease). The evidence provided in the present review draws into question the cardiovascular safety of BFRT, which clearly needs to be further investigated in future studies. This information will be paramount for the consideration of BFRT exercise implementation in clinical populations.
Collapse
Affiliation(s)
- Michelle Cristina-Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Kamila Meireles
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Tiago Peçanha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Interleukin 1β inhibition contributes to the antinociceptive effects of voluntary exercise on ischemia/reperfusion-induced hypersensitivity. Pain 2019; 159:380-392. [PMID: 29112534 DOI: 10.1097/j.pain.0000000000001094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Issues of peripheral circulation have been increasingly suggested as an underlying cause of musculoskeletal pain in many conditions, including sickle cell anemia and peripheral vascular disease. We have previously shown in our model of transient ischemia and reperfusion (I/R) injury of the forelimb that individual group III and IV muscle afferents display altered chemosensitivity and mechanical thresholds 1 day after injury. Functional alterations corresponded to increased evoked and spontaneous pain-related behaviors and decreased muscle strength and voluntary activity-all actions that echo clinical symptoms of ischemic myalgia. These behavioral and physiological changes appeared to originate in part from the action of increased interleukin 1β (IL1β) in the injured muscles at its upregulated IL1 receptor 1 within the dorsal root ganglion. Here, we describe that two days of voluntary wheel running prior to I/R blocks both injury-induced IL1β enhancement and the subsequent development of ischemic myalgia-like behaviors. Furthermore, the protective effects of 2 days prior exercise on the I/R-evoked increases in pain-related behaviors were also paralleled with systemic injection of the IL1 receptor antagonist during I/R. Interleukin 1 receptor antagonist treatment additionally prevented the I/R-induced changes in mechanical and chemical sensitivity of individual primary muscle afferents. Altogether, these data strengthen the evidence that transient I/R injury sensitizes group III and IV muscle afferents via increased IL1β in the muscles to stimulate ischemic myalgia development. Targeting IL1β may, therefore, be an effective treatment strategy for this insidious type of muscle pain.
Collapse
|
20
|
Effect of pre-exercise ingestion of α-lactalbumin on subsequent endurance exercise performance and mood states. Br J Nutr 2018; 121:22-29. [DOI: 10.1017/s000711451800274x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThis study investigated the effect of pre-exercise α-lactalbumin ingestion on subsequent endurance exercise performance, muscle pain and mood states. In a two-stage cross-over counterbalance design, eleven male endurance runners (age: 31 (se 2) years, height: 169·5 (se 4·4) cm, weight: 63·6 (se 5·1) kg, V̇O2max: 58·8 (se 6·3) ml/kg per min) consumed two solutions (carbohydrate+α-lactalbumin, CA; carbohydrate+whey protein isolate, CW) 2 h before a self-paced 21-km run. Creatine kinase, IL-6, muscle pain, pressure pain threshold (PPT) and mood states were assessed 2 h before exercise, immediately before exercise (Pre-ex0) and immediately after exercise (Post-ex0). No difference was found in 21-km running performance between two trials (CA v. CW: 115·85 (se 5·20) v. 118·85 (se 5·51) min, P=0·48). Compared with CW, CA led to higher PPT at Pre-ex0 (41·77 (se 2·27) v. 35·56 (se 2·10) N/cm2, P<0·01) and Post-ex0 (38·76 (se 3·23) v. 35·30 (se 3·55) N/cm2, P=0·047). Compared with CW, CA reduced the feeling of fatigue at Post-ex0 (P<0·01); CA also reduced salivary cortisol levels at Post-ex0 (0·72 (se 0·07) v. 0·83 (se 0·13) ng/ml, P<0·01). In conclusion, the ingestion of α-lactalbumin did not improve the 21-km time-trial performance. However, compared with the pre-exercise ingestion of whey protein, that of α-lactalbumin led to superior results during similar levels of endurance exercise: it elevated PPT and reduced the feeling of fatigue and the cortisol levels.
Collapse
|
21
|
Xing J, Lu J, Li J. Role of TNF-α in Regulating the Exercise Pressor Reflex in Rats With Femoral Artery Occlusion. Front Physiol 2018; 9:1461. [PMID: 30374312 PMCID: PMC6196241 DOI: 10.3389/fphys.2018.01461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023] Open
Abstract
Responses of sympathetic nerve activity and arterial blood pressure are augmented during activation of the exercise pressor reflex in rats with femoral artery occlusion. The present study examined the role played by proinflammatory tumor necrosis factor-α (TNF-α) in regulating augmented sympathetic responsiveness induced by stimulation of muscle metabolic receptors and static muscle contraction following 72 h of femoral artery occlusion. We first observed that the levels of TNF-α and protein expression of TNF-α receptor type 1 (TNFR1) were increased in the dorsal root ganglion (DRG) of hindlimbs with femoral artery occlusion. Note that TNF-α was observed within DRG neurons of C-fiber afferent nerves. Capsaicin (TRPV1 agonist) and AITC (TRPA1 agonist) were injected into arterial blood supply of the hindlimbs to stimulate metabolically sensitive thin-fiber muscle afferents. The effects of these injections on the sympathetic and pressor responses were further examined in control rats and rats with femoral artery occlusion. As TNF-α synthesis suppressor pentoxifylline (PTX) was previously administered into the hindlimb with femoral artery occlusion, sympathetic, and pressor responses induced by capsaicin and AITC were attenuated. In occluded rats, PTX also attenuated the exaggeration of blood pressure response induced by muscle contraction, but not by passive tendon stretch. Overall, the results suggest that TNF-α plays a role in modulating exaggerated sympathetic nervous activity via the metabolic component of the exercise pressor reflex when the hindlimb muscles are ischemic in peripheral arterial disease.
Collapse
Affiliation(s)
- Jihong Xing
- Heart & Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jian Lu
- Heart & Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jianhua Li
- Heart & Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
22
|
Kruse NT, Ueda K, Hughes WE, Casey DP. Eight weeks of nitrate supplementation improves blood flow and reduces the exaggerated pressor response during forearm exercise in peripheral artery disease. Am J Physiol Heart Circ Physiol 2018. [PMID: 29522355 DOI: 10.1152/ajpheart.00015.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral artery disease (PAD) is characterized by a reduced blood flow (BF) and an elevated blood pressure (pressor) response during lower extremity exercise. Although PAD is evident in the upper extremities, no studies have determined BF and pressor responses during upper extremity exercise in PAD. Emerging evidence suggests that inorganic nitrate supplementation may serve as an alternative dietary strategy to boost nitric oxide bioavailability, improving exercising BF and pressor responses during exercise. The present study investigated 1) BF and pressor responses to forearm exercise in patients with PAD ( n = 21) relative to healthy age-matched control subjects ( n = 16) and 2) whether 8 wk of NaNO3 supplementation influenced BF and pressor responses to forearm exercise in patients with PAD. Patients with moderate to severe PAD were randomly assigned to a NaNO3 (1 g/day, n = 13)-treated group or a placebo (microcrystalline cellulose, n = 8)-treated group. Brachial artery forearm BF (FBF; via Doppler) and blood pressure (via finger plethysmography) were measured during mild-intensity (~3.5-kg) and moderate-intensity (~7-kg) handgrip exercise. The absolute change (from baseline) in FBF was reduced (except in the 3.5-kg condition) and BP responses were increased in patients with PAD compared with healthy control subjects in 3.5- and 7-kg conditions (all P < 0.05). Plasma nitrate and nitrite were elevated, exercising (7-kg) ΔFBF was improved (from 141 ± 17 to 172 ± 20 ml/min), and mean arterial pressure response was reduced (from 13 ± 1 to 9 ± 1 mmHg, P < 0.05) in patients with PAD that received NaNO3 supplementation for 8 wk relative to those that received placebo. These results suggest that the BF limitation and exaggerated pressor response to moderate-intensity forearm exercise in patients with PAD are improved with 8 wk of NaNO3 supplementation. NEW & NOTEWORTHY Peripheral artery disease (PAD) results in an exaggerated pressor response and reduced blood flow during lower limb exercise; however, the effect of PAD in the upper limbs has remained unknown. These results suggest that 8 wk of inorganic nitrate supplementation improves the blood flow limitation and exaggerated pressor response to moderate-intensity forearm exercise in PAD.
Collapse
Affiliation(s)
- Nicholas T Kruse
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - William E Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
23
|
Xing J, Lu J, Liu J, Li J. Local Injections of Superoxide Dismutase Attenuate the Exercise Pressor Reflex in Rats with Femoral Artery Occlusion. Front Physiol 2018; 9:39. [PMID: 29456512 PMCID: PMC5801590 DOI: 10.3389/fphys.2018.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/11/2018] [Indexed: 12/26/2022] Open
Abstract
The exercise pressor reflex is amplified in patients with peripheral artery disease (PAD) and in an experimental PAD model of rats induced by femoral artery occlusion. Heightened blood pressure worsens the restricted blood flow directed to the limbs in this disease. The purpose of this study was to determine the role played by muscle oxidative stress in regulating the augmented pressor response to static exercise in PAD. We hypothesized that limb ischemia impairs muscle superoxide dismutase (SOD) thereby leading to abnormal autonomic responsiveness observed in PAD animals, and a chronic compensation of SOD for anti-oxidation improves the exaggerated exercise pressor reflex. Our data show that femoral occlusion decreased the protein levels of SOD in ischemic muscle as compared with control muscle. Downregulation of SOD appeared to a greater degree in the oxidative (red) muscle than in the glycolytic (white) muscle under the condition of muscle ischemia. In addition, the exercise pressor response was assessed during electrically induced static contraction. The data demonstrates that the enhancement of the exercise pressor reflex was significantly attenuated after tempol (a mimetic of SOD, 30 mg over a period of 72 h) was administered into the occluded hindlimb. In the occluded rats, mean arterial pressure (MAP) response was 26 ± 3 mmHg with no tempol and 12 ± 2 mmHg with tempol application (P < 0.05 vs. group with no tempol; n = 6 in each group). There were no differences in muscle tension development (time-tension index: 12.1 ± 1.2 kgs with no tempol and 13.5 ± 1.1 kgs with tempol; P > 0.05 between groups). In conclusion, SOD is lessened in the ischemic muscles and supplement of SOD improves the amplified exercise pressor reflex, which is likely beneficial to the restricted blood flow to the limbs in PAD.
Collapse
Affiliation(s)
- Jihong Xing
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jian Lu
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jiahao Liu
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jianhua Li
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
24
|
Queme LF, Ross JL, Jankowski MP. Peripheral Mechanisms of Ischemic Myalgia. Front Cell Neurosci 2017; 11:419. [PMID: 29311839 PMCID: PMC5743676 DOI: 10.3389/fncel.2017.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal pain due to ischemia is present in a variety of clinical conditions including peripheral vascular disease (PVD), sickle cell disease (SCD), complex regional pain syndrome (CRPS), and even fibromyalgia (FM). The clinical features associated with deep tissue ischemia are unique because although the subjective description of pain is common to other forms of myalgia, patients with ischemic muscle pain often respond poorly to conventional analgesic therapies. Moreover, these patients also display increased cardiovascular responses to muscle contraction, which often leads to exercise intolerance or exacerbation of underlying cardiovascular conditions. This suggests that the mechanisms of myalgia development and the role of altered cardiovascular function under conditions of ischemia may be distinct compared to other injuries/diseases of the muscles. It is widely accepted that group III and IV muscle afferents play an important role in the development of pain due to ischemia. These same muscle afferents also form the sensory component of the exercise pressor reflex (EPR), which is the increase in heart rate and blood pressure (BP) experienced after muscle contraction. Studies suggest that afferent sensitization after ischemia depends on interactions between purinergic (P2X and P2Y) receptors, transient receptor potential (TRP) channels, and acid sensing ion channels (ASICs) in individual populations of peripheral sensory neurons. Specific alterations in primary afferent function through these receptor mechanisms correlate with increased pain related behaviors and altered EPRs. Recent evidence suggests that factors within the muscles during ischemic conditions including upregulation of growth factors and cytokines, and microvascular changes may be linked to the overexpression of these different receptor molecules in the dorsal root ganglia (DRG) that in turn modulate pain and sympathetic reflexes. In this review article, we will discuss the peripheral mechanisms involved in the development of ischemic myalgia and the role that primary sensory neurons play in EPR modulation.
Collapse
Affiliation(s)
- Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jessica L Ross
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
25
|
Xing J, Li J. Proteinase-Activated Receptor-2 Sensitivity of Amplified TRPA1 Activity in Skeletal Muscle Afferent Nerves and Exercise Pressor Reflex in Rats with Femoral Artery Occlusion. Cell Physiol Biochem 2017; 44:163-171. [PMID: 29131007 DOI: 10.1159/000484624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Limb ischemia occurs in peripheral artery disease (PAD). Sympathetic nerve activity (SNA) that regulates blood flow directed to the ischemic limb is exaggerated during exercise in this disease, and transient receptor potential channel A1 (TRPA1) in thin-fiber muscle afferents contributes to the amplified sympathetic response. The purpose of the present study was to determine the role of proteinase-activated receptor-2 (PAR2) in regulating abnormal TRPA1 function and the TRPA1-mediated sympathetic component of the exercise pressor reflex. METHODS A rat model of femoral artery ligation was employed to study PAD. Dorsal root ganglion (DRG) tissues were obtained to examine the protein levels of PAR2 using western blot analysis. Current responses induced by activation of TRPA1 in skeletal muscle DRG neurons were characterized using whole-cell patch clamp methods. The blood pressure response to static exercise (i.e., muscle contraction) and stimulation of TRPA1 was also examined after a blockade of PAR2. RESULTS The expression of PAR2 was amplified in DRG neurons of the occluded limb, and PAR2 activation with SL-NH2 (a PAR2 agonist) increased the amplitude of TRPA1 currents to a greater degree in DRG neurons of the occluded limb. Moreover, FSLLRY-NH2 (a PAR antagonist) injected into the arterial blood supply of the hindlimb muscles significantly attenuated the pressor response to muscle contraction and TRPA1 stimulation in rats with occluded limbs. CONCLUSIONS The PAR2 signal in muscle sensory nerves contributes to the amplified exercise pressor reflex via TRPA1 mechanisms in rats with femoral artery ligation. These findings provide a pathophysiological basis for autonomic responses during exercise activity in PAD, which may potentially aid in the development of therapeutic approaches for improvement of blood flow in this disease.
Collapse
Affiliation(s)
- Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, China.,Pennsylvania State Heart & Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jianhua Li
- Pennsylvania State Heart & Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
26
|
Kempf EA, Rollins KS, Hopkins TD, Butenas AL, Santin JM, Smith JR, Copp SW. Chronic femoral artery ligation exaggerates the pressor and sympathetic nerve responses during dynamic skeletal muscle stretch in decerebrate rats. Am J Physiol Heart Circ Physiol 2017; 314:H246-H254. [PMID: 29054973 DOI: 10.1152/ajpheart.00498.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanical and metabolic signals arising during skeletal muscle contraction reflexly increase sympathetic nerve activity and blood pressure (i.e., the exercise pressor reflex). In a rat model of simulated peripheral artery disease in which a femoral artery is chronically (~72 h) ligated, the mechanically sensitive component of the exercise pressor reflex during 1-Hz dynamic contraction is exaggerated compared with that found in normal rats. Whether this is due to an enhanced acute sensitization of mechanoreceptors by metabolites produced during contraction or involves a chronic sensitization of mechanoreceptors is unknown. To investigate this issue, in decerebrate, unanesthetized rats, we tested the hypothesis that the increases in mean arterial blood pressure and renal sympathetic nerve activity during 1-Hz dynamic stretch are larger when evoked from a previously "ligated" hindlimb compared with those evoked from the contralateral "freely perfused" hindlimb. Dynamic stretch provided a mechanical stimulus in the absence of contraction-induced metabolite production that closely replicated the pattern of the mechanical stimulus present during dynamic contraction. We found that the increases in mean arterial blood pressure (freely perfused: 14 ± 1 and ligated: 23 ± 3 mmHg, P = 0.02) and renal sympathetic nerve activity were significantly greater during dynamic stretch of the ligated hindlimb compared with the increases during dynamic stretch of the freely perfused hindlimb. These findings suggest that the exaggerated mechanically sensitive component of the exercise pressor reflex found during dynamic muscle contraction in this rat model of simulated peripheral artery disease involves a chronic sensitizing effect of ligation on muscle mechanoreceptors and cannot be attributed solely to acute contraction-induced metabolite sensitization. NEW & NOTEWORTHY We found that the pressor and sympathetic nerve responses during dynamic stretch were exaggerated in rats with a ligated femoral artery (a model of peripheral artery disease). Our findings provide mechanistic insights into the exaggerated exercise pressor reflex in this model and may have important implications for peripheral artery disease patients.
Collapse
Affiliation(s)
- Evan A Kempf
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Korynne S Rollins
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Tyler D Hopkins
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Alec L Butenas
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri , Columbia, Missouri
| | - Joshua R Smith
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Steven W Copp
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
27
|
Xing J, Li J. TRPA1 Function in Skeletal Muscle Sensory Neurons Following Femoral Artery Occlusion. Cell Physiol Biochem 2017; 42:2307-2317. [PMID: 28848196 DOI: 10.1159/000480003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/22/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/AIMS Transient receptor potential channel A1 (TRPA1) is engaged in amplified autonomic responses evoked by stimulation of muscle afferent nerves in rats with experimental peripheral arterial disease. The purposes of this study were to characterize current responses induced by activation of TRPA1 in dorsal root ganglion (DRG) neurons of control limbs and limbs with femoral artery occlusion. METHODS DRG neurons from rats were labeled by injecting the fluorescence tracer DiI into the hindlimb muscles and whole-cell patch clamp experiments were performed to determine TRPA1 currents. RESULTS Data show that AITC (a TRPA1 agonist) from the concentrations of 50 µM to 200 µM produces a dose-dependent increase of amplitudes of inward current responses. Notably, the peak current amplitude induced by AITC is significantly larger in DRG neurons of ligated limbs than that in control limbs. AITC-induced current responses are observed in small and medium size DRG neurons, and there is no difference in size distribution of DRG neurons between control limbs and ligated limbs. However, femoral occlusion increases the percentage of the AITC-sensitive DRG neurons as compared to control. AITC-induced currents in DRG neurons are significantly attenuated by exposure to 10 µM of HC-030031, a potent and selective inhibitor of TRPA1, in both control and femoral occlusion groups. In addition, capsaicin (a TRPV1 agonist) evokes a greater increase in the amplitude of AITC-currents in DRG neurons of ligated limbs than that in control limbs. CONCLUSIONS A greater current response with activation of TRPA1 is developed in muscle afferent nerves when hindlimb arterial blood supply is deficient under ischemic conditions; and TRPV1 is partly responsible for augmented TRPA1 responses induced by arterial occlusion.
Collapse
Affiliation(s)
- Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, China.,Pennsylvania State Heart & Vascular Institute, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
| | - Jianhua Li
- Pennsylvania State Heart & Vascular Institute, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
28
|
Luck JC, Miller AJ, Aziz F, Radtka JF, Proctor DN, Leuenberger UA, Sinoway LI, Muller MD. Blood pressure and calf muscle oxygen extraction during plantar flexion exercise in peripheral artery disease. J Appl Physiol (1985) 2017; 123:2-10. [PMID: 28385920 DOI: 10.1152/japplphysiol.01110.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/14/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Peripheral artery disease (PAD) is an atherosclerotic vascular disease that affects 200 million people worldwide. Although PAD primarily affects large arteries, it is also associated with microvascular dysfunction, an exaggerated blood pressure (BP) response to exercise, and high cardiovascular mortality. We hypothesized that fatiguing plantar flexion exercise that evokes claudication elicits a greater reduction in skeletal muscle oxygenation (SmO2) and a higher rise in BP in PAD compared with age-matched healthy subjects, but low-intensity steady-state plantar flexion elicits similar responses between groups. In the first experiment, eight patients with PAD and eight healthy controls performed fatiguing plantar flexion exercise (from 0.5 to 7 kg for up to 14 min). In the second experiment, seven patients with PAD and seven healthy controls performed low-intensity plantar flexion exercise (2.0 kg for 14 min). BP, heart rate (HR), and SmO2 were measured continuously using near-infrared spectroscopy (NIRS). SmO2 is the ratio of oxygenated hemoglobin to total hemoglobin, expressed as a percent. At fatigue, patients with PAD had a greater increase in mean arterial BP (18 ± 2 vs. vs. 10 ± 2 mmHg, P = 0.029) and HR (14 ± 2 vs. 6 ± 2 beats/min, P = 0.033) and a greater reduction in SmO2 (-54 ± 10 vs. -12 ± 4%, P = 0.001). However, both groups had similar physiological responses to low-intensity, nonpainful plantar flexion exercise. These data suggest that patients with PAD have altered oxygen uptake and/or utilization during fatiguing exercise coincident with an augmented BP response.NEW & NOTEWORTHY In this laboratory study, patients with peripheral artery disease performed plantar flexion exercise in the supine posture until symptoms of claudication occurred. Relative to age- and sex-matched healthy subjects we found that patients had a higher blood pressure response, a higher heart rate response, and a greater reduction in skeletal muscle oxygenation as determined by near-infrared spectroscopy. Our data suggest that muscle ischemia contributes to the augmented exercise pressor reflex in peripheral artery disease.
Collapse
Affiliation(s)
- J Carter Luck
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Amanda J Miller
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Faisal Aziz
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - John F Radtka
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - David N Proctor
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Matthew D Muller
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| |
Collapse
|
29
|
Drew RC, Blaha CA, Herr MD, Cui R, Sinoway LI. Muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction in healthy humans. Am J Physiol Regul Integr Comp Physiol 2017; 312:R956-R964. [PMID: 28381456 DOI: 10.1152/ajpregu.00322.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/17/2017] [Accepted: 03/30/2017] [Indexed: 12/27/2022]
Abstract
Reflex renal vasoconstriction occurs during exercise, and renal vasoconstriction in response to upper-limb muscle mechanoreflex activation has been documented. However, the renal vasoconstrictor response to muscle mechanoreflex activation originating from lower limbs, with and without local metabolite accumulation, has not been assessed. Eleven healthy young subjects (26 ± 1 yr; 5 men) underwent two trials involving 3-min passive calf muscle stretch (mechanoreflex) during 7.5-min lower-limb circulatory occlusion (CO). In one trial, 1.5-min 70% maximal voluntary contraction isometric calf exercise preceded CO to accumulate metabolites during CO and stretch (mechanoreflex and metaboreflex; 70% trial). A control trial involved no exercise before CO (mechanoreflex alone; 0% trial). Beat-to-beat renal blood flow velocity (RBFV; Doppler ultrasound), mean arterial blood pressure (MAP; photoplethysmographic finger cuff), and heart rate (electrocardiogram) were recorded. Renal vascular resistance (RVR), an index of renal vasoconstriction, was calculated as MAP/RBFV. All baseline cardiovascular variables were similar between trials. Stretch increased RVR and decreased RBFV in both trials (change from CO with stretch: RVR - 0% trial = Δ 10 ± 2%, 70% trial = Δ 7 ± 3%; RBFV - 0% trial = Δ -3.8 ± 1.1 cm/s, 70% trial = Δ -2.7 ± 1.5 cm/s; P < 0.05 for RVR and RBFV). These stretch-induced changes were of similar magnitudes in both trials, e.g., with and without local metabolite accumulation, as well as when thromboxane production was inhibited. These findings suggest that muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction, with and without muscle metaboreflex activation, in healthy humans.
Collapse
Affiliation(s)
- Rachel C Drew
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Cheryl A Blaha
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Michael D Herr
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Ruda Cui
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
30
|
Ramachandra R, Elmslie KS. EXPRESS: Voltage-dependent sodium (NaV) channels in group IV sensory afferents. Mol Pain 2016; 12:12/0/1744806916660721. [PMID: 27385723 PMCID: PMC4956173 DOI: 10.1177/1744806916660721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients with intermittent claudication suffer from both muscle pain and an exacerbated exercise pressor reflex. Excitability of the group III and group IV afferent fibers mediating these functions is controlled in part by voltage-dependent sodium (NaV) channels. We previously found tetrodotoxin-resistant NaV1.8 channels to be the primary type in muscle afferent somata. However, action potentials in group III and IV afferent axons are blocked by TTX, supporting a minimal role of NaV1.8 channels. To address these apparent differences in NaV channel expression between axon and soma, we used immunohistochemistry to identify the NaV channels expressed in group IV axons within the gastrocnemius muscle and the dorsal root ganglia sections. Positive labeling by an antibody against the neurofilament protein peripherin was used to identify group IV neurons and axons. We show that >67% of group IV fibers express NaV1.8, NaV1.6, or NaV1.7. Interestingly, expression of NaV1.8 channels in group IV somata was significantly higher than in the fibers, whereas there were no significant differences for either NaV1.6 or NaV1.7. When combined with previous work, our results suggest that NaV1.8 channels are expressed in most group IV axons, but that, under normal conditions, NaV1.6 and/or NaV1.7 play a more important role in action potential generation to signal muscle pain and the exercise pressor reflex.
Collapse
Affiliation(s)
- Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, AT Still University of Health Sciences, Kirksville, MO, USA
- Renuka Ramachandra, The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, AT Still University of Health Sciences, Kirksville, MO 63501, USA.
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, AT Still University of Health Sciences, Kirksville, MO, USA
| |
Collapse
|
31
|
Koeners MP, Lewis KE, Ford AP, Paton JF. Hypertension: a problem of organ blood flow supply-demand mismatch. Future Cardiol 2016; 12:339-49. [PMID: 27091483 PMCID: PMC4926521 DOI: 10.2217/fca.16.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review introduces a new hypothesis that sympathetically mediated hypertensive diseases are caused, in the most part, by the activation of visceral afferent systems that are connected to neural circuits generating sympathetic activity. We consider how organ hypoperfusion and blood flow supply–demand mismatch might lead to both sensory hyper-reflexia and aberrant afferent tonicity. We discuss how this may drive sympatho-excitatory-positive feedback and extend across multiple organs initiating, or at least amplifying, sympathetic hyperactivity. The latter, in turn, compounds the challenge to sufficient organ blood flow through heightened vasoconstriction that both maintains and exacerbates hypertension.
Collapse
Affiliation(s)
- Maarten P Koeners
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Kirsty E Lewis
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Anthony P Ford
- Afferent Pharmaceuticals, 2929 Campus Drive, San Mateo, CA, USA
| | - Julian Fr Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
32
|
Spranger MD, Krishnan AC, Levy PD, O'Leary DS, Smith SA. Blood flow restriction training and the exercise pressor reflex: a call for concern. Am J Physiol Heart Circ Physiol 2015; 309:H1440-52. [PMID: 26342064 PMCID: PMC7002872 DOI: 10.1152/ajpheart.00208.2015] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. Therefore, the premise of BFR training is to simulate and receive the benefits of high-intensity resistance exercise while merely performing low-intensity resistance exercise. This technique has also been purported to provide health benefits to the elderly, individuals recovering from joint injuries, and patients undergoing cardiac rehabilitation. Since the seminal work of Alam and Smirk in the 1930s, it has been well established that reductions in blood flow to exercising muscle engage the exercise pressor reflex (EPR), a reflex that significantly contributes to the autonomic cardiovascular response to exercise. However, the EPR and its likely contribution to the BFR-mediated cardiovascular response to exercise is glaringly missing from the scientific literature. Inasmuch as the EPR has been shown to generate exaggerated increases in sympathetic nerve activity in disease states such as hypertension (HTN), heart failure (HF), and peripheral artery disease (PAD), concerns are raised that BFR training can be used safely for the rehabilitation of patients with cardiovascular disease, as has been suggested. Abnormal BFR-induced and EPR-mediated cardiovascular complications generated during exercise could precipitate adverse cardiovascular or cerebrovascular events (e.g., cardiac arrhythmia, myocardial infarction, stroke and sudden cardiac death). Moreover, although altered EPR function in HTN, HF, and PAD underlies our concern for the widespread implementation of BFR, use of this training mechanism may also have negative consequences in the absence of disease. That is, even normal, healthy individuals performing resistance training exercise with BFR are potentially at increased risk for deleterious cardiovascular events. This review provides a brief yet detailed overview of the mechanisms underlying the autonomic cardiovascular response to exercise with BFR. A more complete understanding of the consequences of BFR training is needed before this technique is passively explored by the layman athlete or prescribed by a health care professional.
Collapse
Affiliation(s)
- Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan;
| | - Abhinav C Krishnan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Phillip D Levy
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Scott A Smith
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
33
|
Xing J, Lu J, Li J. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion. Front Physiol 2015; 6:249. [PMID: 26441669 PMCID: PMC4569976 DOI: 10.3389/fphys.2015.00249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.
Collapse
Affiliation(s)
- Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University Changchun, Jilin, China
| | - Jian Lu
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine Hershey, PA, USA
| | - Jianhua Li
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
34
|
Fadel PJ. Neural control of the circulation during exercise in health and disease. Front Physiol 2013; 4:224. [PMID: 23986718 PMCID: PMC3753014 DOI: 10.3389/fphys.2013.00224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/02/2022] Open
Affiliation(s)
- Paul J Fadel
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| |
Collapse
|
35
|
Muller MD, Reed AB, Leuenberger UA, Sinoway LI. Physiology in medicine: peripheral arterial disease. J Appl Physiol (1985) 2013; 115:1219-26. [PMID: 23970534 DOI: 10.1152/japplphysiol.00885.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Peripheral arterial disease (PAD) is an atherosclerotic condition that can provoke symptoms of leg pain ("intermittent claudication") during exercise. Because PAD is often observed with comorbid conditions such hypertension, dyslipidemia, diabetes, cigarette smoking, and/or physical inactivity, the pathophysiology of PAD is certainly complex and involves multiple organ systems. Patients with PAD are at high risk for myocardial infarction, stroke, and all-cause mortality. For this reason, a better physiological understanding of the pathogenesis and treatment options for PAD patients is necessary and forms the basis of this Physiology in Medicine review.
Collapse
Affiliation(s)
- Matthew D Muller
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | | | | | | |
Collapse
|