1
|
Lei M, Wu L, Terrar DA, Huang CLH. The modernized classification of cardiac antiarrhythmic drugs: Its application to clinical practice. Heart Rhythm 2025:S1547-5271(25)02300-8. [PMID: 40187508 DOI: 10.1016/j.hrthm.2025.03.1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Cardiac arrhythmias pose a major public health problem, and pharmacologic intervention remains key to their therapy. The 1970 landmark Vaughan Williams (VW) classification utilizing known actions of then available antiarrhythmic drugs (AADs) became and remains central to management, but it requires revision in response to extensive subsequent advances. Our modernized AAD classification reflected and sought to facilitate such fundamental physiological and clinical development. Here we respond to requests for an adaptation of our scheme specifically focused on clinical practice. (1) This adaptation improves the accessibility of our original scheme to clinical practice, focusing on key AADs in clinical use rather than investigational new drugs (INDs) while conserving and encompassing the classic VW scheme. (2) We preserve a rational conceptual framework based on current understanding of the relevant electrophysiological events, their underlying cellular or molecular cardiomyocyte targets, and the functional mechanisms they mediate. (3) The adopted subclasses within each AAD class parallel clinical practice by including only subclasses containing established AADs, or approved potential off-label drugs, as opposed to those only including INDs. (4) The simplified scheme remains flexible, permitting drugs to be placed in multiple classes where required, and the addition of classes and subclasses in light of future investigations and clinical approvals. Thus, we derive from our comprehensive modernized AAD classification a more focused and simpler scheme for clinical use. This both modernizes yet preserves the classic VW classification and remains flexible, thus accommodating future developments.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, China.
| | - Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
2
|
Li Y, Liu Z, O'Shea C, Li J, Luo X, Chen T, Ou X, Liu W, Hao G, Huang CLH, Pavlovic D, Tan X, Lei M. Dual calcium-voltage optical mapping of regional voltage and calcium signals in intact murine RyR2-R2474S hearts. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 10:100121. [PMID: 39697246 PMCID: PMC11649530 DOI: 10.1016/j.jmccpl.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 08/08/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024]
Abstract
Abnormal regional variations in electrical and calcium homeostasis properties have been implicated in catecholaminergic polymorphic ventricular tachycardias (CPVT) attributable to abnormal RyR2-mediated store Ca2+ release, but their underlying mechanism have not been well explored in intact hearts. Methods We performed in vivo and ex vivo studies including high throughput mapping of Ca2+ transients (CaT) and transmembrane voltage (Vm) in murine wild-type (WT) and heterozygous RyR2-R2474S/+ hearts, before and during isoprenaline (ISO) challenge. Results ISO-challenged RyR2-R2474S/+ showed increased incidence of arrhythmia accompanied by abnormal Ca2+ transients compared to WT. CaT duration (CaTD) in the LV apex amongst regions studied both before and during ISO challenge in both WT and RyR2-R2474S/+ ventricles. RyR2-R2474S/+ ventricles showed prolonged CaTD, both before and during isoprenaline (ISO) challenge. Conversely, action potential durations (APD) were the same in WT and RyR2-R2474S/+ ventricles and identically reduced by ISO challenge. RyR2-R2474S/+ showed V m-CaT latencies at time to half decay, but not rise time to peak, which were significantly prolonged compared to WT in all ventricular regions examined with ISO challenge. Following burst pacing, ventricular localized concordant alternans in CaT and APD were readily observed in RyR2-R2474S/+ but not in WT mice. Such CaT and APD alternans occurred mostly semiannually in specific regions of the ventricular pre-occurrence of VT. Conclusion The pro-arrhythmic RyR2-R2474S/+ phenotype in intact hearts thus directly parallels delayed regional CaT recovery properties and alteration of V m-CaT latencies. Studies suggest that discordant localized calcium alternans are mechanistically responsible for action potential duration alternans and occurrence of VT in RyR2-R2474S/+ mice.
Collapse
Affiliation(s)
- Yangpeng Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhu Liu
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jianhong Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xian Luo
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Weichao Liu
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Guoliang Hao
- Henan SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Christopher L.-H. Huang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Physiological Laboratory, Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
3
|
Sinus node dysfunction and atrial fibrillation-Relationships, clinical phenotypes, new mechanisms, and treatment approaches. Ageing Res Rev 2023; 86:101890. [PMID: 36813137 DOI: 10.1016/j.arr.2023.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Although the anatomical basis of the pathogenesis of sinus node dysfunction (SND) and atrial fibrillation (AF) is located primarily in the left and right atria, increasing evidence suggests a strong correlation between SND and AF, in terms of both clinical presentation and formation mechanisms. However, the exact mechanisms underlying this association are unclear. The relationship between SND and AF may not be causal, but is likely to involve common factors and mechanisms, including ion channel remodeling, gap junction abnormalities, structural remodeling, genetic mutations, neuromodulation abnormalities, the effects of adenosine on cardiomyocytes, oxidative stress, and viral infections. Ion channel remodeling manifests primarily as alterations in the "funny" current (If) and Ca2+ clock associated with cardiomyocyte autoregulation, and gap junction abnormalities are manifested primarily as decreased expression of connexins (Cxs) mediating electrical impulse propagation in cardiomyocytes. Structural remodeling refers primarily to fibrosis and cardiac amyloidosis (CA). Some genetic mutations can also cause arrhythmias, such as SCN5A, HCN4, EMD, and PITX2. The intrinsic cardiac autonomic nervous system (ICANS), a regulator of the heart's physiological functions, triggers arrhythmias.In addition, we discuss arrhythmias caused by viral infections, notably Coronavirus Disease 2019 (COVID-19). Similarly to upstream treatments for atrial cardiomyopathy such as alleviating CA, ganglionated plexus (GP) ablation acts on the common mechanisms between SND and AF, thus achieving a dual therapeutic effect.
Collapse
|
4
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
5
|
Qu JH, Telljohann R, Byshkov R, Lakatta EG. Characterization of diverse populations of sinoatrial node cells and their proliferation potential at single nucleus resolution. Heliyon 2022; 9:e12708. [PMID: 36632093 PMCID: PMC9826826 DOI: 10.1016/j.heliyon.2022.e12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Background Each heartbeat is initiated in the sinoatrial node (SAN), and although a recent study (GSE130710) using single nucleus RNA-seq had discovered different populations of cell types within SAN tissue, the distinct potential functions of these cell types have not been delineated. Methods To infer some special potential functions of different SAN cell clusters, we applied principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) to the GSE130710 dataset to reduce dimensions, followed by Pseudotime trajectory and AUCell analyses, ANOVA and Hurdle statistical models, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments to determine functional potential of cell types. Nuclear EdU immuno-labeling of SAN tissue confirmed cell type proliferation. Findings We identified elements of a coupled clock system known to drive SAN cell pacemaking within the GSE130710 sinus node myocyte cluster, which, surprisingly, manifested signals of suppressed fatty acid and nitrogen metabolism and reduced immune gene expression. Proliferation signaling was enriched in endocardial, epicardial, epithelial cells, and macrophages, in which, fatty acid and nitrogen metabolic signals were also suppressed, but immune signaling was enhanced. EdU labeling was rare in pacemaker cells but was robust in interstitial cells. Interpretation Pacemaker cells that initiate each heartbeat manifest suppressed fatty acid and nitrogen metabolism and limited immune signaling and proliferation potential. In contrast, other populations of SAN cells not directly involved in the initiation of heartbeats, manifest robust proliferation and immune potential, likely to ensure an environment required to sustain healthy SAN tissue pacemaker function.
Collapse
|
6
|
Abstract
Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.
Collapse
Affiliation(s)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
7
|
Wang G, Lu CJ, Trafford AW, Tian X, Flores HM, Maj P, Zhang K, Niu Y, Wang L, Du Y, Ji X, Xu Y, Wu L, Li D, Herring N, Paterson D, Huang CLH, Zhang H, Lei M, Hao G. Electrophysiological and Proarrhythmic Effects of Hydroxychloroquine Challenge in Guinea-Pig Hearts. ACS Pharmacol Transl Sci 2021; 4:1639-1653. [PMID: 34661080 PMCID: PMC8506600 DOI: 10.1021/acsptsci.1c00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Hydroxychloroquine (HCQ), clinically established in antimalarial and autoimmune therapy, recently raised cardiac arrhythmogenic concerns when used alone or with azithromycin (HCQ+AZM) in Covid-19. We report complementary, experimental, studies of its electrophysiological effects. In patch clamped HEK293 cells expressing human cardiac ion channels, HCQ inhibited IKr and IK1 at a therapeutic concentrations (IC50s: 10 ± 0.6 and 34 ± 5.0 μM). INa and ICaL showed higher IC50s; Ito and IKs were unaffected. AZM slightly inhibited INa, ICaL, IKs, and IKr, sparing IK1 and Ito. (HCQ+AZM) inhibited IKr and IK1 (IC50s: 7.7 ± 0.8 and 30.4 ± 3.0 μM), sparing INa, ICaL, and Ito. Molecular induced-fit docking modeling confirmed potential HCQ-hERG but weak AZM-hERG binding. Effects of μM-HCQ were studied in isolated perfused guinea-pig hearts by multielectrode, optical RH237 voltage, and Rhod-2 mapping. These revealed reversibly reduced left atrial and ventricular action potential (AP) conduction velocities increasing their heterogeneities, increased AP durations (APDs), and increased durations and dispersions of intracellular [Ca2+] transients, respectively. Hearts also became bradycardic with increased electrocardiographic PR and QRS durations. The (HCQ+AZM) combination accentuated these effects. Contrastingly, (HCQ+AZM) and not HCQ alone disrupted AP propagation, inducing alternans and torsadogenic-like episodes on voltage mapping during forced pacing. O'Hara-Rudy modeling showed that the observed IKr and IK1 effects explained the APD alterations and the consequently prolonged Ca2+ transients. The latter might then downregulate INa, reducing AP conduction velocity through recently reported INa downregulation by cytosolic [Ca2+] in a novel scheme for drug action. The findings may thus prompt future investigations of HCQ's cardiac safety under particular, chronic and acute, clinical situations.
Collapse
Affiliation(s)
- Gongxin Wang
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Chieh-Ju Lu
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Andrew W. Trafford
- Unit
of Cardiac Physiology, Institute of Cardiovascular Sciences, Manchester
Academic Health Sciences Centre, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Xiaohui Tian
- Department
of Pharmacy, Huaihe Hospital and College of Medicine, Henan University, Kaifeng 475000, China
| | - Hannali M Flores
- Biological
Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K.
| | - Piotr Maj
- Department
of Pharmacology, University of Oxford, Oxford OX1 2JD, U.K.
| | - Kevin Zhang
- School of
Medicine, Imperial College of London, London SW7 2AZ, U.K.
| | - Yanhong Niu
- Fuwai
Central China Cardiovascular Hospital, Zhengzhou 450003, China
| | - Luxi Wang
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Yimei Du
- Department
of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinying Ji
- Department
of Pharmacy, Huaihe Hospital and College of Medicine, Henan University, Kaifeng 475000, China
| | - Yanfang Xu
- Department
of Pharmacology, Hebei Medical University, Shijiazhuang City 050017, China
| | - Lin Wu
- Department
of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Dan Li
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| | - Neil Herring
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| | - David Paterson
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| | - Christopher L.-H. Huang
- Physiological
Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, U.K.
- Key
Laboratory of Medical Electrophysiology of the Ministry of Education
and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Henggui Zhang
- Biological
Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K.
- Peng
Cheng Laboratory, Shenzhen 518066, China
- Key
Laboratory of Medical Electrophysiology of the Ministry of Education
and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Ming Lei
- Department
of Pharmacology, University of Oxford, Oxford OX1 2JD, U.K.
- Key
Laboratory of Medical Electrophysiology of the Ministry of Education
and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Guoliang Hao
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| |
Collapse
|
8
|
Hawthorne RN, Blazeski A, Lowenthal J, Kannan S, Teuben R, DiSilvestre D, Morrissette-McAlmon J, Saffitz JE, Boheler KR, James CA, Chelko SP, Tomaselli G, Tung L. Altered Electrical, Biomolecular, and Immunologic Phenotypes in a Novel Patient-Derived Stem Cell Model of Desmoglein-2 Mutant ARVC. J Clin Med 2021; 10:jcm10143061. [PMID: 34300226 PMCID: PMC8306340 DOI: 10.3390/jcm10143061] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive heart condition which causes fibro-fatty myocardial scarring, ventricular arrhythmias, and sudden cardiac death. Most cases of ARVC can be linked to pathogenic mutations in the cardiac desmosome, but the pathophysiology is not well understood, particularly in early phases when arrhythmias can develop prior to structural changes. Here, we created a novel human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of ARVC from a patient with a c.2358delA variant in desmoglein-2 (DSG2). These DSG2-mutant (DSG2Mut) hiPSC-CMs were compared against two wildtype hiPSC-CM lines via immunostaining, RT-qPCR, Western blot, RNA-Seq, cytokine expression and optical mapping. Mutant cells expressed reduced DSG2 mRNA and had altered localization of desmoglein-2 protein alongside thinner, more disorganized myofibrils. No major changes in other desmosomal proteins were noted. There was increased pro-inflammatory cytokine expression that may be linked to canonical and non-canonical NFκB signaling. Action potentials in DSG2Mut CMs were shorter with increased upstroke heterogeneity, while time-to-peak calcium and calcium decay rate were reduced. These were accompanied by changes in ion channel and calcium handling gene expression. Lastly, suppressing DSG2 in control lines via siRNA allowed partial recapitulation of electrical anomalies noted in DSG2Mut cells. In conclusion, the aberrant cytoskeletal organization, cytokine expression, and electrophysiology found DSG2Mut hiPSC-CMs could underlie early mechanisms of disease manifestation in ARVC patients.
Collapse
Affiliation(s)
- Robert N. Hawthorne
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adriana Blazeski
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
| | - Justin Lowenthal
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Suraj Kannan
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Roald Teuben
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
| | - Deborah DiSilvestre
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
| | - Jeffrey E. Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
| | - Cynthia A. James
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
| | - Stephen P. Chelko
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
- Correspondence: (S.P.C.); (G.T.); (L.T.); Tel.: +1-850-644-2215 (S.P.C.); +1-718-430-2801 (G.T.); +1-410-955-9603 (L.T.)
| | - Gordon Tomaselli
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.P.C.); (G.T.); (L.T.); Tel.: +1-850-644-2215 (S.P.C.); +1-718-430-2801 (G.T.); +1-410-955-9603 (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Correspondence: (S.P.C.); (G.T.); (L.T.); Tel.: +1-850-644-2215 (S.P.C.); +1-718-430-2801 (G.T.); +1-410-955-9603 (L.T.)
| |
Collapse
|
9
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
10
|
Sigalas C, Cremer M, Winbo A, Bose SJ, Ashton JL, Bub G, Montgomery JM, Burton RAB. Combining tissue engineering and optical imaging approaches to explore interactions along the neuro-cardiac axis. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200265. [PMID: 32742694 PMCID: PMC7353978 DOI: 10.1098/rsos.200265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 05/05/2023]
Abstract
Interactions along the neuro-cardiac axis are being explored with regard to their involvement in cardiac diseases, including catecholaminergic polymorphic ventricular tachycardia, hypertension, atrial fibrillation, long QT syndrome and sudden death in epilepsy. Interrogation of the pathophysiology and pathogenesis of neuro-cardiac diseases in animal models present challenges resulting from species differences, phenotypic variation, developmental effects and limited availability of data relevant at both the tissue and cellular level. By contrast, tissue-engineered models containing cardiomyocytes and peripheral sympathetic and parasympathetic neurons afford characterization of cellular- and tissue-level behaviours while maintaining precise control over developmental conditions, cellular genotype and phenotype. Such approaches are uniquely suited to long-term, high-throughput characterization using optical recording techniques with the potential for increased translational benefit compared to more established techniques. Furthermore, tissue-engineered constructs provide an intermediary between whole animal/tissue experiments and in silico models. This paper reviews the advantages of tissue engineering methods of multiple cell types and optical imaging techniques for the characterization of neuro-cardiac diseases.
Collapse
Affiliation(s)
| | - Maegan Cremer
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Annika Winbo
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Department of Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland, New Zealand
| | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Jesse L. Ashton
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Rebecca A. B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- Author for correspondence: Rebecca A. B. Burton e-mail:
| |
Collapse
|
11
|
Connell P, Word TA, Wehrens XHT. Targeting pathological leak of ryanodine receptors: preclinical progress and the potential impact on treatments for cardiac arrhythmias and heart failure. Expert Opin Ther Targets 2020; 24:25-36. [PMID: 31869254 DOI: 10.1080/14728222.2020.1708326] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: Type-2 ryanodine receptor (RyR2) located on the sarcoplasmic reticulum initiate systolic Ca2+ transients within cardiomyocytes. Proper functioning of RyR2 is therefore crucial to the timing and force generated by cardiomyocytes within a healthy heart. Improper intracellular Ca2+ handing secondary to RyR2 dysfunction is associated with a variety of cardiac pathologies including catecholaminergic polymorphic ventricular tachycardia (CPVT), atrial fibrillation (AF), and heart failure (HF). Thus, RyR2 and its associated accessory proteins provide promising drug targets to scientists developing therapeutics for a variety of cardiac pathologies.Areas covered: In this article, we review the role of RyR2 in a variety of cardiac pathologies. We performed a literature search utilizing PubMed and MEDLINE as well as reviewed registries of trials from clinicaltrials.gov from 2010 to 2019 for novel therapeutic approaches that address the cellular mechanisms underlying CPVT, AF, and HF by specifically targeting defective RyR2 channels.Expert opinion: The negative impact of cardiac dysfunction on human health and medical economics are major motivating factors for establishing new and effective therapeutic approaches. Focusing on directly impacting the molecular mechanisms underlying defective Ca2+ handling by RyR2 in HF and arrhythmia has great potential to be translated into novel and innovative therapies.
Collapse
Affiliation(s)
- Patrick Connell
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tarah A Word
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.,Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Medicine (Cardiology, Baylor College of Medicine, Houston, TX, USA.,Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Cao Q, Chu P, Gu J, Zhang H, Feng R, Wen X, Wang D, Xiong W, Wang T, Yin S. The influence of Ca 2+ concentration on voltage-dependent L-type calcium channels' expression in the marbled eel (Anguilla marmorata). Gene 2019; 722:144101. [PMID: 31479714 DOI: 10.1016/j.gene.2019.144101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
The catadromous species, eels, invariably exposed to variable Ca2+ concentrations circumstance i.e., lagoon or ocean. They need to maintain Ca2+ homeostasis by exchanging Ca2+ under different culture conditions. To understand the effects of environmental Ca2+ to fish, three types of genes coding for voltage-dependent L-type calcium channels (cacnb1, 2, 3) were cloned by screening an A. marmorata cDNA library. Tissue distribution analysis of Western blot showed that Cacnb1, 2, 3 had a significantly high expression in gill; while mRNA results showed the expressions of cacnb1 and cacnb3 were predominated in skin tissue but only cacnb2 was expressed in intestine. Serum osmolality and Ca2+ concentrations of A.marmorata were increased in a high calcium environment while reduced in a low calcium environment within 7 days; however, they were not significantly different among Ca2+ treatments after the eels were acclimated for 7 days. We also examined the influence of ambient Ca2+ levels on cacnbs expression of eels. With the increasing of exposure time, mRNA and protein expressions of cacnb1 were up-regulated in high level of Ca2+ (10 mM) and down-regulated in deficient Ca2+ (0 mM) compared to the control Ca2+ (2 mM). However, the opposite results were observed in cacnb2 and cacnb3. Notably, the cacnb2 expression was not significant different among Ca2+ treatments on day 7. Our study provided the insightful evidence that cacnbs play important roles in maintaining Ca2+ homeostasis of fish.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Peng Chu
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Hongyan Zhang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Runhua Feng
- School of WASM, Curtin University, WA 6151, Australia
| | - Xin Wen
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Dan Wang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tao Wang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
13
|
Abstract
BACKGROUND Among his major cardiac electrophysiological contributions, Miles Vaughan Williams (1918-2016) provided a classification of antiarrhythmic drugs that remains central to their clinical use. METHODS We survey implications of subsequent discoveries concerning sarcolemmal, sarcoplasmic reticular, and cytosolic biomolecules, developing an expanded but pragmatic classification that encompasses approved and potential antiarrhythmic drugs on this centenary of his birth. RESULTS We first consider the range of pharmacological targets, tracking these through to cellular electrophysiological effects. We retain the original Vaughan Williams Classes I through IV but subcategorize these divisions in light of more recent developments, including the existence of Na+ current components (for Class I), advances in autonomic (often G protein-mediated) signaling (for Class II), K+ channel subspecies (for Class III), and novel molecular targets related to Ca2+ homeostasis (for Class IV). We introduce new classes based on additional targets, including channels involved in automaticity, mechanically sensitive ion channels, connexins controlling electrotonic cell coupling, and molecules underlying longer-term signaling processes affecting structural remodeling. Inclusion of this widened range of targets and their physiological sequelae provides a framework for a modernized classification of established antiarrhythmic drugs based on their pharmacological targets. The revised classification allows for the existence of multiple drug targets/actions and for adverse, sometimes actually proarrhythmic, effects. The new scheme also aids classification of novel drugs under investigation. CONCLUSIONS We emerge with a modernized classification preserving the simplicity of the original Vaughan Williams framework while aiding our understanding and clinical management of cardiac arrhythmic events and facilitating future developments in this area.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, United Kingdom (M.L., D.A.T.)
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (M.L., L.W.)
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, China (L.W.)
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (M.L., L.W.)
| | - Derek A Terrar
- Department of Pharmacology, University of Oxford, United Kingdom (M.L., D.A.T.)
| | - Christopher L-H Huang
- Physiological Laboratory (C.L.-H.H.), University of Cambridge, United Kingdom
- Department of Biochemistry (C.L.-H.H.). University of Cambridge, United Kingdom
| |
Collapse
|
14
|
Wei XH, Yu SD, Ren L, Huang SH, Yang QM, Wang P, Chu YP, Yang W, Ding YS, Huo Y, Wu L. Inhibition of late sodium current suppresses calcium-related ventricular arrhythmias by reducing the phosphorylation of CaMK-II and sodium channel expressions. Sci Rep 2017; 7:981. [PMID: 28428622 PMCID: PMC5430524 DOI: 10.1038/s41598-017-01056-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/20/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias associated with intracellular calcium inhomeostasis are refractory to antiarrhythmic therapy. We hypothesized that late sodium current (I Na) contributed to the calcium-related arrhythmias. Monophasic action potential duration at 90% completion of repolarization (MAPD90) was significantly increased and ventricular arrhythmias were observed in hearts with increased intracellular calcium concentration ([Ca2+]i) by using Bay K 8644, and the increase became greater in hearts treated with a combination of ATX-II and Bay K 8644 compared to Bay K 8644 alone. The prolongations caused by Bay K 8644 and frequent episodes of ventricular tachycardias, both in absence and presence of ATX-II, were significantly attenuated or abolished by late I Na inhibitors TTX and eleclazine. In rabbit ventricular myocytes, Bay K 8644 increased I CaL density, calcium transient and myocyte contraction. TTX and eleclazine decreased the amplitude of late I Na, the reverse use dependence of MAPD90 at slower heart rate, and attenuated the increase of intracellular calcium transient and myocyte contraction. TTX diminished the phosphorylation of CaMKII-δ and Nav 1.5 in hearts treated with Bay K 8644 and ATX-II. In conclusion, late I Na contributes to ventricular arrhythmias and its inhibition is plausible to treat arrhythmias in hearts with increased [Ca2+]i.
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Shan-Dong Yu
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Lu Ren
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Si-Hui Huang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Qiao-Mei Yang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Ping Wang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Yan-Peng Chu
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Wei Yang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Yan-Sheng Ding
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
15
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Franco D, Lozano-Velasco E, Aranega A. Gene regulatory networks in atrial fibrillation. World J Med Genet 2016; 6:1-16. [DOI: 10.5496/wjmg.v6.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic syndrome in humans. With an estimate incidence of 1%-2% in the general population, AF raises up to almost 10%-12% in 80+ years. Thus, AF represents nowadays a highly prevalent medical problem generating a large economic burden. At the electrophysiological level, distinct mechanisms have been elucidated. Yet, despite its prevalence, the genetic and molecular culprits of this pandemic cardiac electrophysiological abnormality have remained largely obscure. Molecular genetics of AF familiar cases have demonstrated that single nucleotide mutations in distinct genes encoding for ion channels underlie the onset of AF, albeit such alterations only explain a minor subset of patients with AF. In recent years, analyses by means of genome-wide association studies have unraveled a more complex picture of the etiology of AF, pointing out to distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Furthermore a new layer of regulatory mechanisms have emerged, i.e., post-transcriptional regulation mediated by non-coding RNA, which have been demonstrated to exert pivotal roles in cardiac electrophysiology. In this manuscript, we aim to provide a comprehensive review of the genetic regulatory networks that if impaired exert electrophysiological abnormalities that contribute to the onset, and subsequently, on self-perpetuation of AF.
Collapse
|
17
|
Zhang H, Sun AY, Kim JJ, Graham V, Finch EA, Nepliouev I, Zhao G, Li T, Lederer WJ, Stiber JA, Pitt GS, Bursac N, Rosenberg PB. STIM1-Ca2+ signaling modulates automaticity of the mouse sinoatrial node. Proc Natl Acad Sci U S A 2015; 112:E5618-27. [PMID: 26424448 PMCID: PMC4611639 DOI: 10.1073/pnas.1503847112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiac pacemaking is governed by specialized cardiomyocytes located in the sinoatrial node (SAN). SAN cells (SANCs) integrate voltage-gated currents from channels on the membrane surface (membrane clock) with rhythmic Ca(2+) release from internal Ca(2+) stores (Ca(2+) clock) to adjust heart rate to meet hemodynamic demand. Here, we report that stromal interaction molecule 1 (STIM1) and Orai1 channels, key components of store-operated Ca(2+) entry, are selectively expressed in SANCs. Cardiac-specific deletion of STIM1 in mice resulted in depletion of sarcoplasmic reticulum (SR) Ca(2+) stores of SANCs and led to SAN dysfunction, as was evident by a reduction in heart rate, sinus arrest, and an exaggerated autonomic response to cholinergic signaling. Moreover, STIM1 influenced SAN function by regulating ionic fluxes in SANCs, including activation of a store-operated Ca(2+) current, a reduction in L-type Ca(2+) current, and enhancing the activities of Na(+)/Ca(2+) exchanger. In conclusion, these studies reveal that STIM1 is a multifunctional regulator of Ca(2+) dynamics in SANCs that links SR Ca(2+) store content with electrical events occurring in the plasma membrane, thereby contributing to automaticity of the SAN.
Collapse
Affiliation(s)
- Hengtao Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Albert Y Sun
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Jong J Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Victoria Graham
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Elizabeth A Finch
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Igor Nepliouev
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Guiling Zhao
- Department of Physiology, Center for BioMedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tianyu Li
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - W J Lederer
- Department of Physiology, Center for BioMedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan A Stiber
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Geoffrey S Pitt
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Paul B Rosenberg
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704;
| |
Collapse
|
18
|
Salvage SC, King JH, Chandrasekharan KH, Jafferji DIG, Guzadhur L, Matthews HR, Huang CL, Fraser JA. Flecainide exerts paradoxical effects on sodium currents and atrial arrhythmia in murine RyR2-P2328S hearts. Acta Physiol (Oxf) 2015; 214:361-75. [PMID: 25850710 PMCID: PMC4510817 DOI: 10.1111/apha.12505] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/03/2014] [Accepted: 04/01/2015] [Indexed: 12/30/2022]
Abstract
Aims Cardiac ryanodine receptor mutations are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), and some, including RyR2-P2328S, also predispose to atrial fibrillation. Recent work associates reduced atrial Nav1.5 currents in homozygous RyR2-P2328S (RyR2S/S) mice with slowed conduction and increased arrhythmogenicity. Yet clinically, and in murine models, the Nav1.5 blocker flecainide reduces ventricular arrhythmogenicity in CPVT. We aimed to determine whether, and how, flecainide influences atrial arrhythmogenicity in RyR2S/S mice and their wild-type (WT) littermates. Methods We explored effects of 1 μm flecainide on WT and RyR2S/S atria. Arrhythmic incidence, action potential (AP) conduction velocity (CV), atrial effective refractory period (AERP) and AP wavelength (λ = CV × AERP) were measured using multi-electrode array recordings in Langendorff-perfused hearts; Na+ currents (INa) were recorded using loose patch clamping of superfused atria. Results RyR2S/S showed more frequent atrial arrhythmias, slower CV, reduced INa and unchanged AERP compared to WT. Flecainide was anti-arrhythmic in RyR2S/S but pro-arrhythmic in WT. It increased INa in RyR2S/S atria, whereas it reduced INa as expected in WT. It increased AERP while sparing CV in RyR2S/S, but reduced CV while sparing AERP in WT. Thus, RyR2S/S hearts have low λ relative to WT; flecainide then increases λ in RyR2S/S but decreases λ in WT. Conclusions Flecainide (1 μm) rescues the RyR2-P2328S atrial arrhythmogenic phenotype by restoring compromised INa and λ, changes recently attributed to increased sarcoplasmic reticular Ca2+ release. This contrasts with the increased arrhythmic incidence and reduced INa and λ with flecainide in WT.
Collapse
Affiliation(s)
- S. C. Salvage
- Physiological Laboratory University of Cambridge Cambridge UK
| | - J. H. King
- Physiological Laboratory University of Cambridge Cambridge UK
| | | | | | - L. Guzadhur
- Department of Biochemistry University of Cambridge Cambridge UK
| | - H. R. Matthews
- Physiological Laboratory University of Cambridge Cambridge UK
| | - C. L.‐H. Huang
- Physiological Laboratory University of Cambridge Cambridge UK
- Department of Biochemistry University of Cambridge Cambridge UK
| | - J. A. Fraser
- Physiological Laboratory University of Cambridge Cambridge UK
| |
Collapse
|
19
|
Di Pino A, Caruso E, Costanzo L, Guccione P. A novel RyR2 mutation in a 2-year-old baby presenting with atrial fibrillation, atrial flutter, and atrial ectopic tachycardia. Heart Rhythm 2014; 11:1480-3. [PMID: 24793461 DOI: 10.1016/j.hrthm.2014.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Alfredo Di Pino
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital Centro Cardiologico Pediatrico del Mediterraneo, San Vincenzo Hospital, Taormina (ME), Italy.
| | - Elio Caruso
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital Centro Cardiologico Pediatrico del Mediterraneo, San Vincenzo Hospital, Taormina (ME), Italy
| | - Luca Costanzo
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital Centro Cardiologico Pediatrico del Mediterraneo, San Vincenzo Hospital, Taormina (ME), Italy; Cardiotoracovascular Department, Ferrarotto-Policlinic Hospital, University of Catania, Catania, Italy
| | - Paolo Guccione
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital Centro Cardiologico Pediatrico del Mediterraneo, San Vincenzo Hospital, Taormina (ME), Italy
| |
Collapse
|
20
|
Sabir IN, Matthews GDK, Huang CLH. Sudden arrhythmic death: from basic science to clinical practice. Front Physiol 2013; 4:339. [PMID: 24324440 PMCID: PMC3839408 DOI: 10.3389/fphys.2013.00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 12/05/2022] Open
Affiliation(s)
- Ian N Sabir
- The Rayne Institute, St. Thomas' Hospital London, UK
| | | | | |
Collapse
|