1
|
Huang W, Lin T, Huang L, Wu J, Hong J, Qiu F, Tian Y, Wang Y. miR-24-3p Regulates Epithelial-Mesenchymal Transition and the Malignant Phenotype of Pancreatic Adenocarcinoma by Regulating ASF1B Expression. Biochem Genet 2023; 61:742-761. [PMID: 36114946 PMCID: PMC10060286 DOI: 10.1007/s10528-022-10278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/20/2022] [Indexed: 12/24/2022]
Abstract
Anti-silencing function protein 1 homolog B (ASF1B) has been implicated in the occurrence and development of cancers. The present work explored the functional role and the expression regulation of ASF1B in pancreatic ductal adenocarcinoma (PDAC). Based on the real-time quantitative PCR (qRT-PCR) and immunohistochemistry (IHC), ASF1B was significantly upregulated in PDAC tissues. High expression of ASF1B was associated with a poor overall survival (OS) and recurrence-free survival (DFS) in the PDAC patients. ASF1B also showed a relatively higher expression in PDAC cells (AsPC-1, PANC-1) when compared with human pancreatic ductal epithelial cells (HPDFe-6). CCK8 and clone formation assay demonstrated that silencing ASF1B impaired the proliferation in PANC-1 and AsPC-1 cells, and Annexin V-PI staining showed an increased level of apoptosis upon ASF1B silencing. ASF1B silencing also suppressed the migration and invasion in PDAC cells, as revealed by Transwell assays. We further showed that miR-24-3p was downregulated in PDAC tissues and cells, which functionally interacted with ASF1B by dual-luciferase reporter assay. miR-24-3p negatively regulated ASF1B expression to modulate the malignant phenotype of PDAC cells. ASF1B shows high expression in PDAC, which promotes the malignancy and EMT process of PDAC cells. miR-24-3p is a negative regulator of ASF1B and is downregulated in PDAC cells. Our data suggest that targeting ASF1B/miR-24-3p axis may serve as an intervention strategy for the management of PDAC.
Collapse
Affiliation(s)
- Wentao Huang
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, NO.134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China.
| | - Tiansheng Lin
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, NO.134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| | - Long Huang
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, NO.134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| | - Junyi Wu
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, NO.134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| | - Jiaming Hong
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, NO.134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| | - Funan Qiu
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, NO.134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| | - Yifeng Tian
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, NO.134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| | - Yaodong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, NO.134, Dongjie Street, Gulou District, Fuzhou, 350001, Fujian, China
| |
Collapse
|
2
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ''tumor debulking'' rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting 'natural agents' that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019; 11:E1745. [PMID: 31703358 PMCID: PMC6896204 DOI: 10.3390/cancers11111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive disease that causes significant mortality worldwide. The direct correlation between PDAC incidence, disease progression, and mortality highlights the critical need to understand the mechanisms by which PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities. One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in PDAC, further promotes cellular transformation by inducing inflammatory interactions with the stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify the molecular regulators and effectors of this EMP program. While inhibition of individual targets may provide therapeutic insights, a single 'master-key' remains elusive, making their collective interactions of greater importance in controlling the behaviours' of heterogeneous tumour cell populations. Much work has been undertaken to understand key transcriptional programs that drive EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent programs governing EMP regulation is needed in order to design therapeutic strategies to curb PDAC mortality.
Collapse
Affiliation(s)
- James H. Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
4
|
Liu J, Song N, Huang Y, Chen Y. Irisin inhibits pancreatic cancer cell growth via the AMPK-mTOR pathway. Sci Rep 2018; 8:15247. [PMID: 30323244 PMCID: PMC6189061 DOI: 10.1038/s41598-018-33229-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023] Open
Abstract
Irisin, a recently identified myokine that is released from skeletal muscle following exercise, regulates body weight and influences various metabolic diseases such as obesity and diabetes. In this study, human recombinant nonglycosylated P-irisin (expressed in Escherichia coli prokaryote cell system) or glycosylated E-irisin (expressed in Pichia pastoris eukaryote cell system) were compared to examine the role of recombinant irisin against pancreatic cancer (PC) cells lines, MIA PaCa-2 and Panc03.27. MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-di phenyltetrazolium bromide] and cell colony formation assays revealed that irisin significantly inhibited the growth of MIA PaCa-2 and Panc03.27 in a dose-dependent manner. Irisin also induced G1 arrest in both cell lines. Scratch wound healing and transwell assays revealed that irisin also inhibited the migration of PC cells. Irisin reversed the activity of epithelial-mesenchymal transition (EMT) while increasing E-cadherin expression and reducing vimentin expression. Irisin activated the adenosine monophosphate-activated protein kinase (AMPK) pathway and suppressed the mammalian target of rapamycin (mTOR) signaling. Besides, our results suggest that irisin receptors exist on the surface of human MIA PaCa-2 and Panc03.27 cells. Our results clearly demonstrate that irisin suppressed PC cell growth via the activation of AMPK, thereby downregulating the mTOR pathway and inhibiting EMT of PC cells.
Collapse
Affiliation(s)
- Jiayu Liu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Nannan Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Rahmatallah Y, Khaidakov M, Lai KK, Goyne HE, Lamps LW, Hagedorn CH, Glazko G. Platform-independent gene expression signature differentiates sessile serrated adenomas/polyps and hyperplastic polyps of the colon. BMC Med Genomics 2017; 10:81. [PMID: 29284484 PMCID: PMC5745747 DOI: 10.1186/s12920-017-0317-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Sessile serrated adenomas/polyps are distinguished from hyperplastic colonic polyps subjectively by their endoscopic appearance and histological morphology. However, hyperplastic and sessile serrated polyps can have overlapping morphological features resulting in sessile serrated polyps diagnosed as hyperplastic. While sessile serrated polyps can progress into colon cancer, hyperplastic polyps have virtually no risk for colon cancer. Objective measures, differentiating these types of polyps would improve cancer prevention and treatment outcome. Methods RNA-seq training data set and Affimetrix, Illumina testing data sets were obtained from Gene Expression Omnibus (GEO). RNA-seq single-end reads were filtered with FastX toolkit. Read mapping to the human genome, gene abundance estimation, and differential expression analysis were performed with Tophat-Cufflinks pipeline. Background correction, normalization, and probe summarization steps for Affimetrix arrays were performed using the robust multi-array method (RMA). For Illumina arrays, log2-scale expression data was obtained from GEO. Pathway analysis was implemented using Bioconductor package GSAR. To build a platform-independent molecular classifier that accurately differentiates sessile serrated and hyperplastic polyps we developed a new feature selection step. We also developed a simple procedure to classify new samples as either sessile serrated or hyperplastic with a class probability assigned to the decision, estimated using Cantelli’s inequality. Results The classifier trained on RNA-seq data and tested on two independent microarray data sets resulted in zero and three errors. The classifier was further tested using quantitative real-time PCR expression levels of 45 blinded independent formalin-fixed paraffin-embedded specimens and was highly accurate. Pathway analyses have shown that sessile serrated polyps are distinguished from hyperplastic polyps and normal controls by: up-regulation of pathways implicated in proliferation, inflammation, cell-cell adhesion and down-regulation of serine threonine kinase signaling pathway; differential co-expression of pathways regulating cell division, protein trafficking and kinase activities. Conclusions Most of the differentially expressed pathways are known as hallmarks of cancer and likely to explain why sessile serrated polyps are more prone to neoplastic transformation than hyperplastic. The new molecular classifier includes 13 genes and may facilitate objective differentiation between two polyps. Electronic supplementary material The online version of this article (10.1186/s12920-017-0317-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Magomed Khaidakov
- The Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Keith K Lai
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Hannah E Goyne
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Laura W Lamps
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Curt H Hagedorn
- The Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
6
|
Träger MM, Dhayat SA. Epigenetics of epithelial-to-mesenchymal transition in pancreatic carcinoma. Int J Cancer 2017; 141:24-32. [DOI: 10.1002/ijc.30626] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Max M. Träger
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| | - Sameer A. Dhayat
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| |
Collapse
|
7
|
Liu Q, Sheng W, Dong M, Dong X, Dong Q, Li F. Gli1 promotes transforming growth factor-beta1- and epidermal growth factor-induced epithelial to mesenchymal transition in pancreatic cancer cells. Surgery 2015; 158:211-24. [PMID: 25979438 DOI: 10.1016/j.surg.2015.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/21/2015] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Hedgehog signaling pathway and its key target effector Gli1 are linked closely to the development of the epithelial to mesenchymal transition (EMT) in many cancers. The definite function of Gli1 in regulating the EMT of pancreatic cancer (PC), however, is still unclear. METHODS At the cell and tissue levels, we investigated the role of Gli1 in the initiation of EMT in PC with and without external stimulus treatments. RESULTS The immunohistochemistry results showed that Gli1 was associated positively with MMP9 but not with E-cad or Vimentin. Gli1 expression was associated positively with tumor T (P = .025) and Union for International Cancer Control stage (P = .032), whereas MMP9 expression was associated positively with lymph node metastasis (P = .017) and Union for International Cancer Control stage (P = .006). Furthermore, patients with Gli1 and MMP9 coexpression had poor overall survival (P = .015). Silencing of Gli1 alone without external stimulus had no effect on EMT but inhibited transforming growth factor-beta1 (TGFβ1)- and epidermal growth factor (EGF)-induced EMT in PANC-1, AsPC-1, and BxPC-3 PC cell lines, along with the inhibition of TGFβ1- and EGF-induced EMT-like cell morphology and invasion, down-regulation of E-cad, and up-regulation of MMP9 and Vimentin in those 3 cell lines, respectively. CONCLUSION Gli1 silencing alone has no effect on EMT initiation; however, it exerts a protumor role in the aggressive invasion of PC cells by promoting TGFβ1- and EGF-induced EMT.
Collapse
Affiliation(s)
- Qingfeng Liu
- Department of General Surgery, Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, China; Department of General Surgery, the People's Hospital of Liaoning Province, Shenyang, China
| | - Weiwei Sheng
- Department of General Surgery, Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Ming Dong
- Department of General Surgery, Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, China.
| | - Xiaoshen Dong
- Department of Surgical Oncology, the First Hospital, China Medical University, Shenyang, China
| | - Qi Dong
- Department of General Surgery, the People's Hospital of Liaoning Province, Shenyang, China
| | - Feng Li
- Department of Cell Biology, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Wang T, Chen T, Niu H, Li C, Xu C, Li Y, Huang R, Zhao J, Wu S. MicroRNA-218 inhibits the proliferation and metastasis of esophageal squamous cell carcinoma cells by targeting BMI1. Int J Mol Med 2015; 36:93-102. [PMID: 25999024 PMCID: PMC4494586 DOI: 10.3892/ijmm.2015.2216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 05/11/2015] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) play a pivotal role in esophageal carcinogenesis either as oncogenes or as tumor suppressor genes. In the present study, we found that the expression level of miR-218 was significantly reduced in esophageal squamous cell carcinoma (ESCC) tissues and ESCC cell lines. Moreover, its expression was found to correlate with the clinicopathological stage of ESCC; miR-218 expression was lower in the stage III tissue samples than in the stage I and II tissue samples. Furthermore, the decreased expression of miR-218 was found to be associated with an enhanced ESCC cell proliferation and metastasis. Western blot analysis and luciferase reporter assay revealed that miR-218 decreased BMI1 expression by binding to the putative binding sites in its 3′-untranslated region (3′-UTR). The BMI1 mRNA expression levels were markedly increased and negatively correlated with the miR-218 expression level in the ESCC tissues. Functional analyses revealed that the restoration of miR-218 expression inhibited ESCC cell proliferation, migration and invasion and promoted apoptosis. The knockdown of BMI1 by siRNA showed the same phenocopy as the effect of miR-218 on ESCC cells, indicating that BMI1 was a major target of miR-218. In the present study, our findings confirm miR-218 as a tumor suppressor and identify BMI1 as a novel target of miR-218 in ESCC. Therefore, miR-218 may prove to be a useful biomarker for monitoring the initiation and development of ESCC, and may thus be an effective therapeutic target in ESCC.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Tengfei Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hua Niu
- Department of Microbiology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Chang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chun Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yuanyuan Li
- Department of Microbiology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Rui Huang
- Department of Microbiology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jun Zhao
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shuyan Wu
- Department of Microbiology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
9
|
Masamune A. Recent advances in pancreatology. Front Physiol 2014; 5:300. [PMID: 25157235 PMCID: PMC4128073 DOI: 10.3389/fphys.2014.00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|
10
|
Han Y, Luo Y, Zhao J, Li M, Jiang Y. Overexpression of c-Met increases the tumor invasion of human prostate LNCaP cancer cells in vitro and in vivo.. Oncol Lett 2014; 8:1618-1624. [PMID: 25202379 PMCID: PMC4156182 DOI: 10.3892/ol.2014.2390] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/15/2014] [Indexed: 12/15/2022] Open
Abstract
c-Met is a transmembrane tyrosine kinase receptor that may be activated by hepatocyte growth factor, an inducer of epithelial-mesenchymal transition (EMT), to regulate the associated downstream gene expression. This process is critical to cell migration in normal and pathological conditions. In the present study, the function of c-Met in the process of EMT was investigated in prostate cancer. Initially, a c-Met stable expression cell line was constructed using EMT- and c-Met-negative LNCaP prostate cancer cells. Following the identification of c-Met in the transfected cells, the changes in EMT, phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase pathway biomarkers were determined by western blot analysis. MTT, soft agar and Transwell assays, and xenograft studies were used to investigate the effects of c-Met on the proliferation, migration and tumorigenicity of LNCaP cells. The results of the present study revealed downregulation of E-cadherin and upregulation of vimentin in LNCaP-Met cells. The results demonstrated that c-Met enhanced proliferation, migration and tumorigenicity capacity when compared with LNCaP and LNCaP-pcDNA3.1 cells. Furthermore, these EMT-like changes were mediated via the PI3K and mitogen-activated protein kinase signaling pathways. The present study clearly demonstrates a crucial function for c-Met in EMT development in prostate cancer. c-Met-targeted treatment may be an effective adjuvant therapy for improving survival rates in patients with prostate cancer.
Collapse
Affiliation(s)
- Yili Han
- Department of Urology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, P.R. China
| | - Yong Luo
- Department of Urology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, P.R. China
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, P.R. China
| | - Mingchuan Li
- Department of Urology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, P.R. China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
11
|
Guo S, Xu X, Tang Y, Zhang C, Li J, Ouyang Y, Ju J, Bie P, Wang H. miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett 2014; 344:40-46. [DOI: 10.1016/j.canlet.2013.10.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023]
|
12
|
Wang W, Lin H, Zhou L, Zhu Q, Gao S, Xie H, Liu Z, Xu Z, Wei J, Huang X, Zheng S. MicroRNA-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. Eur J Surg Oncol 2013; 40:1586-94. [PMID: 24290372 DOI: 10.1016/j.ejso.2013.11.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate physiological and pathological processes by suppressing target gene expression. Altered expression of miR-30a-3p has been demonstrated in several cancers. However, little about how miR-30a-3p functions in these cancers has been reported, and the role of miR-30a-3p in hepatocellular carcinoma (HCC) is unknown. The purpose of this study was to identify the role and underlying molecular mechanism of action of miR-30a-3p in HCC. METHODS A total of 110 HCC patients, primarily treated by surgical removal of tumors, were involved in the study. HCC cell line Bel-7402 was selected to characterize the function of miR-30a-3p in vitro. RESULTS Our results showed that in 83.6% of the 110 HCC patients, expression of miR-30a-3p was significantly downregulated (P < 0.0001) in tumors compared to adjacent normal tissues. In a clinicopathological correlation analysis, downregulation of miR-30a-3p correlated with a significantly higher incidence of portal vein tumor thrombus (PVTT, P = 0.009). Moreover, miR-30a-3p markedly inhibited the invasion and migration of Bel-7402 HCC cells in vitro. Furthermore, miR-30a-3p overexpression had an inhibitory effect on cell proliferation, induced apoptosis and increased arrest of cells in the S phase. We further demonstrated that miR-30a-3p regulates HCC cell function by a mechanism involving reduced vimentin and MMP3 expression and restoration of E-cadherin expression. CONCLUSIONS our data suggest that miR-30a-3p is downregulated in HCC and acts as a tumor suppressor in vitro. Regulation of vimentin, E-cadherin and MMP3 by miR-30a-3p suggests a useful therapeutic strategy for tumors with reduced miR-30a-3p expression.
Collapse
Affiliation(s)
- W Wang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Key Lab of Organ Transplantation, Department of Hepatobilliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - H Lin
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Key Lab of Organ Transplantation, Department of Hepatobilliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - L Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Key Lab of Organ Transplantation, Department of Hepatobilliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Q Zhu
- Department of Vascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - S Gao
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Key Lab of Organ Transplantation, Department of Hepatobilliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - H Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Key Lab of Organ Transplantation, Department of Hepatobilliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Z Liu
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Key Lab of Organ Transplantation, Department of Hepatobilliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Z Xu
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Key Lab of Organ Transplantation, Department of Hepatobilliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - J Wei
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Key Lab of Organ Transplantation, Department of Hepatobilliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - X Huang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - S Zheng
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Key Lab of Organ Transplantation, Department of Hepatobilliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China.
| |
Collapse
|
13
|
Bo H, Zhang S, Gao L, Chen Y, Zhang J, Chang X, Zhu M. Upregulation of Wnt5a promotes epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells. BMC Cancer 2013; 13:496. [PMID: 24156409 PMCID: PMC4077028 DOI: 10.1186/1471-2407-13-496] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/23/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal cancers worldwide. The aim of this study was to determine the expression pattern, clinical significance, and biological functions of Wnt5a in pancreatic cancer. METHODS Immunohistochemistry was performed to examine Wnt5a expression in 134 surgically resected pancreatic adenocarcinoma and adjacent normal pancreatic tissues. Associations of Wnt5a expression with clinicopathological factors and cancer-specific survival were analyzed. The effects of Wnt5a overexpression or silencing on the invasiveness and epithelial-to-mesenchymal transition (EMT) of pancreatic cancer cells were studied. Silencing of β-catenin by small interfering RNA was done to determine its role in the Wnt5a-mediated tumor phenotype. RESULTS The percentage of Wnt5a positive expression showed a bell-shaped pattern in pancreatic cancer tissues, peaking in well-differentiated carcinomas. The median cancer-specific survival was comparable between patients with positive versus negative expression of Wnt5a. Overexpression of Wnt5a promoted the migration and invasion of pancreatic cancer cells, whereas Wnt5a depletion had an inhibitory effect. In an orthotopic pancreatic cancer mouse model, Wnt5a overexpression resulted in increased invasiveness and metastasis, coupled with induction of EMT in tumor cells. Treatment with recombinant Wnt5a elevated the nuclear β-catenin level in pancreatic cancer cells, without altering the Ror2 expression. Targeted reduction of β-catenin antagonized exogenous Wnt5a-induced EMT and invasiveness in pancreatic cancer cells. CONCLUSION Upregulation of Wnt5a promotes EMT and metastasis in pancreatic cancer models, which involves activation of β-catenin-dependent canonical Wnt signaling. These findings warrant further investigation of the clinical relevance of Wnt5 upregulation in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Minghua Zhu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|