1
|
Hancock EJ, Macaskill C, Zawieja SD, Davis MJ, Bertram CD. Modelling pacemaker oscillations in lymphatic muscle cells: lengthened action potentials by two distinct system effects. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241714. [PMID: 39780965 PMCID: PMC11706657 DOI: 10.1098/rsos.241714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Lymphatic system failures contribute to cardiovascular and various other diseases. A critical function of the lymphatic vascular system is the active pumping of fluid from the interstitium back into the blood circulation by periodic contractions of lymphatic muscle cells (LMCs) in the vessel walls. As in cardiac pacemaking, these periodic contractions can be interpreted as occurring due to linked pacemaker oscillations in the LMC membrane potential (M-clock) and calcium concentration (C-clock). We previously reported a minimal model of synchronized dual-clock-driven oscillations. While this qualitatively replicated the period of oscillations under different conditions, it did not replicate the action potential shape as it varied under those conditions, particularly as regards the extent or lack of a systolic plateau. Here, we modify the model to replicate the plateau behaviour. Using phase-plane analysis we show two qualitatively different dynamical mechanisms that could account for plateau formation, one largely M-clock-driven, the other largely C-clock-driven. The second case occurs with the introduction of a ryanodine receptor; in both cases, we find improved predictions for calcium levels. With enhanced fidelity to the experimental data, the improved model has the potential to help determine opportunities for pharmacological treatment of lymphatic system pumping defects.
Collapse
Affiliation(s)
- Edward J. Hancock
- School of Mathematics & Statistics, University of Sydney, Sydney, New South Wales2006, Australia
| | - Charlie Macaskill
- School of Mathematics & Statistics, University of Sydney, Sydney, New South Wales2006, Australia
| | - Scott D. Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO65212, USA
| | - Michael J. Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO65212, USA
| | - Christopher D. Bertram
- School of Mathematics & Statistics, University of Sydney, Sydney, New South Wales2006, Australia
| |
Collapse
|
2
|
Li T, Marashly Q, Kim JA, Li N, Chelu MG. Cardiac conduction diseases: understanding the molecular mechanisms to uncover targets for future treatments. Expert Opin Ther Targets 2024; 28:385-400. [PMID: 38700451 PMCID: PMC11395937 DOI: 10.1080/14728222.2024.2351501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION The cardiac conduction system (CCS) is crucial for maintaining adequate cardiac frequency at rest and modulation during exercise. Furthermore, the atrioventricular node and His-Purkinje system are essential for maintaining atrioventricular and interventricular synchrony and consequently maintaining an adequate cardiac output. AREAS COVERED In this review article, we examine the anatomy, physiology, and pathophysiology of the CCS. We then discuss in detail the most common genetic mutations and the molecular mechanisms of cardiac conduction disease (CCD) and provide our perspectives on future research and therapeutic opportunities in this field. EXPERT OPINION Significant advancement has been made in understanding the molecular mechanisms of CCD, including the recognition of the heterogeneous signaling at the subcellular levels of sinoatrial node, the involvement of inflammatory and autoimmune mechanisms, and the potential impact of epigenetic regulations on CCD. However, the current treatment of CCD manifested as bradycardia still relies primarily on cardiovascular implantable electronic devices (CIEDs). On the other hand, an If specific inhibitor was developed to treat inappropriate sinus tachycardia and sinus tachycardia in heart failure patients with reduced ejection fraction. More work is needed to translate current knowledge into pharmacologic or genetic interventions for the management of CCDs.
Collapse
Affiliation(s)
- Tingting Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qussay Marashly
- Department of Cardiology, Montefiore Medical Center, New York, NY, USA
| | - Jitae A. Kim
- Division of CardiovasculMedicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mihail G. Chelu
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Division of Cardiology), Baylor College of Medicine, Houston, TX, USA
- Baylor St. Luke’s Medical Center, Houston, Texas, USA
- Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
3
|
Jin X. The inositol trisphosphate receptor can facilitate but does not initiate ventricular arrhythmogenesis. J Physiol 2024; 602:5-8. [PMID: 38010615 DOI: 10.1113/jp285786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
- Xin Jin
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
4
|
Hancock EJ, Zawieja SD, Macaskill C, Davis MJ, Bertram CD. A dual-clock-driven model of lymphatic muscle cell pacemaking to emulate knock-out of Ano1 or IP3R. J Gen Physiol 2023; 155:e202313355. [PMID: 37851028 PMCID: PMC10585120 DOI: 10.1085/jgp.202313355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Lymphatic system defects are involved in a wide range of diseases, including obesity, cardiovascular disease, and neurological disorders, such as Alzheimer's disease. Fluid return through the lymphatic vascular system is primarily provided by contractions of muscle cells in the walls of lymphatic vessels, which are in turn driven by electrochemical oscillations that cause rhythmic action potentials and associated surges in intracellular calcium ion concentration. There is an incomplete understanding of the mechanisms involved in these repeated events, restricting the development of pharmacological treatments for dysfunction. Previously, we proposed a model where autonomous oscillations in the membrane potential (M-clock) drove passive oscillations in the calcium concentration (C-clock). In this paper, to model more accurately what is known about the underlying physiology, we extend this model to the case where the M-clock and the C-clock oscillators are both active but coupled together, thus both driving the action potentials. This extension results from modifications to the model's description of the IP3 receptor, a key C-clock mechanism. The synchronised dual-driving clock behaviour enables the model to match IP3 receptor knock-out data, thus resolving an issue with previous models. We also use phase-plane analysis to explain the mechanisms of coupling of the dual clocks. The model has the potential to help determine mechanisms and find targets for pharmacological treatment of some causes of lymphoedema.
Collapse
Affiliation(s)
- Edward J. Hancock
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charlie Macaskill
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
5
|
Zawieja SD, Pea GA, Broyhill SE, Patro A, Bromert KH, Li M, Norton CE, Castorena-Gonzalez JA, Hancock EJ, Bertram CD, Davis MJ. IP3R1 underlies diastolic ANO1 activation and pressure-dependent chronotropy in lymphatic collecting vessels. J Gen Physiol 2023; 155:e202313358. [PMID: 37851027 PMCID: PMC10585095 DOI: 10.1085/jgp.202313358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Pressure-dependent chronotropy of murine lymphatic collecting vessels relies on the activation of the Ca2+-activated chloride channel encoded by Anoctamin 1 (Ano1) in lymphatic muscle cells. Genetic ablation or pharmacological inhibition of ANO1 results in a significant reduction in basal contraction frequency and essentially complete loss of pressure-dependent frequency modulation by decreasing the rate of the diastolic depolarization phase of the ionic pacemaker in lymphatic muscle cells (LMCs). Oscillating Ca2+ release from sarcoendoplasmic reticulum Ca2+ channels has been hypothesized to drive ANO1 activity during diastole, but the source of Ca2+ for ANO1 activation in smooth muscle remains unclear. Here, we investigated the role of the inositol triphosphate receptor 1 (Itpr1; Ip3r1) in this process using pressure myography, Ca2+ imaging, and membrane potential recordings in LMCs of ex vivo pressurized inguinal-axillary lymphatic vessels from control or Myh11CreERT2;Ip3r1fl/fl (Ip3r1ismKO) mice. Ip3r1ismKO vessels had significant reductions in contraction frequency and tone but an increased contraction amplitude. Membrane potential recordings from LMCs of Ip3r1ismKO vessels revealed a depressed diastolic depolarization rate and an elongation of the plateau phase of the action potential (AP). Ca2+ imaging of LMCs using the genetically encoded Ca2+ sensor GCaMP6f demonstrated an elongation of the Ca2+ flash associated with an AP-driven contraction. Critically, diastolic subcellular Ca2+ transients were absent in LMCs of Ip3r1ismKO mice, demonstrating the necessity of IP3R1 activity in controlling ANO1-mediated diastolic depolarization. These findings indicate a critical role for IP3R1 in lymphatic vessel pressure-dependent chronotropy and contractile regulation.
Collapse
Affiliation(s)
- Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Grace A. Pea
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Sarah E. Broyhill
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Advaya Patro
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Karen H. Bromert
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Edward J. Hancock
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | | | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Mazgaoker S, Yaniv Y. Computational insight into energy control balance by Ca 2+ and cAMP-PKA signaling in pacemaker cells. J Mol Cell Cardiol 2023; 185:77-87. [PMID: 37866739 DOI: 10.1016/j.yjmcc.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling controls sinoatrial node cell (SANC) function by affecting the degree of coupling between Ca2+ and membrane clocks. PKA is known to phosphorylate ionic channels, Ca2+ pump and release from the sarcoplasmic reticulum, and enzymes controlling ATP production in the mitochondria. While the PKA cytosolic targets in SANC have been extensively explored, its mitochondrial targets and its ability to maintain SANC energetic balance remain to be elucidated. To investigate the role of PKA in SANC energetics, we tested three hypotheses: (i) PKA is an important regulator of the ATP supply-to-demand balance, (ii) Ca2+ regulation of energetics is important for maintenance of NADH level and (iii) abrupt reduction in ATP demand first reduces the AP firing rate and, after dropping below a certain threshold, leads to a reduction in ATP. To gain mechanistic insights into the ATP supply-to-demand matching regulators, a modified model of mitochondrial energy metabolism was integrated into our coupled-clock model that describes ATP demand. Experimentally, increased ATP demand was accompanied by maintained ATP and NADH levels. Ca2+ regulation of energetics was found by the model to be important in the maintenance of NADH and PKA regulation was found to be important in the maintenance of intracellular ATP and the increase in oxygen consumption. PKA inhibition led to a biphasic reduction in AP firing rate, with the first phase being rapid and ATP-independent, while the second phase was slow and ATP-dependent. Thus, SANC energy balance is maintained by both Ca2+ and PKA signaling.
Collapse
Affiliation(s)
- Savyon Mazgaoker
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
| |
Collapse
|
7
|
Arbel Ganon L, Eid R, Hamra M, Yaniv Y. The mechano-electric feedback mediates the dual effect of stretch in mouse sinoatrial tissue. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 5:100042. [PMID: 39802174 PMCID: PMC11708250 DOI: 10.1016/j.jmccpl.2023.100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 01/16/2025]
Abstract
The sinoatrial node (SAN) is the primary heart pacemaker. The automaticity of SAN pacemaker cells is regulated by an integrated coupled-clock system. The beat interval (BI) of SAN, and its primary initiation location (inferior vs. superior) are determined by mutual entrainment among pacemaker cells and interaction with extrinsic effectors, including increased venous return which stretches the SAN. We aim to understand the mechanisms that link stretch to changes in BI and to heterogeneity of BI in the SAN. Isolated SAN tissues of C57BL/6 mice were gradually stretched to different degrees [(low (5-10 % lengthening), medium (10-20 %), and high (20-40 %))] using motor controlled with a custom-made Arduino software. Recordings were acquired 30 s following each level of step. In 8/15 tissues, stretch led to a positive chronotropic response, while in 7/15 tissues, a negative chronotropic response was observed. In the positive chronotropic response group, BI was shortened in parallel to shortening of the local Ca2+ release (LCR) period, a readout of the degree of clock coupling. In the negative chronotropic response group, in parallel to a prolongation of BI and LCR period, an unsynchronized firing rate was observed among the cells upon application of stretch. Eliminating the mechano-electrical feedback by addition of blebbistatin disabled the stretch-induced chronotropic effect. Reduction of the sarcoplasmic reticulum Ca2+ levels, which mediates the mechano-electrical feedback, by addition of cyclopiazonic acid disabled the dual effect of stretch on SAN function and BI heterogeneity. Thus, the mechano-electric feedback mediates the dual effect of stretch in mouse SAN tissue.
Collapse
Affiliation(s)
- Limor Arbel Ganon
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Rami Eid
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Matan Hamra
- Biomedical Optics Laboratory, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| |
Collapse
|
8
|
Suga N, Ikeda Y, Yoshikawa S, Taniguchi K, Sawamura H, Matsuda S. Non-Coding RNAs and Gut Microbiota in the Pathogenesis of Cardiac Arrhythmias: The Latest Update. Genes (Basel) 2023; 14:1736. [PMID: 37761875 PMCID: PMC10530369 DOI: 10.3390/genes14091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are indispensable for adjusting gene expression and genetic programming throughout development and for health as well as cardiovascular diseases. Cardiac arrhythmia is a frequent cardiovascular disease that has a complex pathology. Recent studies have shown that ncRNAs are also associated with cardiac arrhythmias. Many non-coding RNAs and/or genomes have been reported as genetic background for cardiac arrhythmias. In general, arrhythmias may be affected by several functional and structural changes in the myocardium of the heart. Therefore, ncRNAs might be indispensable regulators of gene expression in cardiomyocytes, which could play a dynamic role in regulating the stability of cardiac conduction and/or in the remodeling process. Although it remains almost unclear how ncRNAs regulate the expression of molecules for controlling cardiac conduction and/or the remodeling process, the gut microbiota and immune system within the intricate networks might be involved in the regulatory mechanisms. This study would discuss them and provide a research basis for ncRNA modulation, which might support the development of emerging innovative therapies against cardiac arrhythmias.
Collapse
Affiliation(s)
| | | | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan; (N.S.); (Y.I.); (S.Y.); (K.T.); (H.S.)
| |
Collapse
|
9
|
Segal S, Shemla O, Shapira R, Peretz NK, Lukyanenko Y, Brosh I, Behar J, Lakatta EG, Tsutsui K, Yaniv Y. cAMP signaling affects age-associated deterioration of pacemaker beating interval dynamics. GeroScience 2023; 45:2589-2600. [PMID: 37084120 PMCID: PMC10651572 DOI: 10.1007/s11357-023-00787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Sinoatrial node (SAN) beating interval variability (BIV) and the average beating interval (BI) are regulated by a coupled-clock system, driven by Ca2+-calmodulin activated adenylyl cyclase, cAMP, and downstream PKA signaling. Reduced responsiveness of the BI and BIV to submaximal, [X]50, β-adrenergic receptor (β-AR) stimulation, and phosphodiesterase inhibition (PDEI) have been documented in aged SAN tissue, whereas the maximal responses, [X]max, do not differ by age. To determine whether age-associated dysfunction in cAMP signaling leads to altered responsiveness of BI and BIV, we measured cAMP levels and BI in adult (2-4 months n = 27) and aged (22-26 months n = 25) C57/BL6 mouse SAN tissue in control and in response to β-AR or PDEI at X50 and [X]max. Both cAMP and average BI in adult SAN were reduced at X50, whereas cAMP and BI at Xmax did not differ by age. cAMP levels and average BI were correlated both within and between adult and aged SAN. BIV parameters in long- and short-range terms were correlated with cAMP levels for adult SAN. However, due to reduced cAMP within aged tissues at [X]50, these correlations were diminished in advanced age. Thus, cAMP level generated by the coupled clock mechanisms is tightly linked to average BI. Reduced cAMP level at X50 in aged SAN explains the reduced responsiveness of the BI and BIV to β-AR stimulation and PDEI.
Collapse
Affiliation(s)
- Sofia Segal
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Ori Shemla
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Rotem Shapira
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Noa Kirschner Peretz
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | | | - Inbar Brosh
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Joachim Behar
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Edward G Lakatta
- Intramural Research Program, National Institute On Aging, Baltimore, MD, USA
| | - Kenta Tsutsui
- Intramural Research Program, National Institute On Aging, Baltimore, MD, USA.
- Department of Cardiovascular Medicine, Saitama Medical University International Medical Center, Saitama, Japan.
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
| |
Collapse
|
10
|
Segal S, Yaniv Y. Ca 2+-Driven Selectivity of the Effect of the Cardiotonic Steroid Marinobufagenin on Rabbit Sinoatrial Node Function. Cells 2023; 12:1881. [PMID: 37508546 PMCID: PMC10378090 DOI: 10.3390/cells12141881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The synergy between Na+-K+ pumps, Na+-Ca2+ exchangers, membrane currents and the sarcoplasmic reticulum (SR) generates the coupled-clock system, which governs the spontaneous electrical activity of heart sinoatrial node cells (SANCs). Ca2+ mediates the degree of clock coupling via local Ca2+ release (LCR) from the SR and activation of cAMP/PKA signaling. Marinobufagenin (MBG) is a natural Na+-K+ pump inhibitor whose effect on SANCs has not been measured before. The following two hypotheses were tested to determine if and how MBG mediates between the Na+-K+ pump and spontaneous SAN activity: (i) MBG has a distinct effect on beat interval (BI) due to variable effects on LCR characteristics, and (ii) Ca2+ is an important mediator between MBG and SANC activity. Ca2+ transients were measured by confocal microscopy during application of increasing concentrations of MBG. To further support the hypothesis that Ca2+ mediates between MBG and SANC activity, Ca2+ was chelated by the addition of BAPTA. Dose response tests found that 100 nM MBG led to no change in BI in 6 SANCs (no BI change group), and to BI prolongation in 10 SANCs (BI change group). At the same concentration, the LCR period was prolonged in both groups, but more significantly in the BI change group. BAPTA-AM prolonged the BI in 12 SANCs. In the presence of BAPTA, 100 nM MBG had no effect on SANC BI or on the LCR period. In conclusion, the MBG effects on SANC function are mediated by the coupled clock system, and Ca2+ is an important regulator of these effects.
Collapse
Affiliation(s)
- Sofia Segal
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| |
Collapse
|
11
|
Xie A, Kang GJ, Kim EJ, Feng F, Givens SE, Ogle BM, Dudley SC. Lysosomal Ca 2+ flux modulates automaticity in ventricular cardiomyocytes and correlates with arrhythmic risk. PNAS NEXUS 2023; 2:pgad174. [PMID: 37303713 PMCID: PMC10255768 DOI: 10.1093/pnasnexus/pgad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Automaticity involves Ca2+ handling at the cell membrane and sarcoplasmic reticulum (SR). Abnormal or acquired automaticity is thought to initiate ventricular arrhythmias associated with myocardial ischemia. Ca2+ flux from mitochondria can influence automaticity, and lysosomes also release Ca2+. Therefore, we tested whether lysosomal Ca2+ flux could influence automaticity. We studied ventricular human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), hiPSC 3D engineered heart tissues (EHTs), and ventricular cardiomyocytes isolated from infarcted mice. Preventing lysosomal Ca2+ cycling reduced automaticity in hiPSC-CMs. Consistent with a lysosomal role in automaticity, activating the transient receptor potential mucolipin channel (TRPML1) enhanced automaticity, and two channel antagonists reduced spontaneous activity. Activation or inhibition of lysosomal transcription factor EB (TFEB) increased or decreased total lysosomes and automaticity, respectively. In adult ischemic cardiomyocytes and hiPSC 3D EHTs, reducing lysosomal Ca2+ release also inhibited automaticity. Finally, TRPML1 was up-regulated in cardiomyopathic patients with ventricular tachycardia (VT) compared with those without VT. In summary, lysosomal Ca2+ handling modulates abnormal automaticity, and reducing lysosomal Ca2+ release may be a clinical strategy for preventing ventricular arrhythmias.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Eun Ji Kim
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Feng Feng
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Sophie E Givens
- Department of Biomedical Engineering, Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility, 2001 6th Street SE, Mail Code 2873, Minneapolis, MN 55455, USA
| | - Brenda M Ogle
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility, 2001 6th Street SE, Mail Code 2873, Minneapolis, MN 55455, USA
- Department of Pediatrics, Institute for Engineering in Medicine, University of Minnesota, 420 Delaware Street Southeast, 725 Mayo Memorial Building, MMC 94, Minneapolis, MN 55455, USA
| | - Samuel C Dudley
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Ortiz-Guzmán JE, Mollà-Casanova S, Arias-Mutis ÓJ, Bizy A, Calvo C, Alberola A, Chorro FJ, Zarzoso M. Differences in Long-Term Heart Rate Variability between Subjects with and without Metabolic Syndrome: A Systematic Review and Meta-Analysis. J Cardiovasc Dev Dis 2023; 10:jcdd10050203. [PMID: 37233170 DOI: 10.3390/jcdd10050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Our aim was to determine the impact that metabolic syndrome (MS) produces in long-term heart rate variability (HRV), quantitatively synthesizing the results of published studies to characterize the cardiac autonomic dysfunction in MS. METHODS We searched electronic databases for original research works with long-term HRV recordings (24 h) that compared people with MS (MS+) versus healthy people as a control group (MS-). This systematic review and meta-analysis (MA) was performed according to PRISMA guidelines and registered at PROSPERO (CRD42022358975). RESULTS A total of 13 articles were included in the qualitative synthesis, and 7 of them met the required criteria to be included in the MA. SDNN (-0.33 [-0.57, 0.09], p = 0.008), LF (-0.32 [-0.41, -0.23], p < 0.00001), VLF (-0.21 [-0.31, -0.10], p = 0.0001) and TP (-0.20 [-0.33, -0.07], p = 0.002) decreased in patients with MS. The rMSSD (p = 0.41), HF (p = 0.06) and LF/HF ratio (p = 0.64) were not modified. CONCLUSIONS In long-term recordings (24 h), SDNN, LF, VLF and TP were consistently decreased in patients with MS. Other parameters that could be included in the quantitative analysis were not modified in MS+ patients (rMSSD, HF, ratio LF/HF). Regarding non-linear analyses, the results are not conclusive due to the low number of datasets found, which prevented us from conducting an MA.
Collapse
Affiliation(s)
| | - Sara Mollà-Casanova
- UBIC Research Group, Department of Physiotherapy, Universitat de València, 46010 Valencia, Spain
| | - Óscar J Arias-Mutis
- Department of Biomedical Sciences, CEU Cardenal Herrera, 46115 Valencia, Spain
| | - Alexandra Bizy
- Department of Biomedical Sciences, CEU Cardenal Herrera, 46115 Valencia, Spain
| | - Conrado Calvo
- Department of Physiology, Universitat de València, 46010 Valencia, Spain
| | - Antonio Alberola
- Department of Physiology, Universitat de València, 46010 Valencia, Spain
| | - Francisco J Chorro
- Health Research Institute-Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Department of Medicine, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
| | - Manuel Zarzoso
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
- Department of Physiotherapy, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
13
|
Arbel Ganon L, Davoodi M, Alexandrovich A, Yaniv Y. Synergy between Membrane Currents Prevents Severe Bradycardia in Mouse Sinoatrial Node Tissue. Int J Mol Sci 2023; 24:ijms24065786. [PMID: 36982861 PMCID: PMC10051777 DOI: 10.3390/ijms24065786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Bradycardia is initiated by the sinoatrial node (SAN), which is regulated by a coupled-clock system. Due to the clock coupling, reduction in the 'funny' current (If), which affects SAN automaticity, can be compensated, thus preventing severe bradycardia. We hypothesize that this fail-safe system is an inherent feature of SAN pacemaker cells and is driven by synergy between If and other ion channels. This work aimed to characterize the connection between membrane currents and their underlying mechanisms in SAN cells. SAN tissues were isolated from C57BL mice and Ca2+ signaling was measured in pacemaker cells within them. A computational model of SAN cells was used to understand the interactions between cell components. Beat interval (BI) was prolonged by 54 ± 18% (N = 16) and 30 ± 9% (N = 21) in response to If blockade, by ivabradine, or sodium current (INa) blockade, by tetrodotoxin, respectively. Combined drug application had a synergistic effect, manifested by a BI prolonged by 143 ± 25% (N = 18). A prolongation in the local Ca2+ release period, which reports on the level of crosstalk within the coupled-clock system, was measured and correlated with the prolongation in BI. The computational model predicted that INa increases in response to If blockade and that this connection is mediated by changes in T and L-type Ca2+ channels.
Collapse
Affiliation(s)
- Limor Arbel Ganon
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Moran Davoodi
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Alexandra Alexandrovich
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| |
Collapse
|
14
|
Ricci E, Bartolucci C, Severi S. The virtual sinoatrial node: What did computational models tell us about cardiac pacemaking? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:55-79. [PMID: 36374743 DOI: 10.1016/j.pbiomolbio.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Since its discovery, the sinoatrial node (SAN) has represented a fascinating and complex matter of research. Despite over a century of discoveries, a full comprehension of pacemaking has still to be achieved. Experiments often produced conflicting evidence that was used either in support or against alternative theories, originating intense debates. In this context, mathematical descriptions of the phenomena underlying the heartbeat have grown in importance in the last decades since they helped in gaining insights where experimental evaluation could not reach. This review presents the most updated SAN computational models and discusses their contribution to our understanding of cardiac pacemaking. Electrophysiological, structural and pathological aspects - as well as the autonomic control over the SAN - are taken into consideration to reach a holistic view of SAN activity.
Collapse
Affiliation(s)
- Eugenio Ricci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy
| | - Chiara Bartolucci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy
| | - Stefano Severi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy.
| |
Collapse
|
15
|
Moen JM, Morrell CH, Matt MG, Ahmet I, Tagirova S, Davoodi M, Petr M, Charles S, de Cabo R, Yaniv Y, Lakatta EG. Emergence of heartbeat frailty in advanced age I: perspectives from life-long EKG recordings in adult mice. GeroScience 2022; 44:2801-2830. [PMID: 35759167 PMCID: PMC9768068 DOI: 10.1007/s11357-022-00605-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
The combined influences of sinoatrial nodal (SAN) pacemaker cell automaticity and its response to autonomic input determine the heart's beating interval variability and mean beating rate. To determine the intrinsic SAN and autonomic signatures buried within EKG RR interval time series change in advanced age, we measured RR interval variability before and during double autonomic blockade at 3-month intervals from 6 months of age until the end of life in long-lived (those that achieved the total cohort median life span of 24 months and beyond) C57/BL6 mice. Prior to 21 months of age, time-dependent changes in intrinsic RR interval variability and mean RR interval were relatively minor. Between 21 and 30 months of age, however, marked changes emerged in intrinsic SAN RR interval variability signatures, pointing to a reduction in the kinetics of pacemaker clock mechanisms, leading to reduced synchronization of molecular functions within and among SAN cells. This loss of high-frequency signal processing within intrinsic SAN signatures resulted in a marked increase in the mean intrinsic RR interval. The impact of autonomic signatures on RR interval variability were net sympathetic and partially compensated for the reduced kinetics of the intrinsic SAN RR interval variability signatures, and partially, but not completely, shifted the EKG RR time series intervals to a more youthful pattern. Cross-sectional analyses of other subsets of C57/BL6 ages indicated that at or beyond the median life span of our longitudinal cohort, noncardiac, constitutional, whole-body frailty was increased, energetic efficiency was reduced, and the respiratory exchange ratio increased. We interpret the progressive reduction in kinetics in intrinsic SAN RR interval variability signatures in this context of whole-body frailty beyond 21 months of age to be a manifestation of "heartbeat frailty."
Collapse
Affiliation(s)
- Jack M Moen
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael G Matt
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Pediatric Residency Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Syevda Tagirova
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Moran Davoodi
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Michael Petr
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Shaquille Charles
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
16
|
Demydenko K, Ekhteraei-Tousi S, Roderick HL. Inositol 1,4,5-trisphosphate receptors in cardiomyocyte physiology and disease. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210319. [PMID: 36189803 PMCID: PMC9527928 DOI: 10.1098/rstb.2021.0319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contraction of cardiac muscle underlying the pumping action of the heart is mediated by the process of excitation-contraction coupling (ECC). While triggered by Ca2+ entry across the sarcolemma during the action potential, it is the release of Ca2+ from the sarcoplasmic reticulum (SR) intracellular Ca2+ store via ryanodine receptors (RyRs) that plays the major role in induction of contraction. Ca2+ also acts as a key intracellular messenger regulating transcription underlying hypertrophic growth. Although Ca2+ release via RyRs is by far the greatest contributor to the generation of Ca2+ transients in the cardiomyocyte, Ca2+ is also released from the SR via inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs). This InsP3-induced Ca2+ release modifies Ca2+ transients during ECC, participates in directing Ca2+ to the mitochondria, and stimulates the transcription of genes underlying hypertrophic growth. Central to these specific actions of InsP3Rs is their localization to responsible signalling microdomains, the dyad, the SR-mitochondrial interface and the nucleus. In this review, the various roles of InsP3R in cardiac (patho)physiology and the mechanisms by which InsP3 signalling selectively influences the different cardiomyocyte cell processes in which it is involved will be presented. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Papa A, Zakharov SI, Katchman AN, Kushner JS, Chen BX, Yang L, Liu G, Jimenez AS, Eisert RJ, Bradshaw GA, Dun W, Ali SR, Rodriques A, Zhou K, Topkara V, Yang M, Morrow JP, Tsai EJ, Karlin A, Wan E, Kalocsay M, Pitt GS, Colecraft HM, Ben-Johny M, Marx SO. Rad regulation of Ca V1.2 channels controls cardiac fight-or-flight response. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1022-1038. [PMID: 36424916 PMCID: PMC9681059 DOI: 10.1038/s44161-022-00157-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Fight-or-flight responses involve β-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for β-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of β-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel β-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.
Collapse
Affiliation(s)
- Arianne Papa
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- These authors contributed equally: Arianne Papa, Sergey I. Zakharov, Alexander N. Katchman, Jared S. Kushner
| | - Sergey I. Zakharov
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- These authors contributed equally: Arianne Papa, Sergey I. Zakharov, Alexander N. Katchman, Jared S. Kushner
| | - Alexander N. Katchman
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- These authors contributed equally: Arianne Papa, Sergey I. Zakharov, Alexander N. Katchman, Jared S. Kushner
| | - Jared S. Kushner
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- These authors contributed equally: Arianne Papa, Sergey I. Zakharov, Alexander N. Katchman, Jared S. Kushner
| | - Bi-xing Chen
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Guoxia Liu
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alejandro Sanchez Jimenez
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Robyn J. Eisert
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gary A. Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wen Dun
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shah R. Ali
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Aaron Rodriques
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Karen Zhou
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Veli Topkara
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - John P. Morrow
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Emily J. Tsai
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Arthur Karlin
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Elaine Wan
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Marian Kalocsay
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Present address: Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute and Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pharmacology and Molecular Signaling, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pharmacology and Molecular Signaling, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
18
|
Xue JB, Val-Blasco A, Davoodi M, Gómez S, Yaniv Y, Benitah JP, Gómez AM. Heart failure in mice induces a dysfunction of the sinus node associated with reduced CaMKII signaling. J Gen Physiol 2022; 154:213178. [PMID: 35452507 PMCID: PMC9040062 DOI: 10.1085/jgp.202112895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Dysfunction of the sinoatrial node (SAN), the natural heart pacemaker, is common in heart failure (HF) patients. SAN spontaneous activity relies on various ion currents in the plasma membrane (voltage clock), but intracellular Ca2+ ([Ca2+]i) release via ryanodine receptor 2 (RYR2; Ca2+ clock) plays an important synergetic role. Whereas remodeling of voltage-clock components has been revealed in HF, less is known about possible alterations to the Ca2+ clock. Here, we analyzed [Ca2+]i handling in SAN from a mouse HF model after transverse aortic constriction (TAC) and compared it with sham-operated animals. ECG data from awake animals showed slower heart rate in HF mice upon autonomic nervous system blockade, indicating intrinsic sinus node dysfunction. Confocal microscopy analyses of SAN cells within whole tissue showed slower and less frequent [Ca2+]i transients in HF. This correlated with fewer and smaller spontaneous Ca2+ sparks in HF SAN cells, which associated with lower RYR2 protein expression level and reduced phosphorylation at the CaMKII site. Moreover, PLB phosphorylation at the CaMKII site was also decreased in HF, which could lead to reduced sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) function and lower sarcoplasmic reticulum Ca2+ content, further depressing the Ca2+ clock. The inhibition of CaMKII with KN93 slowed [Ca2+]i transient rate in both groups, but this effect was smaller in HF SAN, consistent with less CaMKII activation. In conclusion, our data uncover that the mechanism of intrinsic pacemaker dysfunction in HF involves reduced CaMKII activation.
Collapse
Affiliation(s)
- Jian-Bin Xue
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Almudena Val-Blasco
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Moran Davoodi
- Biomedical Engineering, Technion Institute, Haifa, Israel
| | - Susana Gómez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Yael Yaniv
- Biomedical Engineering, Technion Institute, Haifa, Israel
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Ana María Gómez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
19
|
Zheng J, Dooge HC, Pérez-Hernández M, Zhao YT, Chen X, Hernandez JJ, Valdivia CR, Palomeque J, Rothenberg E, Delmar M, Valdivia HH, Alvarado FJ. Preserved cardiac performance and adrenergic response in a rabbit model with decreased ryanodine receptor 2 expression. J Mol Cell Cardiol 2022; 167:118-128. [PMID: 35413295 PMCID: PMC9610860 DOI: 10.1016/j.yjmcc.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.
Collapse
Affiliation(s)
- Jingjing Zheng
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Holly C Dooge
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Marta Pérez-Hernández
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Yan-Ting Zhao
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Xi Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan J Hernandez
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Carmen R Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Eli Rothenberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Mario Delmar
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Héctor H Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
20
|
Jiménez A, Lu Y, Jambhekar A, Lahav G. Principles, mechanisms and functions of entrainment in biological oscillators. Interface Focus 2022; 12:20210088. [PMID: 35450280 PMCID: PMC9010850 DOI: 10.1098/rsfs.2021.0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Entrainment is a phenomenon in which two oscillators interact with each other, typically through physical or chemical means, to synchronize their oscillations. This phenomenon occurs in biology to coordinate processes from the molecular to organismal scale. Biological oscillators can be entrained within a single cell, between cells or to an external input. Using six illustrative examples of entrainable biological oscillators, we discuss the distinctions between entrainment and synchrony and explore features that contribute to a system's propensity to entrain. Entrainment can either enhance or reduce the heterogeneity of oscillations within a cell population, and we provide examples and mechanisms of each case. Finally, we discuss the known functions of entrainment and discuss potential functions from an evolutionary perspective.
Collapse
Affiliation(s)
- Alba Jiménez
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ying Lu
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| |
Collapse
|
21
|
Louradour J, Bortolotti O, Torre E, Bidaud I, Lamb N, Fernandez A, Le Guennec JY, Mangoni ME, Mesirca P. L-Type Cav1.3 Calcium Channels Are Required for Beta-Adrenergic Triggered Automaticity in Dormant Mouse Sinoatrial Pacemaker Cells. Cells 2022; 11:cells11071114. [PMID: 35406677 PMCID: PMC8997967 DOI: 10.3390/cells11071114] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Sinoatrial node cells (SANC) automaticity is generated by functional association between the activity of plasmalemmal ion channels and local diastolic intracellular Ca2+ release (LCR) from ryanodine receptors. Strikingly, most isolated SANC exhibit a “dormant” state, whereas only a fraction shows regular firing as observed in intact SAN. Recent studies showed that β-adrenergic stimulation can initiate spontaneous firing in dormant SANC, though this mechanism is not entirely understood. Methods: To investigate the role of L-type Cav1.3 Ca2+ channels in the adrenergic regulation of automaticity in dormant SANC, we used a knock-in mouse strain in which the sensitivity of L-type Cav1.2 α1 subunits to dihydropyridines (DHPs) was inactivated (Cav1.2DHP−/−), enabling the selective pharmacological inhibition of Cav1.3 by DHPs. Results: In dormant SANC, β-adrenergic stimulation with isoproterenol (ISO) induced spontaneous action potentials (AP) and Ca2+ transients, which were completely arrested with concomitant perfusion of the DHP nifedipine. In spontaneously firing SANC at baseline, Cav1.3 inhibition completely reversed the effect of β-adrenergic stimulation on AP and the frequency of Ca2+ transients. Confocal calcium imaging of SANC showed that the β-adrenergic-induced synchronization of LCRs is regulated by the activity of Cav1.3 channels. Conclusions: Our study shows a novel role of Cav1.3 channels in initiating and maintaining automaticity in dormant SANC upon β-adrenergic stimulation.
Collapse
Affiliation(s)
- Julien Louradour
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 34090 Montpellier, France;
| | - Olivier Bortolotti
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
| | - Ned Lamb
- Mammalian Stem Cell Biology Group, Institute of Human Genetics, Université de Montpellier, CNRS, 34090 Montpellier, France; (N.L.); (A.F.)
| | - Anne Fernandez
- Mammalian Stem Cell Biology Group, Institute of Human Genetics, Université de Montpellier, CNRS, 34090 Montpellier, France; (N.L.); (A.F.)
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 34090 Montpellier, France;
| | - Matteo E. Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
- Correspondence: (M.E.M.); (P.M.)
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
- Correspondence: (M.E.M.); (P.M.)
| |
Collapse
|
22
|
Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front Physiol 2022; 13:836622. [PMID: 35370783 PMCID: PMC8964409 DOI: 10.3389/fphys.2022.836622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular calcium is a critical component of cardiac electrophysiology and excitation-contraction coupling. The calcium spark, the fundamental element of the intracellular calcium transient, is initiated in specialized nanodomains which co-locate the ryanodine receptors and L-type calcium channels. However, calcium homeostasis is ultimately regulated at the cellular scale, by the interaction of spatially separated but diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium transport channels with strong non-linear interactions; and cardiac electrophysiology and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the interaction of a heterogeneous population of coupled myocytes. Recent advances in imaging modalities and image-analysis are enabling the super-resolution reconstruction of the structures responsible for regulating calcium homeostasis, including the internal structure of nanodomains themselves. Extrapolating functional and imaging data from the nanodomain to the whole-heart is non-trivial, yet essential for translational insight into disease mechanisms. Computational modeling has important roles to play in relating structural and functional data at the sub-cellular scale and translating data across the scales. This review covers recent methodological advances that enable image-based modeling of the single nanodomain and whole cardiomyocyte, as well as the development of multi-scale simulation approaches to integrate data from nanometer to whole-heart. Firstly, methods to overcome the computational challenges of simulating spatial calcium dynamics in the nanodomain are discussed, including image-based modeling at this scale. Then, recent whole-cell models, capable of capturing a range of different structures (such as the T-system and mitochondria) and cellular heterogeneity/variability are discussed at two different levels of discretization. Novel methods to integrate the models and data across the scales and simulate stochastic dynamics in tissue-scale models are then discussed, enabling elucidation of the mechanisms by which nanodomain remodeling underlies arrhythmia and contractile dysfunction. Perspectives on model differences and future directions are provided throughout.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Blas Echebarria
- Departament de Fisica, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Henry Sutanto
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
23
|
Hancock EJ, Zawieja SD, Macaskill C, Davis MJ, Bertram CD. Modelling the coupling of the M-clock and C-clock in lymphatic muscle cells. Comput Biol Med 2022; 142:105189. [PMID: 34995957 PMCID: PMC9132416 DOI: 10.1016/j.compbiomed.2021.105189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023]
Abstract
Chronic dysfunction of the lymphatic vascular system results in fluid accumulation between cells: lymphoedema. The condition is commonly acquired secondary to diseases such as cancer or the associated therapies. The primary driving force for fluid return through the lymphatic vasculature is provided by contractions of the muscularized lymphatic collecting vessels, driven by electrochemical oscillations. However, there is an incomplete understanding of the molecular and bioelectric mechanisms involved in lymphatic muscle cell excitation, hampering the development and use of pharmacological therapies. Modelling in silico has contributed greatly to understanding the contributions of specific ion channels to the cardiac action potential, but modelling of these processes in lymphatic muscle remains limited. Here, we propose a model of oscillations in the membrane voltage (M-clock) and intracellular calcium concentrations (C-clock) of lymphatic muscle cells. We modify a model by Imtiaz and colleagues to enable the M-clock to drive the C-clock oscillations. This approach differs from typical models of calcium oscillators in lymphatic and related cell types, but is required to fit recent experimental data. We include an additional voltage dependence in the gating variable control for the L-type calcium channel, enabling the M-clock to oscillate independently of the C-clock. We use phase-plane analysis to show that these M-clock oscillations are qualitatively similar to those of a generalised FitzHugh-Nagumo model. We also provide phase plane analysis to understand the interaction of the M-clock and C-clock oscillations. The model and methods have the potential to help determine mechanisms and find targets for pharmacological treatment of lymphoedema.
Collapse
Affiliation(s)
- E J Hancock
- School of Mathematics & Statistics, University of Sydney, NSW, 2006, Australia
| | - S D Zawieja
- Dept. of Medical Pharmacology & Physiology, Univ. of Missouri, Columbia, MI, 65212, USA
| | - C Macaskill
- School of Mathematics & Statistics, University of Sydney, NSW, 2006, Australia
| | - M J Davis
- Dept. of Medical Pharmacology & Physiology, Univ. of Missouri, Columbia, MI, 65212, USA
| | - C D Bertram
- School of Mathematics & Statistics, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
24
|
Reddy GR, Ren L, Thai PN, Caldwell JL, Zaccolo M, Bossuyt J, Ripplinger CM, Xiang YK, Nieves-Cintrón M, Chiamvimonvat N, Navedo MF. Deciphering cellular signals in adult mouse sinoatrial node cells. iScience 2022; 25:103693. [PMID: 35036877 PMCID: PMC8749457 DOI: 10.1016/j.isci.2021.103693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Sinoatrial node (SAN) cells are the pacemakers of the heart. This study describes a method for culturing and infection of adult mouse SAN cells with FRET-based biosensors that can be exploited to examine signaling events. SAN cells cultured in media with blebbistatin or (S)-nitro-blebbistatin retain their morphology, protein distribution, action potential (AP) waveform, and cAMP dynamics for at least 40 h. SAN cells expressing targeted cAMP sensors show distinct β-adrenergic-mediated cAMP pools. Cyclic GMP, protein kinase A, Ca2+/CaM kinase II, and protein kinase D in SAN cells also show unique dynamics to different stimuli. Heart failure SAN cells show a decrease in cAMP and cGMP levels. In summary, a reliable method for maintaining adult mouse SAN cells in culture is presented, which facilitates studies of signaling networks and regulatory mechanisms during physiological and pathological conditions.
Collapse
Affiliation(s)
- Gopireddy R. Reddy
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Jessica L. Caldwell
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Crystal M. Ripplinger
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| |
Collapse
|
25
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
26
|
Gruscheski L, Brand T. The Role of POPDC Proteins in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2021; 8:160. [PMID: 34940515 PMCID: PMC8706714 DOI: 10.3390/jcdd8120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
The Popeye domain-containing (POPDC) gene family, consisting of Popdc1 (also known as Bves), Popdc2, and Popdc3, encodes transmembrane proteins abundantly expressed in striated muscle. POPDC proteins have recently been identified as cAMP effector proteins and have been proposed to be part of the protein network involved in cAMP signaling. However, their exact biochemical activity is presently poorly understood. Loss-of-function mutations in animal models causes abnormalities in skeletal muscle regeneration, conduction, and heart rate adaptation after stress. Likewise, patients carrying missense or nonsense mutations in POPDC genes have been associated with cardiac arrhythmias and limb-girdle muscular dystrophy. In this review, we introduce the POPDC protein family, and describe their structure function, and role in cAMP signaling. Furthermore, the pathological phenotypes observed in zebrafish and mouse models and the clinical and molecular pathologies in patients carrying POPDC mutations are described.
Collapse
Affiliation(s)
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
27
|
Vinogradova TM, Lakatta EG. Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021. [PMID: 34445119 DOI: 10.3390/ijms22168414.pmid:34445119;pmcid:pmc8395138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
28
|
Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021; 22:ijms22168414. [PMID: 34445119 PMCID: PMC8395138 DOI: 10.3390/ijms22168414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
|
29
|
Hoekstra M, van Ginneken ACG, Wilders R, Verkerk AO. HCN4 current during human sinoatrial node-like action potentials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:105-118. [PMID: 34153331 DOI: 10.1016/j.pbiomolbio.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite the many studies carried out over the past 40 years, the contribution of the HCN4 encoded hyperpolarization-activated 'funny' current (If) to pacemaker activity in the mammalian sinoatrial node (SAN), and the human SAN in particular, is still controversial and not fully established. OBJECTIVE To study the contribution of If to diastolic depolarization of human SAN cells and its dependence on heart rate, cAMP levels, and atrial load. METHODS HCN4 channels were expressed in human cardiac myocyte progenitor cells (CMPCs) and HCN4 currents assessed using perforated patch-clamp in traditional voltage clamp mode and during action potential clamp with human SAN-like action potential waveforms with 500-1500 ms cycle length, in absence or presence of forskolin to mimic β-adrenergic stimulation and a -15 mV command potential offset to mimic atrial load. RESULTS Forskolin significantly increased the fully-activated HCN4 current density at -140 mV by 14% and shifted the steady-state activation curve by +7.4 mV without affecting its slope. In addition, forskolin significantly accelerated current activation but slowed deactivation. The HCN4 current did not completely deactivate before the subsequent diastolic depolarization during action potential clamp. The amplitude of HCN4 current increased with increasing cycle length, was significantly larger in the presence of forskolin at all cycle lengths, and was significantly increased upon the negative offset to the command potential. CONCLUSIONS If is active during a human SAN action potential waveform and its amplitude is modulated by heart rate, β-adrenergic stimulation, and diastolic voltage range, such that If is under delicate control.
Collapse
Affiliation(s)
- Maaike Hoekstra
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoni C G van Ginneken
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Morotti S, Ni H, Peters CH, Rickert C, Asgari-Targhi A, Sato D, Glukhov AV, Proenza C, Grandi E. Intracellular Na + Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An In Silico Analysis. Int J Mol Sci 2021; 22:5645. [PMID: 34073281 PMCID: PMC8198068 DOI: 10.3390/ijms22115645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart's primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Colin H. Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
| | - Christian Rickert
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
| | - Ameneh Asgari-Targhi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Alexey V. Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| |
Collapse
|
31
|
Silva TMD, Silva CAA, Salgado HC, Fazan R, Silva LEV. The role of the autonomic nervous system in the patterns of heart rate fragmentation. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Levitan BM, Ahern BM, Aloysius A, Brown L, Wen Y, Andres DA, Satin J. Rad-GTPase contributes to heart rate via L-type calcium channel regulation. J Mol Cell Cardiol 2021; 154:60-69. [PMID: 33556393 PMCID: PMC8068610 DOI: 10.1016/j.yjmcc.2021.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Sinoatrial node cardiomyocytes (SANcm) possess automatic, rhythmic electrical activity. SAN rate is influenced by autonomic nervous system input, including sympathetic nerve increases of heart rate (HR) via activation of β-adrenergic receptor signaling cascade (β-AR). L-type calcium channel (LTCC) activity contributes to membrane depolarization and is a central target of β-AR signaling. Recent studies revealed that the small G-protein Rad plays a central role in β-adrenergic receptor directed modulation of LTCC. These studies have identified a conserved mechanism in which β-AR stimulation results in PKA-dependent Rad phosphorylation: depletion of Rad from the LTCC complex, which is proposed to relieve the constitutive inhibition of CaV1.2 imposed by Rad association. Here, using a transgenic mouse model permitting conditional cardiomyocyte selective Rad ablation, we examine the contribution of Rad to the control of SANcm LTCC current (ICa,L) and sinus rhythm. Single cell analysis from a recent published database indicates that Rad is expressed in SANcm, and we show that SANcm ICa,L was significantly increased in dispersed SANcm following Rad silencing compared to those from CTRL hearts. Moreover, cRadKO SANcm ICa,L was not further increased with β-AR agonists. We also evaluated heart rhythm in vivo using radiotelemetered ECG recordings in ambulating mice. In vivo, intrinsic HR is significantly elevated in cRadKO. During the sleep phase cRadKO also show elevated HR, and during the active phase there is no significant difference. Rad-deletion had no significant effect on heart rate variability. These results are consistent with Rad governing LTCC function under relatively low sympathetic drive conditions to contribute to slower HR during the diurnal sleep phase HR. In the absence of Rad, the tonic modulated SANcm ICa,L promotes elevated sinus HR. Future novel therapeutics for bradycardia targeting Rad - LTCC can thus elevate HR while retaining βAR responsiveness.
Collapse
Affiliation(s)
- Bryana M Levitan
- Department of Physiology, From the University of Kentucky College of Medicine, Lexington, KY, United States of America; Gill Heart and Vascular Institute, From the University of Kentucky College of Medicine, Lexington, KY, United States of America
| | - Brooke M Ahern
- Department of Physiology, From the University of Kentucky College of Medicine, Lexington, KY, United States of America
| | - Ajoy Aloysius
- Department of Biology, From the University of Kentucky College of Medicine, Lexington, KY, United States of America
| | - Laura Brown
- Department of Physiology, From the University of Kentucky College of Medicine, Lexington, KY, United States of America
| | - Yuan Wen
- Department of Physiology, From the University of Kentucky College of Medicine, Lexington, KY, United States of America; Center for Muscle Biology, From the University of Kentucky College of Medicine, Lexington, KY, United States of America
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, From the University of Kentucky College of Medicine, Lexington, KY, United States of America
| | - Jonathan Satin
- Department of Physiology, From the University of Kentucky College of Medicine, Lexington, KY, United States of America.
| |
Collapse
|
33
|
Hu W, Clark RB, Giles WR, Shibata E, Zhang H. Physiological Roles of the Rapidly Activated Delayed Rectifier K + Current in Adult Mouse Heart Primary Pacemaker Activity. Int J Mol Sci 2021; 22:4761. [PMID: 33946248 PMCID: PMC8124469 DOI: 10.3390/ijms22094761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Robust, spontaneous pacemaker activity originating in the sinoatrial node (SAN) of the heart is essential for cardiovascular function. Anatomical, electrophysiological, and molecular methods as well as mathematical modeling approaches have quite thoroughly characterized the transmembrane fluxes of Na+, K+ and Ca2+ that produce SAN action potentials (AP) and 'pacemaker depolarizations' in a number of different in vitro adult mammalian heart preparations. Possible ionic mechanisms that are responsible for SAN primary pacemaker activity are described in terms of: (i) a Ca2+-regulated mechanism based on a requirement for phasic release of Ca2+ from intracellular stores and activation of an inward current-mediated by Na+/Ca2+ exchange; (ii) time- and voltage-dependent activation of Na+ or Ca2+ currents, as well as a cyclic nucleotide-activated current, If; and/or (iii) a combination of (i) and (ii). Electrophysiological studies of single spontaneously active SAN myocytes in both adult mouse and rabbit hearts consistently reveal significant expression of a rapidly activating time- and voltage-dependent K+ current, often denoted IKr, that is selectively expressed in the leading or primary pacemaker region of the adult mouse SAN. The main goal of the present study was to examine by combined experimental and simulation approaches the functional or physiological roles of this K+ current in the pacemaker activity. Our patch clamp data of mouse SAN myocytes on the effects of a pharmacological blocker, E4031, revealed that a rapidly activating K+ current is essential for action potential (AP) repolarization, and its deactivation during the pacemaker potential contributes a small but significant component to the pacemaker depolarization. Mathematical simulations using a murine SAN AP model confirm that well known biophysical properties of a delayed rectifier K+ current can contribute to its role in generating spontaneous myogenic activity.
Collapse
Affiliation(s)
- Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Robert B. Clark
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.)
| | - Wayne R. Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.)
| | - Erwin Shibata
- Department of Physiology, Carver School of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
34
|
Assembly of the Cardiac Pacemaking Complex: Electrogenic Principles of Sinoatrial Node Morphogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8040040. [PMID: 33917972 PMCID: PMC8068396 DOI: 10.3390/jcdd8040040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiac pacemaker cells located in the sinoatrial node initiate the electrical impulses that drive rhythmic contraction of the heart. The sinoatrial node accounts for only a small proportion of the total mass of the heart yet must produce a stimulus of sufficient strength to stimulate the entire volume of downstream cardiac tissue. This requires balancing a delicate set of electrical interactions both within the sinoatrial node and with the downstream working myocardium. Understanding the fundamental features of these interactions is critical for defining vulnerabilities that arise in human arrhythmic disease and may provide insight towards the design and implementation of the next generation of potential cellular-based cardiac therapeutics. Here, we discuss physiological conditions that influence electrical impulse generation and propagation in the sinoatrial node and describe developmental events that construct the tissue-level architecture that appears necessary for sinoatrial node function.
Collapse
|
35
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, largely associated to morbidity and mortality. Over the past decades, research in appearance and progression of this arrhythmia have turned into significant advances in its management. However, the incidence of AF continues to increase with the aging of the population and many important fundamental and translational underlaying mechanisms remain elusive. Here, we review recent advances in molecular and cellular basis for AF initiation, maintenance and progression. We first provide an overview of the basic molecular and electrophysiological mechanisms that lead and characterize AF. Next, we discuss the upstream regulatory factors conducting the underlying mechanisms which drive electrical and structural AF-associated remodeling, including genetic factors (risk variants associated to AF as transcriptional regulators and genetic changes associated to AF), neurohormonal regulation (i.e., cAMP) and oxidative stress imbalance (cGMP and mitochondrial dysfunction). Finally, we discuss the potential therapeutic implications of those findings, the knowledge gaps and consider future approaches to improve clinical management.
Collapse
|
36
|
Bollmann P, Werner F, Jaron M, Bruns TA, Wache H, Runte J, Boknik P, Kirchhefer U, Müller FU, Buchwalow IB, Rothemund S, Neumann J, Gergs U. Initial Characterization of Stressed Transgenic Mice With Cardiomyocyte-Specific Overexpression of Protein Phosphatase 2C. Front Pharmacol 2021; 11:591773. [PMID: 33597873 PMCID: PMC7883593 DOI: 10.3389/fphar.2020.591773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated mice with cardiac-specific overexpression of PP2Cβ (PP2C-TG) and compared them with littermate wild type mice (WT) serving as a control. Cardiac fibrosis was noted histologically in PP2C-TG. Collagen 1a, interleukin-6 and the natriuretic peptides ANP and BNP were augmented in PP2C-TG vs. WT (p < 0.05). Left atrial preparations from PP2C-TG were less resistant to hypoxia than atria from WT. PP2C-TG maintained cardiac function after the injection of lipopolysaccharide (LPS, a model of sepsis) and chronic isoproterenol treatment (a model of heart failure) better than WT. Crossbreeding of PP2C-TG mice with PP2A-TG mice (a genetic model of heart failure) resulted in double transgenic (DT) mice that exhibited a pronounced increase of heart weight in contrast to the mild hypertrophy noted in the mono-transgenic mice. The ejection fraction was reduced in PP2C-TG and in PP2A-TG mice compared with WT, but the reduction was the highest in DT compared with WT. PP2A enzyme activity was enhanced in PP2A-TG and DT mice compared with WT and PP2C-TG mice. In summary, cardiac overexpression of PP2Cβ and co-overexpression of both the catalytic subunit of PP2A and PP2Cβ were detrimental to cardiac function. PP2Cβ overexpression made cardiac preparations less resistant to hypoxia than WT, leading to fibrosis, but PP2Cβ overexpression led to better adaptation to some stressors, such as LPS or chronic β-adrenergic stimulation. Hence, the effect of PP2Cβ is context sensitive.
Collapse
Affiliation(s)
- Paula Bollmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Marko Jaron
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Tom A Bruns
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hartmut Wache
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Jochen Runte
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
37
|
Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Pharmacol 2020; 77:300-316. [PMID: 33323698 DOI: 10.1097/fjc.0000000000000972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
ABSTRACT Despite major efforts by clinicians and researchers, cardiac arrhythmia remains a leading cause of morbidity and mortality in the world. Experimental work has relied on combining high-throughput strategies with standard molecular and electrophysiological studies, which are, to a great extent, based on the use of animal models. Because this poses major challenges for translation, the progress in the development of novel antiarrhythmic agents and clinical care has been mostly disappointing. Recently, the advent of human induced pluripotent stem cell-derived cardiomyocytes has opened new avenues for both basic cardiac research and drug discovery; now, there is an unlimited source of cardiomyocytes of human origin, both from healthy individuals and patients with cardiac diseases. Understanding arrhythmic mechanisms is one of the main use cases of human induced pluripotent stem cell-derived cardiomyocytes, in addition to pharmacological cardiotoxicity and efficacy testing, in vitro disease modeling, developing patient-specific models and personalized drugs, and regenerative medicine. Here, we review the advances that the human induced pluripotent stem cell-derived-based modeling systems have brought so far regarding the understanding of both arrhythmogenic triggers and substrates, while also briefly speculating about the possibilities in the future.
Collapse
|
38
|
Baudot M, Torre E, Bidaud I, Louradour J, Torrente AG, Fossier L, Talssi L, Nargeot J, Barrère-Lemaire S, Mesirca P, Mangoni ME. Concomitant genetic ablation of L-type Ca v1.3 (α 1D) and T-type Ca v3.1 (α 1G) Ca 2+ channels disrupts heart automaticity. Sci Rep 2020; 10:18906. [PMID: 33144668 PMCID: PMC7642305 DOI: 10.1038/s41598-020-76049-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
Cardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Cav1.2 Ca2+ channel isoform, pacemaker cells within the SAN and the atrioventricular node co-express voltage-gated L-type Cav1.3 and T-type Cav3.1 Ca2+ channels (SAN-VGCCs). The role of SAN-VGCCs in automaticity is incompletely understood. We used knockout mice carrying individual genetic ablation of Cav1.3 (Cav1.3−/−) or Cav3.1 (Cav3.1−/−) channels and double mutant Cav1.3−/−/Cav3.1−/− mice expressing only Cav1.2 channels. We show that concomitant loss of SAN-VGCCs prevents physiological SAN automaticity, blocks impulse conduction and compromises ventricular rhythmicity. Coexpression of SAN-VGCCs is necessary for impulse formation in the central SAN. In mice lacking SAN-VGCCs, residual pacemaker activity is predominantly generated in peripheral nodal and extranodal sites by f-channels and TTX-sensitive Na+ channels. In beating SAN cells, ablation of SAN-VGCCs disrupted late diastolic local intracellular Ca2+ release, which demonstrates an important role for these channels in supporting the sarcoplasmic reticulum based “Ca2+clock” mechanism during normal pacemaking. These data implicate an underappreciated role for co-expression of SAN-VGCCs in heart automaticity and define an integral role for these channels in mechanisms that control the heartbeat.
Collapse
Affiliation(s)
- Matthias Baudot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France.,Department of Biotechnology and Biosciences, Università Degli Studi di Milano-Bicocca, Milan, Italy
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Julien Louradour
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Lucile Fossier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Leïla Talssi
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France. .,LabEx ICST, Montpellier, France.
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France. .,LabEx ICST, Montpellier, France.
| |
Collapse
|
39
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
40
|
Vornanen M. Effects of acute warming on cardiac and myotomal sarco(endo)plasmic reticulum ATPase (SERCA) of thermally acclimated brown trout (Salmo trutta). J Comp Physiol B 2020; 191:43-53. [PMID: 32980918 PMCID: PMC7819936 DOI: 10.1007/s00360-020-01313-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 11/24/2022]
Abstract
At high temperatures, ventricular beating rate collapses and depresses cardiac output in fish. The role of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in thermal tolerance of ventricular function was examined in brown trout (Salmo trutta) by measuring heart SERCA and comparing it to that of the dorsolateral myotomal muscle. Activity of SERCA was measured from crude homogenates of cold-acclimated (+ 3 °C, c.a.) and warm-acclimated (+ 13 °C, w.a.) brown trout as cyclopiazonic acid (20 µM) sensitive Ca2+-ATPase between + 3 and + 33 °C. Activity of the heart SERCA was significantly higher in c.a. than w.a. trout and increased strongly between + 3 and + 23 °C with linear Arrhenius plots but started to plateau between + 23 and + 33 °C in both acclimation groups. The rate of thermal inactivation of the heart SERCA at + 35 °C was similar in c.a. and w.a. fish. Activity of the muscle SERCA was less temperature dependent and more heat resistant than that of the heart SERCA and showed linear Arrhenius plots between + 3 and + 33 °C in both c.a. and w.a. fish. SERCA activity of the c.a. muscle was slightly higher than that of w.a. muscle. The rate of thermal inactivation at + 40 °C was similar for both c.a. and w.a. muscle SERCA at + 40 °C. Although the heart SERCA is more sensitive to high temperatures than the muscle SERCA, it is unlikely to be a limiting factor for heart rate, because its heat tolerance, unlike that of the ventricular beating rate, was not changed by temperature acclimation.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland.
| |
Collapse
|
41
|
Nattel S, Heijman J, Zhou L, Dobrev D. Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective. Circ Res 2020; 127:51-72. [PMID: 32717172 PMCID: PMC7398486 DOI: 10.1161/circresaha.120.316363] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is a highly prevalent arrhythmia, with substantial associated morbidity and mortality. There have been significant management advances over the past 2 decades, but the burden of the disease continues to increase and there is certainly plenty of room for improvement in treatment options. A potential key to therapeutic innovation is a better understanding of underlying fundamental mechanisms. This article reviews recent advances in understanding the molecular basis for AF, with a particular emphasis on relating these new insights to opportunities for clinical translation. We first review the evidence relating basic electrophysiological mechanisms to the characteristics of clinical AF. We then discuss the molecular control of factors leading to some of the principal determinants, including abnormalities in impulse conduction (such as tissue fibrosis and other extra-cardiomyocyte alterations, connexin dysregulation and Na+-channel dysfunction), electrical refractoriness, and impulse generation. We then consider the molecular drivers of AF progression, including a range of Ca2+-dependent intracellular processes, microRNA changes, and inflammatory signaling. The concept of key interactome-related nodal points is then evaluated, dealing with systems like those associated with CaMKII (Ca2+/calmodulin-dependent protein kinase-II), NLRP3 (NACHT, LRR, and PYD domains-containing protein-3), and transcription-factors like TBX5 and PitX2c. We conclude with a critical discussion of therapeutic implications, knowledge gaps and future directions, dealing with such aspects as drug repurposing, biologicals, multispecific drugs, the targeting of cardiomyocyte inflammatory signaling and potential considerations in intervening at the level of interactomes and gene-regulation. The area of molecular intervention for AF management presents exciting new opportunities, along with substantial challenges.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Liping Zhou
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Arbel-Ganon L, Behar JA, Gómez AM, Yaniv Y. Distinct mechanisms mediate pacemaker dysfunction associated with catecholaminergic polymorphic ventricular tachycardia mutations: Insights from computational modeling. J Mol Cell Cardiol 2020; 143:85-95. [PMID: 32339564 DOI: 10.1016/j.yjmcc.2020.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced ventricular arrhythmia associated with rhythm disturbance and impaired sinoatrial node cell (SANC) automaticity (pauses). Mutations associated with dysfunction of Ca2+-related mechanisms have been shown to be present in CPVT. These dysfunctions include impaired Ca2+ release from the ryanodine receptor (i.e., RyR2R4496C mutation) or binding to calsequestrin 2 (CASQ2). In SANC, Ca2+ signaling directly and indirectly mediates pacemaker function. We address here the following research questions: (i) what coupled-clock mechanisms and pathways mediate pacemaker mutations associated with CPVT in basal and in response to β-adrenergic stimulation? (ii) Can different mechanisms lead to the same CPVT-related pacemaker pauses? (iii) Can the mutation-induced deteriorations in SANC function be reversed by drug intervention or gene manipulation? We used a numerical model of mice SANC that includes membrane and intracellular mechanisms and their interconnected signaling pathways. In the basal state of RyR2R4496C SANC, the model predicted that the Na+-Ca2+ exchanger current (INCX) and T-type Ca2+ current (ICaT) mediate between changes in Ca2+ signaling and SANC dysfunction. Under β-adrenergic stimulation, changes in cAMP-PKA signaling and the sodium currents (INa), in addition to INCX and ICaT, mediate between changes in Ca2+ signaling and SANC automaticity pauses. Under basal conditions in Casq2-/-, the same mechanisms drove changes in Ca2+ signaling and subsequent pacemaker dysfunction. However, SANC automaticity pauses in response to β-AR stimulation were mediated by ICaT and INa. Taken together, distinct mechanisms can lead to CPVT-associated SANC automaticity pauses. In addition, we predict that specifically increasing SANC cAMP-PKA activity by either a pharmacological agent (IBMX, a phosphodiesterase (PDE) inhibitor), gene manipulation (overexpression of adenylyl cyclase 1/8) or direct manipulation of the SERCA phosphorylation target through changes in gene expression, compensate for the impairment in SANC automaticity. These findings suggest new insights for understanding CPVT and its therapeutic approach.
Collapse
Affiliation(s)
- Limor Arbel-Ganon
- Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Joachim A Behar
- Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Ana María Gómez
- Laboratory of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Yael Yaniv
- Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel.
| |
Collapse
|
43
|
Kirschner Peretz N, Segal S, Yaniv Y. May the Force Not Be With You During Culture: Eliminating Mechano-Associated Feedback During Culture Preserves Cultured Atrial and Pacemaker Cell Functions. Front Physiol 2020; 11:163. [PMID: 32265724 PMCID: PMC7100534 DOI: 10.3389/fphys.2020.00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/12/2020] [Indexed: 01/24/2023] Open
Abstract
Cultured cardiomyocytes have been shown to possess significant potential as a model for characterization of mechano-Ca2+, mechano-electric, and mechano-metabolic feedbacks in the heart. However, the majority of cultured cardiomyocytes exhibit impaired electrical, mechanical, biochemical, and metabolic functions. More specifically, the cells do not beat spontaneously (pacemaker cells) or beat at a rate far lower than their physiological counterparts and self-oscillate (atrial and ventricular cells) in culture. Thus, efforts are being invested in ensuring that cultured cardiomyocytes maintain the shape and function of freshly isolated cells. Elimination of contraction during culture has been shown to preserve the mechano-Ca2+, mechano-electric, and mechano-metabolic feedback loops of cultured cells. This review focuses on pacemaker cells, which reside in the sinoatrial node (SAN) and generate regular heartbeat through the initiation of the heart’s electrical, metabolic, and biochemical activities. In parallel, it places emphasis on atrial cells, which are responsible for bridging the electrical conductance from the SAN to the ventricle. The review provides a summary of the main mechanisms responsible for mechano-electrical, Ca2+, and metabolic feedback in pacemaker and atrial cells and of culture methods existing for both cell types. The work concludes with an explanation of how the elimination of mechano-electrical, mechano-Ca2+, and mechano-metabolic feedbacks during culture results in sustained cultured cell function.
Collapse
Affiliation(s)
- Noa Kirschner Peretz
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| | - Sofia Segal
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
44
|
Chou PY, Chiang WY, Chan CK, Lai PY. Dynamics of beating cardiac tissue under slow periodic drives. Phys Rev E 2020; 101:012201. [PMID: 32069621 DOI: 10.1103/physreve.101.012201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Indexed: 11/06/2022]
Abstract
Effects of mechanical coupling on cardiac dynamics are studied by monitoring the beating dynamics of a cardiac tissue which is being pulled periodically at a pace slower than its intrinsic beating rate. The tissue is taken from the heart of a bullfrog that includes pacemaker cells. The cardiac tissue beats spontaneously with an almost constant interbeat interval (IBI) when there is no external forcing. On the other hand, the IBI is observed to vary significantly under an external periodic drive. Interestingly, when the period of the external drive is about two times the intrinsic IBI of the tissue without pulling, the IBI as a function of time exhibits a wave packet structure. Our experimental results can be understood theoretically by a phase-coupled model under external driving. In particular, the theoretical prediction of the wave-packet period as a function of the normalized driving period agrees excellently with the observations. Furthermore, the cardiac mechanical coupling constant can be extracted from the experimental data from our model and is found to be insensitive to the external driving period. Implications of our results on cardiac physiology are also discussed.
Collapse
Affiliation(s)
- Po-Yu Chou
- Department of Physics, and Center for Complex Systems, National Central University, Chungli District, TaoYuan City 320, Taiwan, Republic of China
| | - Wei-Yin Chiang
- Department of Physics, and Center for Complex Systems, National Central University, Chungli District, TaoYuan City 320, Taiwan, Republic of China
| | - C K Chan
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Pik-Yin Lai
- Department of Physics, and Center for Complex Systems, National Central University, Chungli District, TaoYuan City 320, Taiwan, Republic of China
| |
Collapse
|
45
|
Kohajda Z, Tóth N, Szlovák J, Loewe A, Bitay G, Gazdag P, Prorok J, Jost N, Levijoki J, Pollesello P, Papp JG, Varró A, Nagy N. Novel Na +/Ca 2+ Exchanger Inhibitor ORM-10962 Supports Coupled Function of Funny-Current and Na +/Ca 2+ Exchanger in Pacemaking of Rabbit Sinus Node Tissue. Front Pharmacol 2020; 10:1632. [PMID: 32063850 PMCID: PMC7000430 DOI: 10.3389/fphar.2019.01632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose The exact mechanism of spontaneous pacemaking is not fully understood. Recent results suggest tight cooperation between intracellular Ca2+ handling and sarcolemmal ion channels. An important player of this crosstalk is the Na+/Ca2+ exchanger (NCX), however, direct pharmacological evidence was unavailable so far because of the lack of a selective inhibitor. We investigated the role of the NCX current in pacemaking and analyzed the functional consequences of the If-NCX coupling by applying the novel selective NCX inhibitor ORM-10962 on the sinus node (SAN). Experimental Approach Currents were measured by patch-clamp, Ca2+-transients were monitored by fluorescent optical method in rabbit SAN cells. Action potentials (AP) were recorded from rabbit SAN tissue preparations. Mechanistic computational data were obtained using the Yaniv et al. SAN model. Key Results ORM-10962 (ORM) marginally reduced the SAN pacemaking cycle length with a marked increase in the diastolic Ca2+ level as well as the transient amplitude. The bradycardic effect of NCX inhibition was augmented when the funny-current (If) was previously inhibited and vice versa, the effect of If was augmented when the Ca2+ handling was suppressed. Conclusion and Implications We confirmed the contribution of the NCX current to cardiac pacemaking using a novel NCX inhibitor. Our experimental and modeling data support a close cooperation between If and NCX providing an important functional consequence: these currents together establish a strong depolarization capacity providing important safety factor for stable pacemaking. Thus, after individual inhibition of If or NCX, excessive bradycardia or instability cannot be expected because each of these currents may compensate for the reduction of the other providing safe and rhythmic SAN pacemaking.
Collapse
Affiliation(s)
- Zsófia Kohajda
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gergő Bitay
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Gazdag
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | - Julius Gy Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
46
|
Kenig A, Ilan Y. A Personalized Signature and Chronotherapy-Based Platform for Improving the Efficacy of Sepsis Treatment. Front Physiol 2019; 10:1542. [PMID: 31920730 PMCID: PMC6930923 DOI: 10.3389/fphys.2019.01542] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Sepsis remains a major therapeutic challenge and is associated with a high rate of morbidity and mortality. It is a dynamic condition in which multiple parameters change over time, rendering it difficult to overcome the various injurious responses, which worsen the prognosis in these patients. The prognosis of sepsis is associated with a disbalance of compensatory responses to infectious triggers, part of which can be deleterious. Marked inter- and intra-patient variability characterizes the mechanisms that underlie sepsis progression and determine the response to therapy. In this paper, we review some of the data on the use of chronopharmacological approaches for the treatment of patients with sepsis and discuss the role of the autonomic nervous system in the mechanisms associated with immune response and chronotherapy in these patients. We describe the implementation of an individualized platform that is based on the personalized autonomic nervous system, immune, and chronobiology-derived parameters for generating a patient-tailored therapeutic regimen. The notion of overcoming the deleterious compensatory response in a highly dynamic system in sepsis is presented to ensure an improved response to current therapies.
Collapse
Affiliation(s)
- Ariel Kenig
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
47
|
Loewe A, Lutz Y, Nairn D, Fabbri A, Nagy N, Toth N, Ye X, Fuertinger DH, Genovesi S, Kotanko P, Raimann JG, Severi S. Hypocalcemia-Induced Slowing of Human Sinus Node Pacemaking. Biophys J 2019; 117:2244-2254. [PMID: 31570229 PMCID: PMC6990151 DOI: 10.1016/j.bpj.2019.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Each heartbeat is initiated by cyclic spontaneous depolarization of cardiomyocytes in the sinus node forming the primary natural pacemaker. In patients with end-stage renal disease undergoing hemodialysis, it was recently shown that the heart rate drops to very low values before they suffer from sudden cardiac death with an unexplained high incidence. We hypothesize that the electrolyte changes commonly occurring in these patients affect sinus node beating rate and could be responsible for severe bradycardia. To test this hypothesis, we extended the Fabbri et al. computational model of human sinus node cells to account for the dynamic intracellular balance of ion concentrations. Using this model, we systematically tested the effect of altered extracellular potassium, calcium, and sodium concentrations. Although sodium changes had negligible (0.15 bpm/mM) and potassium changes mild effects (8 bpm/mM), calcium changes markedly affected the beating rate (46 bpm/mM ionized calcium without autonomic control). This pronounced bradycardic effect of hypocalcemia was mediated primarily by ICaL attenuation due to reduced driving force, particularly during late depolarization. This, in turn, caused secondary reduction of calcium concentration in the intracellular compartments and subsequent attenuation of inward INaCa and reduction of intracellular sodium. Our in silico findings are complemented and substantiated by an empirical database study comprising 22,501 pairs of blood samples and in vivo heart rate measurements in hemodialysis patients and healthy individuals. A reduction of extracellular calcium was correlated with a decrease of heartrate by 9.9 bpm/mM total serum calcium (p < 0.001) with intact autonomic control in the cross-sectional population. In conclusion, we present mechanistic in silico and empirical in vivo data supporting the so far neglected but experimentally testable and potentially important mechanism of hypocalcemia-induced bradycardia and asystole, potentially responsible for the highly increased and so far unexplained risk of sudden cardiac death in the hemodialysis patient population.
Collapse
Affiliation(s)
- Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Yannick Lutz
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Deborah Nairn
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Alan Fabbri
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi," University of Bologna, Cesena, Italy; Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Noemi Toth
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Xiaoling Ye
- Renal Research Institute, New York City, New York
| | | | - Simonetta Genovesi
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Peter Kotanko
- Renal Research Institute, New York City, New York; Icahn School of Medicine at Mount Sinai, New York City, New York
| | | | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi," University of Bologna, Cesena, Italy
| |
Collapse
|
48
|
El Khoury N, Ross JL, Long V, Thibault S, Ethier N, Fiset C. Pregnancy and oestrogen regulate sinoatrial node calcium homeostasis and accelerate pacemaking. Cardiovasc Res 2019; 114:1605-1616. [PMID: 29800268 PMCID: PMC6148331 DOI: 10.1093/cvr/cvy129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/17/2018] [Indexed: 12/24/2022] Open
Abstract
Aims During pregnancy, there is a significant increase in heart rate (HR) potentially associated with an increased risk of arrhythmias or exacerbation of pre-existing cardiac conditions endangering both mother and foetus. Calcium homeostasis plays an important role in regulating automaticity of the sinoatrial node (SAN); however, its contribution to the accelerated HR during pregnancy remains unknown. Methods and results Using murine SAN cells, we showed that pregnancy increased L-type Ca2+ current (ICaL) and CaV1.3 mRNA expression, whereas T-type Ca2+ current (ICaT) and its underlying channel were unchanged. Analysis of SAN intra-cellular Ca2+ oscillations showed that the rate of spontaneous Ca2+ transients was significantly higher in pregnant mice along with a higher mRNA expression of ryanodine receptor. Assessment of supra-ventricular arrhythmias using programmed electrical stimulation protocols on anaesthetized mice revealed higher susceptibility in pregnancy. Of note, the modifications associated with pregnancy were reversible following delivery. Furthermore, chronic administration of 17β-estradiol (E2) to nodal-like human-induced pluripotent stem cell-derived cardiomyocytes (N-hiPSC-CM), control mice, oestrogen-receptor-β knockout (ERKOβ) but not ERKOα mice, accelerated cardiac automaticity, recapitulating the pregnancy phenotype in both mouse and human SAN cell models. Conclusion Together, these results indicate that pregnancy considerably alters intra-cellular Ca2+ homeostasis sustaining faster HR during pregnancy. Importantly, these changes were dependent on an oestrogen receptor α (ERα) mechanism that resulted in increased ICaL and spontaneous Ca2+ release from the sarcoplasmic reticulum, highlighting a novel role for oestrogen in regulating HR.
Collapse
Affiliation(s)
- Nabil El Khoury
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Jenna L Ross
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Valérie Long
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Simon Thibault
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Ethier
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada
| | - Céline Fiset
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
49
|
Bragança B, Nogueira-Marques S, Ferreirinha F, Fontes-Sousa AP, Correia-de-Sá P. The Ionotropic P2X4 Receptor has Unique Properties in the Heart by Mediating the Negative Chronotropic Effect of ATP While Increasing the Ventricular Inotropy. Front Pharmacol 2019; 10:1103. [PMID: 31611793 PMCID: PMC6769074 DOI: 10.3389/fphar.2019.01103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Mounting evidence indicate that reducing the sinoatrial node (SAN) activity may be a useful therapeutic strategy to control of heart failure. Purines, like ATP and its metabolite adenosine, consistently reduce the SAN spontaneous activity leading to negative cardiac chronotropy, with variable effects on the force of myocardial contraction (inotropy). Apart from adenosine A1 receptors, the human SAN expresses high levels of ATP-sensitive ionotropic P2X4 receptors (P2X4R), yet their cardiac role is unexplored. Methods: Here, we investigated the activity of P2 purinoceptors on isolated spontaneously beating atria (chronotropy) and on 2 Hz-paced right ventricular (RV, inotropy) strips from Wistar rats. Results: ATP (pEC 50 = 4.05) and its stable analogue ATPγS (pEC 50 = 4.69) concentration-dependently reduced atrial chronotropy. Inhibition of ATP breakdown into adenosine by NTPDases with POM-1 failed to modify ATP-induced negative chronotropy. The effect of ATP on atrial rate was attenuated by a broad-spectrum P2 antagonist, PPADS, as well as by 5-BDBD, which selectively blocks the P2X4R subtype; however, no effect was observed upon blocking the A1 receptor with DPCPX. The P2X4R positive allosteric modulator, ivermectin, increased the negative chronotropic response of ATP. Likewise, CTP, a P2X agonist that does not generate adenosine, replicated the P2X4R-mediated negative chronotropism of ATP. Inhibition of the Na+/Ca2+ exchanger (NCX) with KB-R7943 and ORM-10103, but not blockage of the HCN channel with ZD7288, mimicked the effect of the P2X4R blocker, 5-BDBD. In paced RV strips, ATP caused a mild negative inotropic effect, which magnitude was 2 to 3-fold increased by 5-BDBD and KB-R7943. Immunofluorescence confocal microscopy studies confirm that cardiomyocytes of the rat SAN and RV co-express P2X4R and NCX1 proteins. Conclusions: Data suggest that activation of ATP-sensitive P2X4R slows down heart rate by reducing the SAN activity while increasing the magnitude of ventricular contractions. The mechanism underlying the dual effect of ATP in the heart may involve inhibition of intracellular Ca2+-extrusion by bolstering NCX function in the reverse mode. Thus, targeting the P2X4R activation may create novel well-tolerated heart-rate lowering drugs with potential benefits in patients with deteriorated ventricular function.
Collapse
Affiliation(s)
- Bruno Bragança
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.,Hospital Pedro Hispano, ULS Matosinhos, Matosinhos, Portugal
| | - Sílvia Nogueira-Marques
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
50
|
Zhang J, Wei F, Ding L, Wang L, Zhang X, Yu L, Liu R, Kuang X, Jiao B, Yang B, Fan J. MicroRNA-1976 regulates degeneration of the sinoatrial node by targeting Cav1.2 and Cav1.3 ion channels. J Mol Cell Cardiol 2019; 134:74-85. [DOI: 10.1016/j.yjmcc.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022]
|