1
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
2
|
Bi Y, Zhang X, Chang X, Li J, Xiao S, Zhang B, Dang C, Sun L, Yao H, Fang Q, Wang F, Ye G. Olfactory behavioral responses of two Drosophila species and their pupal parasitoid to volatiles from bananas. PEST MANAGEMENT SCIENCE 2023; 79:4309-4318. [PMID: 37357260 DOI: 10.1002/ps.7628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 06/25/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Behavior-based manipulation is an essential part of Drosophila integrated pest management (IPM). Effective compounds are useful for improving the efficiency of baits and the development of attract-and-kill or push-pull strategies to manage Drosophila populations. Here, we investigated the olfactory behavior of two Drosophila species, as well as their pupal parasitoid, to volatiles from bananas, for the identification of effective compounds to control fly populations. RESULTS The results showed that overripe bananas were most attractive to both flies, with a higher attraction index (AI) in Drosophila melanogaster than in Drosophila suzukii. The profiles of volatile organic compounds (VOCs) from bananas with three different ripening stages were compared, and six VOCs were selected for behavioral tests. D. suzukii showed significantly different responses to isoamyl alcohol with D. melanogaster. The effects of ethyl butyrate and ethyl isovalerate on the two flies were dose-dependent, with lower concentrations acting as repellent and higher concentrations acting as attractant. Isoamyl acetate, isoamyl butyrate and isoamyl isovalerate (0.005-0.05% v/v) were attractive to both flies. The parasitoid wasp Pachycrepoidus vindemmiae was repelled by isoamyl alcohol and ethyl butyrate, and attracted by ethyl isovalerate, but showed no significant response to isoamyl acetate, isoamyl butyrate and isoamyl isovalerate at the tested concentration. CONCLUSION This study indicated that the behavioral response of Drosophila to the odor of chemical compounds is dose-dependent. Isoamyl alcohol and isoamyl acetate at certain concentrations could be used as repellents, whereas ethyl isovalerate as an attractant in control strategy design for D. suzukii. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaluan Bi
- Hainan Institute, Zhejiang University, Sanya, China
| | - Xuan Zhang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xuefei Chang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiaxin Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Cong Dang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Linlin Sun
- Qixia Agricultural and Technology Extension Center, Qixia, China
| | - Hongwei Yao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Qi Fang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Fang Wang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zheng Z, Li F, Fisher C, Ali IJ, Sharifi N, Calle-Schuler S, Hsu J, Masoodpanah N, Kmecova L, Kazimiers T, Perlman E, Nichols M, Li PH, Jain V, Bock DD. Structured sampling of olfactory input by the fly mushroom body. Curr Biol 2022; 32:3334-3349.e6. [PMID: 35797998 PMCID: PMC9413950 DOI: 10.1016/j.cub.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Associative memory formation and recall in the fruit fly Drosophila melanogaster is subserved by the mushroom body (MB). Upon arrival in the MB, sensory information undergoes a profound transformation from broadly tuned and stereotyped odorant responses in the olfactory projection neuron (PN) layer to narrowly tuned and nonstereotyped responses in the Kenyon cells (KCs). Theory and experiment suggest that this transformation is implemented by random connectivity between KCs and PNs. However, this hypothesis has been challenging to test, given the difficulty of mapping synaptic connections between large numbers of brain-spanning neurons. Here, we used a recent whole-brain electron microscopy volume of the adult fruit fly to map PN-to-KC connectivity at synaptic resolution. The PN-KC connectome revealed unexpected structure, with preponderantly food-responsive PN types converging at above-chance levels on downstream KCs. Axons of the overconvergent PN types tended to arborize near one another in the MB main calyx, making local KC dendrites more likely to receive input from those types. Overconvergent PN types preferentially co-arborize and connect with dendrites of αβ and α'β' KC subtypes. Computational simulation of the observed network showed degraded discrimination performance compared with a random network, except when all signal flowed through the overconvergent, primarily food-responsive PN types. Additional theory and experiment will be needed to fully characterize the impact of the observed non-random network structure on associative memory formation and recall.
Collapse
Affiliation(s)
- Zhihao Zheng
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Corey Fisher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Iqbal J Ali
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nadiya Sharifi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Steven Calle-Schuler
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Joseph Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Najla Masoodpanah
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lucia Kmecova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tom Kazimiers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Kazmos GmbH, Dresden, Germany
| | - Eric Perlman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Yikes LLC, Baltimore, MD, USA
| | - Matthew Nichols
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | | | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
4
|
Bisch-Knaden S, Rafter MA, Knaden M, Hansson BS. Unique neural coding of crucial versus irrelevant plant odors in a hawkmoth. eLife 2022; 11:77429. [PMID: 35622402 PMCID: PMC9142141 DOI: 10.7554/elife.77429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
The sense of smell is pivotal for nocturnal moths to locate feeding and oviposition sites. However, these crucial resources are often rare and their bouquets are intermingled with volatiles emanating from surrounding ‘background’ plants. Here, we asked if the olfactory system of female hawkmoths, Manduca sexta, could differentiate between crucial and background cues. To answer this question, we collected nocturnal headspaces of numerous plants in a natural habitat of M. sexta. We analyzed the chemical composition of these headspaces and used them as stimuli in physiological experiments at the antenna and in the brain. The intense odors of floral nectar sources evoked strong responses in virgin and mated female moths, most likely enabling the localization of profitable flowers at a distance. Bouquets of larval host plants and most background plants, in contrast, were subtle, thus potentially complicating host identification. However, despite being subtle, antennal responses and brain activation patterns evoked by the smell of larval host plants were clearly different from those evoked by other plants. Interestingly, this difference was even more pronounced in the antennal lobe of mated females, revealing a status-dependent tuning of their olfactory system towards oviposition sites. Our study suggests that female moths possess unique neural coding strategies to find not only conspicuous floral cues but also inconspicuous bouquets of larval host plants within a complex olfactory landscape.
Collapse
Affiliation(s)
- Sonja Bisch-Knaden
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | | | - Markus Knaden
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| |
Collapse
|
5
|
Zhao Z, Zung JL, Hinze A, Kriete AL, Iqbal A, Younger MA, Matthews BJ, Merhof D, Thiberge S, Ignell R, Strauch M, McBride CS. Mosquito brains encode unique features of human odour to drive host seeking. Nature 2022; 605:706-712. [PMID: 35508661 PMCID: PMC9725754 DOI: 10.1038/s41586-022-04675-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
A globally invasive form of the mosquito Aedes aegypti specializes in biting humans, making it an efficient disease vector1. Host-seeking female mosquitoes strongly prefer human odour over the odour of animals2,3, but exactly how they distinguish between the two is not known. Vertebrate odours are complex blends of volatile chemicals with many shared components4-7, making discrimination an interesting sensory coding challenge. Here we show that human and animal odours evoke activity in distinct combinations of olfactory glomeruli within the Ae. aegypti antennal lobe. One glomerulus in particular is strongly activated by human odour but responds weakly, or not at all, to animal odour. This human-sensitive glomerulus is selectively tuned to the long-chain aldehydes decanal and undecanal, which we show are consistently enriched in human odour and which probably originate from unique human skin lipids. Using synthetic blends, we further demonstrate that signalling in the human-sensitive glomerulus significantly enhances long-range host-seeking behaviour in a wind tunnel, recapitulating preference for human over animal odours. Our research suggests that animal brains may distil complex odour stimuli of innate biological relevance into simple neural codes and reveals targets for the design of next-generation mosquito-control strategies.
Collapse
Affiliation(s)
- Zhilei Zhao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Jessica L Zung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Annika Hinze
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alexis L Kriete
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Graduate Program in Entomology, North Carolina State University, Raleigh, NC, USA
| | - Azwad Iqbal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Meg A Younger
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Stephan Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Martin Strauch
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Carolyn S McBride
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Derby CD, McClintock TS, Caprio J. Understanding responses to chemical mixtures: looking forward from the past. Chem Senses 2022; 47:bjac002. [PMID: 35226060 PMCID: PMC8883806 DOI: 10.1093/chemse/bjac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
7
|
Burger H, Marquardt M, Babucke K, Heuel KC, Ayasse M, Dötterl S, Galizia CG. Neural and behavioural responses of the pollen-specialist bee Andrena vaga to Salix odours. J Exp Biol 2021; 224:269108. [PMID: 34113983 DOI: 10.1242/jeb.242166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/02/2021] [Indexed: 01/05/2023]
Abstract
An effective means of finding food is crucial for organisms. Whereas specialized animals select a small number of potentially available food sources, generalists use a broader range. Specialist (oligolectic) bees forage on a small range of flowering plants for pollen and use primarily olfactory and visual cues to locate their host flowers. So far, however, little is known about the specific cues oligoleges use to discriminate between hosts and non-hosts and how floral scent compounds of hosts and non-hosts are processed in the bees' olfactory system. In this study, we recorded physiological responses of the antennae (electroantennographic detection coupled to gas chromatography; GC-EAD) and in the brain (optical imaging; GC imaging), and studied host-finding behaviour of oligolectic Andrena vaga bees, a specialist on Salix plants. In total, we detected 37 physiologically active compounds in host and non-host scents. 4-Oxoisophorone, a common constituent in the scent of many Salix species, evoked strong responses in the antennal lobe glomeruli of A. vaga, but not the generalist honeybee Apis mellifera. The specific glomerular responses to 4-oxoisophorone in natural Salix scents reveals a high degree of specialization in A. vaga for this typical Salix odorant component. In behavioural experiments, we found olfactory cues to be the key attractants for A. vaga to Salix hosts, which are also used to discriminate between hosts and non-hosts, and A. vaga demonstrated a behavioural activity for 4-oxoisophorone. A high sensitivity to floral scents enables the specialized bees to effectively find flowers and it appears that A. vaga bees are highly tuned to 4-oxoisophorone at a very low concentration.
Collapse
Affiliation(s)
- Hannah Burger
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany.,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Melanie Marquardt
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Katharina Babucke
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Kim C Heuel
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany.,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria
| | - C Giovanni Galizia
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Tait C, Kharva H, Schubert M, Kritsch D, Sombke A, Rybak J, Feder JL, Olsson SB. A reversal in sensory processing accompanies ongoing ecological divergence and speciation in Rhagoletis pomonella. Proc Biol Sci 2021; 288:20210192. [PMID: 33757346 DOI: 10.1098/rspb.2021.0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in behaviour often drive rapid adaptive evolution and speciation. However, the mechanistic basis for behavioural shifts is largely unknown. The tephritid fruit fly Rhagoletis pomonella is an example of ecological specialization and speciation in action via a recent host plant shift from hawthorn to apple. These flies primarily use specific odours to locate fruit, and because they mate only on or near host fruit, changes in odour preference for apples versus hawthorns translate directly to prezygotic reproductive isolation, initiating speciation. Using a variety of techniques, we found a reversal between apple and hawthorn flies in the sensory processing of key odours associated with host fruit preference at the first olfactory synapse, linking changes in the antennal lobe of the brain with ongoing ecological divergence. Indeed, changes to specific neural pathways of any sensory modality may be a broad mechanism for changes in animal behaviour, catalysing the genesis of new biodiversity.
Collapse
Affiliation(s)
- Cheyenne Tait
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hinal Kharva
- Naturalist-Inspired Chemical Ecology, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India.,School of Life Sciences, The University of Trans-Disciplinary Health Sciences and Technology, 74/2, Jarakabande Kaval, Post Attur via Yelahanka, Bangalore 560064, India
| | - Marco Schubert
- Department of Biology, Chemistry and Pharmacy, Institute of Biology, Free University Berlin, Berlin 14195, Germany
| | - Daniel Kritsch
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany
| | - Andy Sombke
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon B Olsson
- Naturalist-Inspired Chemical Ecology, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
9
|
Das Chakraborty S, Sachse S. Olfactory processing in the lateral horn of Drosophila. Cell Tissue Res 2021; 383:113-123. [PMID: 33475851 PMCID: PMC7873099 DOI: 10.1007/s00441-020-03392-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
Sensing olfactory signals in the environment represents a crucial and significant task of sensory systems in almost all organisms to facilitate survival and reproduction. Notably, the olfactory system of diverse animal phyla shares astonishingly many fundamental principles with regard to anatomical and functional properties. Binding of odor ligands by chemosensory receptors present in the olfactory peripheral organs leads to a neuronal activity that is conveyed to first and higher-order brain centers leading to a subsequent odor-guided behavioral decision. One of the key centers for integrating and processing innate olfactory behavior is the lateral horn (LH) of the protocerebrum in insects. In recent years the LH of Drosophila has garnered increasing attention and many studies have been dedicated to elucidate its circuitry. In this review we will summarize the recent advances in mapping and characterizing LH-specific cell types, their functional properties with respect to odor tuning, their neurotransmitter profiles, their connectivity to pre-synaptic and post-synaptic partner neurons as well as their impact for olfactory behavior as known so far.
Collapse
Affiliation(s)
- Sudeshna Das Chakraborty
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
10
|
Wilson DA, Fleming G, Vervoordt SM, Coureaud G. Cortical processing of configurally perceived odor mixtures. Brain Res 2020; 1729:146617. [PMID: 31866364 PMCID: PMC6941848 DOI: 10.1016/j.brainres.2019.146617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/01/2023]
Abstract
Most odors are not composed of a single volatile chemical species, but rather are mixtures of many different volatile molecules, the perception of which is dependent on the identity and relative concentrations of the components. Changing either the identity or ratio of components can lead to shifts between configural and elemental perception of the mixture. For example, a 30/70 ratio of ethyl isobutyrate (odorant A, a strawberry scent) and ethyl maltol (odorant B, a caramel scent) is perceived as pineapple by humans - a configural percept distinct from the components. In contrast, a 68/32 ratio of the same odorants is perceived elementally, and is identified as the component odors. Here, we examined single-unit responses in the anterior and posterior piriform cortex (aPCX and pPCX) of mice to these A and B mixtures. We first demonstrate that mouse behavior is consistent with a configural/elemental perceptual shift as concentration ratio varies. We then compared responses to the configural mixture to those evoked by the elemental mixture, as well as to the individual components. Hierarchical cluster analyses suggest that in the mouse aPCX, the configural mixture was coded as distinct from both components, while the elemental mixture was coded as similar to the components. In contrast, mixture perception did not predict pPCX ensemble coding. Similar electrophysiological results were also observed in rats. The results suggest similar perceptual characteristics of the AB mixture across species, and a division in the roles of aPCX and pPCX in the coding of configural and elemental odor mixtures.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child & Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Gloria Fleming
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Samantha M Vervoordt
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Gérard Coureaud
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292/Lyon 1 University, Bron, France.
| |
Collapse
|
11
|
Odor-Induced Multi-Level Inhibitory Maps in Drosophila. eNeuro 2020; 7:ENEURO.0213-19.2019. [PMID: 31888962 PMCID: PMC6957311 DOI: 10.1523/eneuro.0213-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/04/2022] Open
Abstract
Optical imaging of intracellular Ca2+ influx as a correlate of neuronal excitation represents a standard technique for visualizing spatiotemporal activity of neuronal networks. However, the information-processing properties of single neurons and neuronal circuits likewise involve inhibition of neuronal membrane potential. Here, we report spatially resolved optical imaging of odor-evoked inhibitory patterns in the olfactory circuitry of Drosophila using a genetically encoded fluorescent Cl- sensor. In combination with the excitatory component reflected by intracellular Ca2+ dynamics, we present a comprehensive functional map of both odor-evoked neuronal activation and inhibition at different levels of olfactory processing. We demonstrate that odor-evoked inhibition carried by Cl- influx is present both in sensory neurons and second-order projection neurons (PNs), and is characterized by stereotypic, odor-specific patterns. Cl--mediated inhibition features distinct dynamics in different neuronal populations. Our data support a dual role of inhibitory neurons in the olfactory system: global gain control across the neuronal circuitry and glomerulus-specific inhibition to enhance neuronal information processing.
Collapse
|
12
|
Arican C, Bulk J, Deisig N, Nawrot MP. Cockroaches Show Individuality in Learning and Memory During Classical and Operant Conditioning. Front Physiol 2020; 10:1539. [PMID: 31969831 PMCID: PMC6960104 DOI: 10.3389/fphys.2019.01539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/05/2019] [Indexed: 12/05/2022] Open
Abstract
Animal personality and individuality are intensively researched in vertebrates and both concepts are increasingly applied to behavioral science in insects. However, only few studies have looked into individuality with respect to performance in learning and memory tasks. In vertebrates, individual learning capabilities vary considerably with respect to learning speed and learning rate. Likewise, honeybees express individual learning abilities in a wide range of classical conditioning protocols. Here, we study individuality in the learning and memory performance of cockroaches, both in classical and operant conditioning tasks. We implemented a novel classical (olfactory) conditioning paradigm where the conditioned response is established in the maxilla-labia response (MLR). Operant spatial learning was investigated in a forced two-choice task using a T-maze. Our results confirm individual learning abilities in classical conditioning of cockroaches that was reported for honeybees and vertebrates but contrast long-standing reports on stochastic learning behavior in fruit flies. In our experiments, most learners expressed a correct behavior after only a single learning trial showing a consistent high performance during training and test. We can further show that individual learning differences in insects are not limited to classical conditioning but equally appear in operant conditioning of the cockroach.
Collapse
Affiliation(s)
| | | | - Nina Deisig
- Department of Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin Paul Nawrot
- Department of Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Stratton CA, Hodgdon E, Rodriguez-Saona C, Shelton AM, Chen YH. Odors from phylogenetically-distant plants to Brassicaceae repel an herbivorous Brassica specialist. Sci Rep 2019; 9:10621. [PMID: 31337839 PMCID: PMC6650400 DOI: 10.1038/s41598-019-47094-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023] Open
Abstract
Specialist insect herbivores are constrained by highly specific odor recognition systems to accept suitable host plants. Given that odor recognition leads specialist insects to accept a limited range of plants, we hypothesized that phylogenetically distant plants produce odors that are physicochemically different from host odors and would be less attractive or even repellent to a specialist herbivore. We tested this hypothesis by examining behavioral and ovipositional responses of swede midge (Contarinia nasturtii, Diptera: Cecidomyiidae), a specialist of brassicas, to broccoli sprayed with non-host essential oils. Specifically, we asked: (1) How do essential oils from different plant species influence host-seeking and oviposition behaviors of swede midge? (2) Do odors from non-host plants that are not phylogenetically related or physicochemically similar to host plants affect host-seeking or ovipositional behavior of swede midge? In oviposition assays, we found that non-host odors varied in their ability to modify female midge behavior and that phylogenetic relatedness was negatively correlated with larval density. In y-tube assays, we found that female midges most frequently avoided non-host odors that were more similar to brassica odors. Females were less likely to oviposit on or choose any treated host plants, but particularly avoided garlic, spearmint, thyme, eucalyptus lemon, and cinnamon bark treatments. Overall, we found that plant phylogenetic relatedness and odor similarity are related to repellency. Therefore, altering the diversity of plant odors by explicitly accounting for plant phylogenetic distance and odor similarity, relative to host plants, may be an important, underexploited tactic for sustainably managing challenging pests.
Collapse
Affiliation(s)
- Chase A Stratton
- Department of Plant and Soil Sciences, University of Vermont, 63 Carrigan Dr, Burlington, VT, 05405, USA.
| | - Elisabeth Hodgdon
- Department of Plant and Soil Sciences, University of Vermont, 63 Carrigan Dr, Burlington, VT, 05405, USA
| | - Cesar Rodriguez-Saona
- Department of Entomology, Rutgers The State University of New Jersey, 96 Lipman Dr, New Brunswick, NJ, 08901, USA
| | - Anthony M Shelton
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, 630 West North St, Geneva, NY, 14456, USA
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, 63 Carrigan Dr, Burlington, VT, 05405, USA
| |
Collapse
|
14
|
Mohamed AAM, Hansson BS, Sachse S. Third-Order Neurons in the Lateral Horn Enhance Bilateral Contrast of Odor Inputs Through Contralateral Inhibition in Drosophila. Front Physiol 2019; 10:851. [PMID: 31354516 PMCID: PMC6629933 DOI: 10.3389/fphys.2019.00851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
The survival and reproduction of Drosophila melanogaster depends heavily on its ability to determine the location of an odor source and either to move toward or away from it. Despite the very small spatial separation between the two antennae and the redundancy in sensory neuron projection to both sides of the brain, Drosophila can resolve the concentration gradient by comparing the signal strength between the two antennae. When an odor stimulates the antennae asymmetrically, ipsilateral projection neurons from the first olfactory center are more strongly excited compared to the contralateral ones. However, it remains elusive how higher-order neurons process such asymmetric or lateralized odor inputs. Here, we monitored and analyzed for the first time the activity patterns of a small cluster of third-order neurons (so-called ventrolateral protocerebrum neurons) to asymmetric olfactory stimulation using two-photon calcium imaging. Our data demonstrate that lateralized odors evoke distinct activation of these neurons in the left and right brain hemisphere as a result of contralateral inhibition. Moreover, using laser transection experiments we show that this contralateral inhibition is mediated by presynaptic neurons most likely located in the lateral horn. Finally, we propose that this inhibitory interaction between higher-order neurons facilitates odor lateralization and plays a crucial role in olfactory navigation behavior of Drosophila, a theory that needs to be experimentally addressed in future studies.
Collapse
Affiliation(s)
| | | | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
15
|
Reisenman CE, Scott K. Food-derived volatiles enhance consumption in Drosophila melanogaster. ACTA ACUST UNITED AC 2019; 222:jeb.202762. [PMID: 31085598 DOI: 10.1242/jeb.202762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022]
Abstract
Insects use multiple sensory modalities when searching for and accepting a food source, in particular odor and taste cues. Food-derived odorants are generally involved in mediating long- and short-range attraction. Taste cues, in contrast, act directly by contact with the food source, promoting the ingestion of nutritious food and the avoidance of toxic substances. It is possible, however, that insects integrate information from these sensory modalities during the process of feeding itself. Here, using a simple feeding assay, we investigated whether odors modulate food consumption in the fruit fly Drosophila melanogaster We found that the presence of both single food-derived odorants and complex odor mixtures enhanced consumption of an appetitive food. Feeding enhancement depended on the concentration and the chemical identity of the odorant. Volatile cues alone were sufficient to mediate this effect, as feeding was also increased when animals were prevented from contacting the odor source. Both males and females, including virgin females, increased ingestion in the presence of food-derived volatiles. Moreover, the presence of food-derived odorants significantly increased the consumption of food mixtures containing aversive bitter compounds, suggesting that flies integrate diverse olfactory and gustatory cues to guide feeding decisions, including situations in which animals are confronted with stimuli of opposite valence. Overall, these results show that food-derived olfactory cues directly modulate feeding in D. melanogaster, enhancing ingestion.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA .,Essig Museum of Entomology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Verschut TA, Inouye BD, Hambäck PA. Sensory deficiencies affect resource selection and associational effects at two spatial scales. Ecol Evol 2018; 8:10569-10577. [PMID: 30464828 PMCID: PMC6238129 DOI: 10.1002/ece3.4534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022] Open
Abstract
Many insect species have limited sensory abilities and may not be able to perceive the quality of different resource types while approaching patchily distributed resources. These restrictions may lead to differences in selection rates between separate patches and between different resource types within a patch, which may have consequences for associational effects between resources. In this study, we used an oviposition assay containing different frequencies of apple and banana substrates divided over two patches to compare resource selection rates of wild-type Drosophila melanogaster at the between- and within-patch scales. Next, we compared the wild-type behavior with that of the olfactory-deficient strain Orco 2 and the gustatory-deficient strain Poxn ΔM22-B5 and found comparable responses to patch heterogeneity and similarly strong selection rates for apple at both scales for the wild-type and olfactory-deficient flies. Their oviposition behavior translated into associational susceptibility for apple and associational resistance for banana. The gustatory-deficient flies, on the other hand, no longer had a strong selection rate for apple, strongly differed in between- and within-patch selection rates from the wild-type flies, and caused no associational effects between the resources. Our study suggests that differences in sensory capabilities can affect resource selection at different search behavior scales in different ways and in turn underlie associational effects between resources at different spatial scales.
Collapse
Affiliation(s)
- Thomas A. Verschut
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Brian D. Inouye
- Department of Biological ScienceFlorida State UniversityTallahasseeFlorida
| | - Peter A. Hambäck
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
17
|
Verschut TA, Hambäck PA, Anderson P. Mating affects resource selection and modulates associational effects between neighbouring resources. OIKOS 2017. [DOI: 10.1111/oik.04315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thomas A. Verschut
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ.; SE-106 91 Stockholm Sweden
| | - Peter A. Hambäck
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ.; SE-106 91 Stockholm Sweden
| | - Peter Anderson
- Dept of Plant Protection Biology, Swedish Univ. of Agricultural Sciences; Alnarp Sweden
| |
Collapse
|
18
|
Paoli M, Münch D, Haase A, Skoulakis E, Turin L, Galizia CG. Minute Impurities Contribute Significantly to Olfactory Receptor Ligand Studies: Tales from Testing the Vibration Theory. eNeuro 2017; 4:ENEURO.0070-17.2017. [PMID: 28670618 PMCID: PMC5490255 DOI: 10.1523/eneuro.0070-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/27/2022] Open
Abstract
Several studies have attempted to test the vibrational hypothesis of odorant receptor activation in behavioral and physiological studies using deuterated compounds as odorants. The results have been mixed. Here, we attempted to test how deuterated compounds activate odorant receptors using calcium imaging of the fruit fly antennal lobe. We found specific activation of one area of the antennal lobe corresponding to inputs from a specific receptor. However, upon more detailed analysis, we discovered that an impurity of 0.0006% ethyl acetate in a chemical sample of benzaldehyde-d5 was entirely responsible for a sizable odorant-evoked response in Drosophila melanogaster olfactory receptor cells expressing dOr42b. Without gas chromatographic purification within the experimental setup, this impurity would have created a difference in the responses of deuterated and nondeuterated benzaldehyde, suggesting that dOr42b be a vibration sensitive receptor, which we show here not to be the case. Our results point to a broad problem in the literature on use of non-GC-pure compounds to test receptor selectivity, and we suggest how the limitations can be overcome in future studies.
Collapse
Affiliation(s)
- M. Paoli
- Neurobiology, University of Konstanz, Konstanz, 78457, Germany
- Department of Physics and Center for Mind/Brain Sciences, University of Trento, Povo, TN 38123, Italy
| | - D. Münch
- Neurobiology, University of Konstanz, Konstanz, 78457, Germany
| | - A. Haase
- Department of Physics and Center for Mind/Brain Sciences, University of Trento, Povo, TN 38123, Italy
| | - E. Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre Alexander Fleming, Vari 16672, Greece
| | - L. Turin
- Division of Neuroscience, Biomedical Sciences Research Centre Alexander Fleming, Vari 16672, Greece
| | - C. G. Galizia
- Neurobiology, University of Konstanz, Konstanz, 78457, Germany
| |
Collapse
|
19
|
Abstract
I have reanalyzed the data presented by Hallem and Carlson [Hallem EA, Carlson JR (2006) Cell 125(1):143-160] and shown that the combinatorial odor code supplied by the fruit fly antenna is a very simple one in which nearly all odors produce, statistically, the same neuronal response; i.e., the probability distribution of sensory neuron firing rates across the population of odorant sensory neurons is an exponential for nearly all odors and odor mixtures, with the mean rate dependent on the odor concentration. Between odors, then, the response differs according to which sensory neurons are firing at what individual rates and with what mean population rate, but not in the probability distribution of firing rates. This conclusion is independent of adjustable parameters, and holds both for monomolecular odors and complex mixtures. Because the circuitry in the antennal lobe constrains the mean firing rate to be the same for all odors and concentrations, the odor code is what is known as maximum entropy.
Collapse
|
20
|
Grabe V, Strutz A, Baschwitz A, Hansson BS, Sachse S. Digitalin vivo3D atlas of the antennal lobe ofDrosophila melanogaster. J Comp Neurol 2014; 523:530-44. [DOI: 10.1002/cne.23697] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Veit Grabe
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Antonia Strutz
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Amelie Baschwitz
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| |
Collapse
|