1
|
Pecoraro L, Peterle E, Dalla Benetta E, Piazza M, Chatziparasidis G, Kantar A. Well-Established and Traditional Use of Vegetal Extracts as an Approach to the "Deep Roots" of Cough. CHILDREN (BASEL, SWITZERLAND) 2024; 11:584. [PMID: 38790578 PMCID: PMC11120585 DOI: 10.3390/children11050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Cough is a common presenting symptom for patients in a primary care setting and significantly impacts a patient's quality of life. Cough involves a complex reflex arc beginning with the stimulation of sensory nerves that function as cough receptors that stimulate the cough center in the brain. This "cough center" functions to receive these impulses and produce a cough by activating efferent nervous pathways to the diaphragm and laryngeal, thoracic, and abdominal musculature. Drugs that suppress the neural activity of cough are non-specific as those treatments are not directed toward pathogenic causes such as inflammation and oxidative stress. Moreover, they block a reflex called the watchdog of the lung and have a defense mechanism. Acute respiratory infections of the upper and lower airways most commonly cause acute cough. In contrast, the most common causes of chronic cough are upper airway cough syndrome, asthma, and gastroesophageal reflux disease, all associated with an inflammatory reaction at the level of the cough receptors. The use of natural compounds or herbal drugs such as carob syrup, dry blackcurrant extract, dry extract of caraway fruit, dry extract of ginger rhizome, dry extract of marshmallow root, and dry extract of ivy leaves, to name a few, not only have anti-inflammatory and antioxidant activity, but also act as antimicrobials, bronchial muscle relaxants, and increase gastric motility and empty. For these reasons, these natural substances are widely used to control cough at its deep roots (i.e., contrasting its causes and not inhibiting the arch reflex). With this approach, the lung watchdog is not put to sleep, as with peripheral or central inhibition of the cough reflex, and by contrasting the causes, we may control cough that viruses use at self-advantage to increase transmission.
Collapse
Affiliation(s)
- Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | | | | | - Michele Piazza
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, 38221 Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, 38221 Volos, Greece
| | - Ahmad Kantar
- Pediatric Cough and Asthma Center, Istituti Ospedalieri Bergamaschi, University and Research Hospitals, 24036 Bergamo, Italy
| |
Collapse
|
2
|
Canning BJ, Liu Q, Tao M, DeVita R, Perelman M, Hay DW, Dicpinigaitis PV, Liang J. Evidence for Alpha 7 Nicotinic Receptor Activation During the Cough Suppressing Effects Induced by Nicotine and Identification of ATA-101 as a Potential Novel Therapy for the Treatment of Chronic Cough. J Pharmacol Exp Ther 2022; 380:94-103. [PMID: 34782407 PMCID: PMC8969114 DOI: 10.1124/jpet.121.000641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023] Open
Abstract
Studies performed in healthy smokers have documented a diminished responsiveness to tussive challenges, and several lines of experimental evidence implicate nicotine as an antitussive component in both cigarette smoke and the vapors generated by electronic cigarettes (eCigs). We set out to identify the nicotinic receptor subtype involved in the antitussive actions of nicotine and to further evaluate the potential of nicotinic receptor-selective agonists as cough-suppressing therapeutics. We confirmed an antitussive effect of nicotine in guinea pigs. We additionally observed that the alpha-4 beta-2 (α 4 β 2)-selective agonist Tc-6683 was without effect on evoked cough responses in guinea pigs, while the α 7-selective agonist PHA 543613 dose-dependently inhibited evoked coughing. We subsequently describe the preclinical evidence in support of ATA-101, a potent and highly selective (α 7) selective nicotinic receptor agonist, as a potential candidate for antitussive therapy in humans. ATA-101, formerly known as Tc-5619, was orally bioavailable and moderately central nervous system (CNS) penetrant and dose-dependently inhibited coughing in guinea pigs evoked by citric acid and bradykinin. Comparing the effects of airway targeted administration versus systemic dosing and the effects of repeated dosing at various times prior to tussive challenge, our data suggest that the antitussive actions of ATA-101 require continued engagement of α 7 nicotinic receptors, likely in the CNS. Collectively, the data provide the preclinical rationale for α 7 nicotinic receptor engagement as a novel therapeutic strategy for cough suppression. The data also suggest that α 7 nicotinic acetylcholine receptor (nAChR) activation by nicotine may be permissive to nicotine delivery in a way that may promote addiction. SIGNIFICANCE STATEMENT: This study documents the antitussive actions of nicotine and identifies the α7 nicotinic receptor subtype as the target for nicotine during cough suppression described in humans. We additionally present evidence suggesting that ATA-101 and other α7 nicotinic receptor-selective agonists may be promising candidates for the treatment of chronic refractory cough.
Collapse
Affiliation(s)
- Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Qi Liu
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Mayuko Tao
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Robert DeVita
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Michael Perelman
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Douglas W Hay
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Peter V Dicpinigaitis
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Jing Liang
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| |
Collapse
|
3
|
Low T, Lee CH, Chen YC, Lo CL, Huang YC, Lin JY, Wu SS, Lai CJ. Effect of Prolonged Mechanical Ventilation on Cough Function and TRPV1 Expression. Respir Physiol Neurobiol 2022; 299:103859. [PMID: 35121102 DOI: 10.1016/j.resp.2022.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
Cough is a pivotal airway protective reflex, yet the effects of prolonged mechanical ventilation (PMV) on cough function are unknown. This study compared the cough function in subjects with PMV (≥ 21 days, n = 29) and those with short-term mechanical ventilation (SMV, ≤ 7 days, n = 27). Cough reflex sensitivity was measured by capsaicin provocation concentrations after extubation. The cough strength of respiratory muscles was assessed by involuntary cough peak expiratory flow (iCPEF). The mRNA expression of transient receptor potential vanilloid 1 (TRPV1), a cough sensor activated by capsaicin, in tracheal tissues was determined. We found that cough reflex sensitivity and iCPEF were significantly lower in the PMV group than in the SMV group. The tracheal expression of TRPV1 was similar in both groups, suggesting that changes in TRPV1 expression may not be a contributing factor. Our finding regarding the cough dysfunction after PMV highlights the need to implement effective airway clearance management and rehabilitation in this population.
Collapse
Affiliation(s)
- Tissot Low
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chien-Hui Lee
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yen-Cheng Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Lan Lo
- Division of Chest Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ya-Chen Huang
- Division of Chest Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Jyun-Yi Lin
- Division of Chest Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Siao-Syuan Wu
- Division of Chest Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching Jung Lai
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Physiology, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
4
|
Shen TY, Poliacek I, Rose MJ, Musselwhite MN, Kotmanova Z, Martvon L, Pitts T, Davenport PW, Bolser DC. The role of neuronal excitation and inhibition in the pre-Bötzinger complex on the cough reflex in the cat. J Neurophysiol 2021; 127:267-278. [PMID: 34879205 PMCID: PMC8759968 DOI: 10.1152/jn.00108.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brainstem respiratory neuronal network significantly contributes to cough motor pattern generation. Neuronal populations in the pre-Bötzinger complex (PreBötC) represent a substantial component for respiratory rhythmogenesis. We studied the role of PreBötC neuronal excitation and inhibition on mechanically induced tracheobronchial cough in 15 spontaneously breathing, pentobarbital anesthetized adult cats (35 mg/kg, iv initially). Neuronal excitation by unilateral microinjection of glutamate analog d,l-homocysteic acid resulted in mild reduction of cough abdominal electromyogram (EMG) amplitudes and very limited temporal changes of cough compared with effects on breathing (very high respiratory rate, high amplitude inspiratory bursts with a short inspiratory phase, and tonic inspiratory motor component). Mean arterial blood pressure temporarily decreased. Blocking glutamate-related neuronal excitation by bilateral microinjections of nonspecific glutamate receptor antagonist kynurenic acid reduced cough inspiratory and expiratory EMG amplitude and shortened most cough temporal characteristics similarly to breathing temporal characteristics. Respiratory rate decreased and blood pressure temporarily increased. Limiting active neuronal inhibition by unilateral and bilateral microinjections of GABAA receptor antagonist gabazine resulted in lower cough number, reduced expiratory cough efforts, and prolongation of cough temporal features and breathing phases (with lower respiratory rate). The PreBötC is important for cough motor pattern generation. Excitatory glutamatergic neurotransmission in the PreBötC is involved in control of cough intensity and patterning. GABAA receptor-related inhibition in the PreBötC strongly affects breathing and coughing phase durations in the same manner, as well as cough expiratory efforts. In conclusion, differences in effects on cough and breathing are consistent with separate control of these behaviors. NEW & NOTEWORTHY This study is the first to explore the role of the inspiratory rhythm and pattern generator, the pre-Bötzinger complex (PreBötC), in cough motor pattern formation. In the PreBötC, excitatory glutamatergic neurotransmission affects cough intensity and patterning but not rhythm, and GABAA receptor-related inhibition affects coughing and breathing phase durations similarly to each other. Our data show that the PreBötC is important for cough motor pattern generation, but cough rhythmogenesis appears to be controlled elsewhere.
Collapse
Affiliation(s)
- Tabitha Y Shen
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Ivan Poliacek
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.,Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - Melanie J Rose
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Nicholas Musselwhite
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - Lukas Martvon
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - Teresa Pitts
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Paul W Davenport
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Donald C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Influence of intrathoracic vagotomy on the cough reflex in the anesthetized cat. Respir Physiol Neurobiol 2021; 296:103805. [PMID: 34678475 PMCID: PMC8742786 DOI: 10.1016/j.resp.2021.103805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022]
Abstract
Recurrent laryngeal afferent fibers are primarily responsible for cough in response to mechanical or chemical stimulation of the upper trachea and larynx in the guinea pig. Lower airway slowly adapting receptors have been proposed to have a permissive effect on the cough reflex. We hypothesized that vagotomy below the recurrent laryngeal nerve branch would depress mechanically or chemically induced cough. In anesthetized, bilaterally thoracotomized, artificially ventilated cats, thoracic vagotomy nearly eliminated cough induced by mechanical stimulation of the intrathoracic airway, significantly depressed mechanically stimulated laryngeal cough, and eliminated capsaicin-induced cough. These results support an important role of lower airway sensory feedback in the production of tracheobronchial and laryngeal cough in the cat. Further, at least some of this feedback is due to excitation from pulmonary volume-sensitive sensory receptors.
Collapse
|
6
|
Cinelli E, Iovino L, Bongianni F, Pantaleo T, Mutolo D. Essential Role of the cVRG in the Generation of Both the Expiratory and Inspiratory Components of the Cough Reflex. Physiol Res 2020; 69:S19-S27. [PMID: 32228008 DOI: 10.33549/physiolres.934396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As stated by Korpáš and Tomori (1979), cough is the most important airway protective reflex which provides airway defensive responses to nociceptive stimuli. They recognized that active expiratory efforts, due to the activation of caudal ventral respiratory group (cVRG) expiratory premotoneurons, are the prominent component of coughs. Here, we discuss data suggesting that neurons located in the cVRG have an essential role in the generation of both the inspiratory and expiratory components of the cough reflex. Some lines of evidence indicate that cVRG expiratory neurons, when strongly activated, may subserve the alternation of inspiratory and expiratory cough bursts, possibly owing to the presence of axon collaterals. Of note, experimental findings such as blockade or impairment of glutamatergic transmission to the cVRG neurons lead to the view that neurons located in the cVRG are crucial for the production of the complete cough motor pattern. The involvement of bulbospinal expiratory neurons seems unlikely since their activation affects differentially expiratory and inspiratory muscles, while their blockade does not affect baseline inspiratory activity. Thus, other types of cVRG neurons with their medullary projections should have a role and possibly contribute to the fine tuning of the intensity of inspiratory and expiratory efforts.
Collapse
Affiliation(s)
- E Cinelli
- Department of Experimental and Clinical Medicine, Physiological Sciences Section, University of Florence, Florence, Italy.
| | | | | | | | | |
Collapse
|
7
|
Huckstepp RTR, Cardoza KP, Henderson LE, Feldman JL. Distinct parafacial regions in control of breathing in adult rats. PLoS One 2018; 13:e0201485. [PMID: 30096151 PMCID: PMC6086409 DOI: 10.1371/journal.pone.0201485] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/15/2018] [Indexed: 11/29/2022] Open
Abstract
Recently, based on functional differences, we subdivided neurons juxtaposed to the facial nucleus into two distinct populations, the parafacial ventral and lateral regions, i.e., pFV and pFL. Little is known about the composition of these regions, i.e., are they homogenous or heterogeneous populations? Here, we manipulated their excitability in spontaneously breathing vagotomized urethane anesthetized adult rats to further characterize their role in breathing. In the pFL, disinhibition or excitation decreased breathing frequency (f) with a concomitant increase of tidal volume (VT), and induced active expiration; in contrast, reducing excitation had no effect. This result is congruent with pFL neurons constituting a conditional expiratory oscillator comprised of a functionally homogeneous set of excitatory neurons that are tonically suppressed at rest. In the pFV, disinhibition increased f with a presumptive reflexive decrease in VT; excitation increased f, VT and sigh rate; reducing excitation decreased VT with a presumptive reflexive increase in f. Therefore, the pFV, has multiple functional roles that require further parcellation. Interestingly, while hyperpolarization of the pFV reduces ongoing expiratory activity, no perturbation of pFV excitability induced active expiration. Thus, while the pFV can affect ongoing expiratory activity, presumably generated by the pFL, it does not appear capable of directly inducing active expiration. We conclude that the pFL contains neurons that can initiate, modulate, and sustain active expiration, whereas the pFV contains subpopulations of neurons that differentially affect various aspects of breathing pattern, including but not limited to modulation of ongoing expiratory activity.
Collapse
Affiliation(s)
- Robert T. R. Huckstepp
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kathryn P. Cardoza
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lauren E. Henderson
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol 2017; 243:60-76. [DOI: 10.1016/j.resp.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
|
9
|
Cinelli E, Iovino L, Bongianni F, Pantaleo T, Mutolo D. GABAA- and glycine-mediated inhibitory modulation of the cough reflex in the caudal nucleus tractus solitarii of the rabbit. Am J Physiol Lung Cell Mol Physiol 2016; 311:L570-80. [PMID: 27402692 DOI: 10.1152/ajplung.00205.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/05/2016] [Indexed: 01/05/2023] Open
Abstract
Cough-related sensory inputs from rapidly adapting receptors (RARs) and C fibers are processed by second-order neurons mainly located in the caudal nucleus tractus solitarii (NTS). Both GABAA and glycine receptors have been proven to be involved in the inhibitory control of second-order cells receiving RAR projections. We investigated the role of these receptors within the caudal NTS in the modulation of the cough reflex induced by either mechanical or chemical stimulation of the tracheobronchial tree in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of the receptor antagonists bicuculline and strychnine as well as of the receptor agonists muscimol and glycine were performed. Bicuculline (0.1 mM) and strychnine (1 mM) caused decreases in peak abdominal activity and marked increases in respiratory frequency due to decreases in both inspiratory time (Ti) and expiratory time (Te), without concomitant changes in arterial blood pressure. Noticeably, these microinjections induced potentiation of the cough reflex consisting of increases in the cough number associated with decreases either in cough-related Ti after bicuculline or in both cough-related Ti and Te after strychnine. The effects caused by muscimol (0.1 mM) and glycine (10 mM) were in the opposite direction to those produced by the corresponding antagonists. The results show that both GABAA and glycine receptors within the caudal NTS mediate a potent inhibitory modulation of the pattern of breathing and cough reflex responses. They strongly suggest that disinhibition is one important mechanism underlying cough regulation and possibly provide new hints for novel effective antitussive strategies.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| | - Ludovica Iovino
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
10
|
Cinelli E, Mutolo D, Contini M, Pantaleo T, Bongianni F. Inhibitory control of ascending glutamatergic projections to the lamprey respiratory rhythm generator. Neuroscience 2016; 326:126-140. [PMID: 27058146 DOI: 10.1016/j.neuroscience.2016.03.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Neurons within the vagal motoneuron region of the lamprey have been shown to modulate respiratory activity via ascending excitatory projections to the paratrigeminal respiratory group (pTRG), the proposed respiratory rhythm generator. The present study was performed on in vitro brainstem preparations of the lamprey to provide a characterization of ascending projections within the whole respiratory motoneuron column with regard to the distribution of neurons projecting to the pTRG and related neurochemical markers. Injections of Neurobiotin were performed into the pTRG and the presence of glutamate, GABA and glycine immunoreactivity was investigated by double-labeling experiments. Interestingly, retrogradely labeled neurons were found not only in the vagal region, but also in the facial and glossopharyngeal motoneuron regions. They were also present within the sensory octavolateral area (OLA). The results show for the first time that neurons projecting to the pTRG are immunoreactive for glutamate, surrounded by GABA-immunoreactive structures and associated with the presence of glycinergic cells. Consistently, GABAA or glycine receptor blockade within the investigated regions increased the respiratory frequency. Furthermore, microinjections of agonists and antagonists of ionotropic glutamate receptors and of the GABAA receptor agonist muscimol showed that OLA neurons do not contribute to respiratory rhythm generation. The results provide evidence that glutamatergic ascending pathways to the pTRG are subject to a potent inhibitory control and suggest that disinhibition is one important mechanism subserving their function. The general characteristics of inhibitory control involved in rhythmic activities, such as respiration, appear to be highly conserved throughout vertebrate evolution.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Massimo Contini
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy.
| |
Collapse
|
11
|
Horsmon MS, Vincelli NM, Taylor JT, Kristovich RL. An Impedance-Based Model for the Assessment of Cardiopulmonary Function in Rabbits. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2016; 55:213-220. [PMID: 27025814 PMCID: PMC4783641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/18/2015] [Accepted: 07/31/2015] [Indexed: 06/05/2023]
Abstract
Improving the quality of physiologic data collected from research animals is most easily accomplished by collecting as much information as possible from a single subject, thereby reducing animal use and error associated with satellite groups. We investigated the feasibility of using a large-animal implantable telemetry device in New Zealand white rabbits (n = 6). The first task was to develop an implantation technique that yielded calibrated tidal volume (Vt) measurements that were within 10% of those obtained simultaneously from a pneumotachograph, a low-noise electrocardiogram, and stable blood pressure. The second task was to challenge implanted rabbits with the respiratory stimulant doxapram to assess linearity of the calibration across a range of Vt. Of the 3 electrode placements attempted, only one resulted in calibrations consistently below 10% error. Optimal electrode placement resulted in calibrated Vt measurements within 1.7% ± 0.3% of those obtained from a pneumotachograph during normal tidal breathing, 7.3% ± 0.7% of those after saline injection, and 6.0% ± 0.5% of those after doxapram injection. The Vt range was 9 to 15 mL for normal tidal breathing and saline injection and 25 to 30 mL after doxapram injection. Increases in mean arterial pressure of 25.0 ± 6.82 mm Hg and decreases in heart rate of 56.3 ± 6.82 bpm were associated with doxapram injection only. Our findings represent the first time that multiple cardiopulmonary endpoints have been assessed by telemetry in conscious, restrained rabbits. Whether animal position affects calibration accuracy warrants investigation.
Collapse
Affiliation(s)
- Michael S Horsmon
- US Army Edgewood Chemical Biological Center, Gunpowder, Maryland, USA.
| | | | | | | |
Collapse
|
12
|
Dorsal and ventral aspects of the most caudal medullary reticular formation have differential roles in modulation and formation of the respiratory motor pattern in rat. Brain Struct Funct 2015; 221:4353-4368. [DOI: 10.1007/s00429-015-1165-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/26/2015] [Indexed: 11/24/2022]
|
13
|
Bolser DC, Pitts TE, Davenport PW, Morris KF. Role of the dorsal medulla in the neurogenesis of airway protection. Pulm Pharmacol Ther 2015; 35:105-10. [PMID: 26549786 DOI: 10.1016/j.pupt.2015.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
The dorsal medulla encompassing the nucleus of the tractus solitarius (NTS) and surrounding reticular formation (RF) has an important role in processing sensory information from the upper and lower airways for the generation and control of airway protective behaviors. These behaviors, such as cough and swallow, historically have been studied in isolation. However, recent information indicates that these and other airway protective behaviors are coordinated to minimize risk of aspiration. The dorsal medullary neural circuits that include the NTS are responsible for rhythmogenesis for repetitive swallowing, but previous models have assigned a role for this portion of the network for coughing that is restricted to monosynaptic sensory processing. We propose a more complex NTS/RF circuit that controls expression of swallowing and coughing and the coordination of these behaviors. The proposed circuit is supported by recordings of activity patterns of selected neural elements in vivo and simulations of a computational model of the brainstem circuit for breathing, coughing, and swallowing. This circuit includes separate rhythmic sub-circuits for all three behaviors. The revised NTS/RF circuit can account for the mode of action of antitussive drugs on the cough motor pattern, as well as the unique coordination of cough and swallow by a meta-behavioral control system for airway protection.
Collapse
Affiliation(s)
- Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, USA.
| | - Teresa E Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, USA
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612-4799, USA
| |
Collapse
|
14
|
NMDA and GABA receptors as potential targets in cough hypersensitivity syndrome. Curr Opin Pharmacol 2015; 22:29-36. [DOI: 10.1016/j.coph.2015.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022]
|
15
|
Abstract
Contiguous brain regions associated with a given behavior are increasingly being divided into subregions associated with distinct aspects of that behavior. Using recently developed neuronal hyperpolarizing technologies, we functionally dissect the parafacial region in the medulla, which contains key elements of the central pattern generator for breathing that are important in central CO2-chemoreception and for gating active expiration. By transfecting different populations of neighboring neurons with allatostatin or HM4D Gi/o-coupled receptors, we analyzed the effect of their hyperpolarization on respiration in spontaneously breathing vagotomized urethane-anesthetized rats. We identify two functionally separate parafacial nuclei: ventral (pFV) and lateral (pFL). Disinhibition of the pFL with bicuculline and strychnine led to active expiration. Hyperpolarizing pFL neurons had no effect on breathing at rest, or changes in inspiratory activity induced by hypoxia and hypercapnia; however, hyperpolarizing pFL neurons attenuated active expiration when it was induced by hypercapnia, hypoxia, or disinhibition of the pFL. In contrast, hyperpolarizing pFV neurons affected breathing at rest by decreasing inspiratory-related activity, attenuating the hypoxia- and hypercapnia-induced increase in inspiratory activity, and when present, reducing expiratory-related abdominal activity. Together with previous observations, we conclude that the pFV provides a generic excitatory drive to breathe, even at rest, whereas the pFL is a conditional oscillator quiet at rest that, when activated, e.g., during exercise, drives active expiration.
Collapse
|
16
|
Mutolo D, Cinelli E, Bongianni F, Pantaleo T. Inhibitory control of the cough reflex by galanin receptors in the caudal nucleus tractus solitarii of the rabbit. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1358-67. [DOI: 10.1152/ajpregu.00237.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The caudal nucleus tractus solitarii (NTS) is the main central station of cough-related afferents and a strategic site for the modulation of the cough reflex. The similarities between the characteristics of central processing of nociceptive and cough-related inputs led us to hypothesize that galanin, a neuropeptide implicated in the control of pain, could also be involved in the regulation of the cough reflex at the level of the NTS, where galanin receptors have been found. We investigated the effects of galanin and galnon, a nonpeptide agonist at galanin receptors, on cough responses to mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nl) into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Galnon antitussive effects on cough responses to the mechanical stimulation of the airway mucosa via a custom-built device were also investigated. Bilateral microinjections of 1 mM galanin markedly decreased cough number, peak abdominal activity, and increased cough-related total cycle duration. Bilateral microinjections of 1 mM galnon induced mild depressant effects on cough, whereas bilateral microinjections of 10 mM galnon caused marked antitussive effects consistent with those produced by galanin. Galnon effects were confirmed by using the cough-inducing device. The results indicate that galanin receptors play a role in the inhibitory control of the cough reflex at the level of the caudal NTS and provide hints for the development of novel antitussive strategies.
Collapse
Affiliation(s)
- Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
17
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. Suppression of the cough reflex by α 2-adrenergic receptor agonists in the rabbit. Physiol Rep 2013; 1:e00122. [PMID: 24400133 PMCID: PMC3871446 DOI: 10.1002/phy2.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 01/26/2023] Open
Abstract
The α2-adrenergic receptor agonist clonidine has been shown to inhibit citric acid-induced cough responses in guinea pigs when administered by aerosol, but not orally. In contrast, oral or inhaled clonidine had no effect on capsaicin-induced cough and reflex bronchoconstriction in humans. In addition, intravenous administration of clonidine has been shown to depress fentanyl-induced cough in humans. We investigated the effects of the α2-adrenergic receptor agonists, clonidine and tizanidine, on cough responses induced by mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nL) into the caudal nucleus tractus solitarii (cNTS) and the caudal ventral respiratory group (cVRG) as well as administered intravenously in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections of clonidine into the cNTS or the cVRG reduced cough responses at 0.5 mmol/L and abolished the cough reflex at 5 mmol/L. Bilateral microinjections of 0.5 mmol/L tizanidine into the cNTS completely suppressed cough responses, whereas bilateral microinjections of 5 mmol/L into the cVRG only caused mild reductions in them. Depressant effects on the cough reflex of clonidine and tizanidine were completely reverted by microinjections of 10 mmol/L yohimbine. Intravenous administration of clonidine (80–120 μg/kg) or tizanidine (150–300 μg/kg) strongly reduced or completely suppressed cough responses. These effects were reverted by intravenous administration of yohimbine (300 μg/kg). The results demonstrate that activation of α2-adrenergic receptors in the rabbit exerts potent inhibitory effects on the central mechanism generating the cough motor pattern with a clear action at the level of the cNTS and the cVRG.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| |
Collapse
|