1
|
Lv Y, Gao X, Dai Q, Zhu L, Liu S, Hu Z, Lu J, Zhou H, Jin J, Mei Z. Functional insights of digestion, absorption, and immunity in different segments of the intestine in Hemibarbus labeo from transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101278. [PMID: 38906043 DOI: 10.1016/j.cbd.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
The intestine is an important organ for food digestion and absorption and body immunity in fish. In this study, we investigated the abundance of transcripts from different segments of the intestinal tract using transcriptome sequencing technology in Hemibarbus labeo, to provide functional insights into digestion, absorption, and immunity in the anterior intestine (AI), middle intestine (MI), and posterior intestine (PI). We found 5646 differentially expressed genes (DEGs), which were significantly enriched to GO terms of carbohydrate metabolic process, transmembrane transport, iron ion binding, lipid metabolic process, and KEGG pathway of fat digestion and absorption, mineral absorption, protein digestion and absorption, vitamin digestion and absorption, indicating that the digestion and absorption function of food is different in AI, MI, and PI. In practice, most genes, enriched in the KEGG pathway for digestion and absorption of nutrients, are upregulated in AI and MI, indicating stronger roles for food digestion and absorption in these segments. Furthermore, we found that genes involved in the KEGG pathway of lysosome and endocytosis pathway are upregulated in PI, suggesting stronger antigen-presenting capabilities in PI. However, some cytokine receptor genes, including ccr4, cxcr2, tnfrsf9, il6r, csf3r, and cxcr4, are highly expressed in AI, reflecting the regional immune specialization in different segments. This study provides functional insights into digestion, absorption, and immunity in different segments of the intestine and supports the regional functional specialization within different segments of the intestine in H. labeo.
Collapse
Affiliation(s)
- Yaoping Lv
- College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Xinming Gao
- College of Ecology, Lishui University, Lishui 323000, Zhejiang, China.
| | - Qingmin Dai
- College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Ling Zhu
- College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Siqi Liu
- College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Zehui Hu
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, Zhejiang, China
| | - Junkai Lu
- Cixi Fisheries Technology Extension Center, Ningbo 315300, Zhejiang, China
| | - Haidong Zhou
- Suichang Fisheries and Agricultural Machinery Technology Extension Station, Lishui 323399, Zhejiang, China
| | - Jing Jin
- Zhejiang Fisheries Technology Extension Center, Hangzhou 311100, Zhejiang, China
| | - Zufei Mei
- Jinman Aquatic Seedling Farm, Lishui 323006, Zhejiang, China
| |
Collapse
|
2
|
Acosta M, Quiroz E, Tovar-Ramírez D, Roberto VP, Dias J, Gavaia PJ, Fernández I. Fish Microbiome Modulation and Convenient Storage of Aquafeeds When Supplemented with Vitamin K1. Animals (Basel) 2022; 12:ani12233248. [PMID: 36496769 PMCID: PMC9735498 DOI: 10.3390/ani12233248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin necessary for fish metabolism and health. VK stability as dietary component during aquafeed storage and its potential effect on intestinal microbiome in fish have not yet been completely elucidated. The convenient storage conditions of aquafeeds when supplemented with phylloquinone (VK1), as well as its potential effects on the gut microbiota of Senegalese sole (Solea senegalensis) juveniles, have been explored. Experimental feeds were formulated to contain 0, 250 and 1250 mg kg-1 of VK1 and were stored at different temperatures (4, -20 or -80 °C). VK stability was superior at -20 °C for short-term (7 days) storage, while storing at -80 °C was best suited for long-term storage (up to 3 months). A comparison of bacterial communities from Senegalese sole fed diets containing 0 or 1250 mg kg-1 of VK1 showed that VK1 supplementation decreased the abundance of the Vibrio, Pseudoalteromonas, and Rhodobacterace families. All these microorganisms were previously associated with poor health status in aquatic organisms. These results contribute not only to a greater understanding of the physiological effects of vitamin K, particularly through fish intestinal microbiome, but also establish practical guidelines in the industry for proper aquafeed storage when supplemented with VK1.
Collapse
Affiliation(s)
- Marcos Acosta
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Eduardo Quiroz
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, Baja California Sur, La Paz 23096, BCS, Mexico
| | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Vânia Palma Roberto
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Ltd., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Paulo J. Gavaia
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
- Associação Oceano Verde–GreenCoLab, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, 36390 Vigo, Spain
- Correspondence: or
| |
Collapse
|
3
|
Cui X, Zhang Q, Zhang Q, Zhang Y, Chen H, Liu G, Zhu L. Research Progress of the Gut Microbiome in Hybrid Fish. Microorganisms 2022; 10:891. [PMID: 35630336 PMCID: PMC9146865 DOI: 10.3390/microorganisms10050891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Fish, including hybrid species, are essential components of aquaculture, and the gut microbiome plays a vital role in fish growth, behavior, digestion, and immune health. The gut microbiome can be affected by various internal and/or external factors, such as host development, diet, and environment. We reviewed the effects of diet and dietary supplements on intestinal microorganisms in hybrid fish and the difference in the gut microbiome between the hybrid and their hybrids that originate. Then, we summarized the role of the gut microbiome in the speciation and ecological invasion of hybrid fish. Finally, we discussed possible future studies on the gut microbiome in hybrid fish, including the potential interaction with environmental microbiomes, the effects of the gut microbiome on population expansion, and fish conservation and management.
Collapse
Affiliation(s)
- Xinyuan Cui
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qinrong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qunde Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Yongyong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Hua Chen
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| |
Collapse
|
4
|
Lin M, Zeng C, Jia X, Zhai S, Li Z, Ma Y. The composition and structure of the intestinal microflora of
Anguilla marmorata
at different growth rates: a deep sequencing study. J Appl Microbiol 2019; 126:1340-1352. [DOI: 10.1111/jam.14174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- M. Lin
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| | | | | | | | - Z.Q. Li
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| | - Y. Ma
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| |
Collapse
|
5
|
Faber-Hammond JJ, Coyle KP, Bacheller SK, Roberts CG, Mellies JL, Roberts RB, Renn SCP. The intestinal environment as an evolutionary adaptation to mouthbrooding in the Astatotilapia burtoni cichlid. FEMS Microbiol Ecol 2019; 95:5315751. [PMID: 30753545 DOI: 10.1093/femsec/fiz016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Many of the various parental care strategies displayed by animals are accompanied by a significant reduction in food intake that imposes a substantial energy trade-off. Mouthbrooding, as seen in several species of fish in which the parent holds the developing eggs and fry in the buccal cavity, represents an extreme example of reduced food intake during parental investment and is accompanied by a range of physiological adaptations. In this study we use 16S sequencing to characterize the gut microbiota of female Astatotilapia burtoni cichlid fish throughout the obligatory phase of self-induced starvation during the brooding cycle in comparison to stage-matched females that have been denied food for the same duration. In addition to a reduction of gut epithelial turnover, we find a dramatic reduction in species diversity in brooding stages that recovers upon release of fry and refeeding that is not seen in females that are simply starved. Based on overall species diversity as well as differential abundance of specific bacterial taxa, we suggest that rather than reflecting a simple deprivation of caloric intake, the gut microbiota is more strongly influenced by physiological changes specific to mouthbrooding including the reduced epithelial turnover and possible production of antimicrobial agents.
Collapse
Affiliation(s)
| | - Kaitlin P Coyle
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, 3510 Thomas Hall, 112 Derieux Place, North Carolina State University, Raleigh, NC, USA
| | | | | | - Jay L Mellies
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Reade B Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, 3510 Thomas Hall, 112 Derieux Place, North Carolina State University, Raleigh, NC, USA
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, Oregon, USA
| |
Collapse
|
6
|
Okazaki F, Zang L, Nakayama H, Chen Z, Gao ZJ, Chiba H, Hui SP, Aoki T, Nishimura N, Shimada Y. Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish. Sci Rep 2019; 9:867. [PMID: 30696861 PMCID: PMC6351536 DOI: 10.1038/s41598-018-37242-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Understanding the gut microbiota in metabolic disorders, including type 2 diabetes mellitus (T2DM), is now gaining importance due to its potential role in disease risk and progression. We previously established a zebrafish model of T2DM, which shows glucose intolerance with insulin resistance and responds to anti-diabetic drugs. In this study, we analysed the gut microbiota of T2DM zebrafish by deep sequencing the 16S rRNA V3-V4 hypervariable regions, and imputed a functional profile using predictive metagenomic tools. While control and T2DM zebrafish were fed with the same kind of feed, the gut microbiota in T2DM group was less diverse than that of the control. Predictive metagenomics profiling using PICRUSt revealed functional alternation of the KEGG pathways in T2DM zebrafish. Several amino acid metabolism pathways (arginine, proline, and phenylalanine) were downregulated in the T2DM group, similar to what has been previously reported in humans. In summary, we profiled the gut microbiome in T2DM zebrafish, which revealed functional similarities in gut bacterial environments between these zebrafish and T2DM affected humans. T2DM zebrafish can become an alternative model organism to study host-bacterial interactions in human obesity and related diseases.
Collapse
Affiliation(s)
- Fumiyoshi Okazaki
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.,Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan.,Mie University Zebrafish Drug Screening Center, Tsu, Mie, Japan
| | - Liqing Zang
- Mie University Zebrafish Drug Screening Center, Tsu, Mie, Japan.,Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
| | - Hiroko Nakayama
- Mie University Zebrafish Drug Screening Center, Tsu, Mie, Japan.,Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Zi-Jun Gao
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Takahiko Aoki
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Norihiro Nishimura
- Mie University Zebrafish Drug Screening Center, Tsu, Mie, Japan.,Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
| | - Yasuhito Shimada
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan. .,Mie University Zebrafish Drug Screening Center, Tsu, Mie, Japan. .,Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| |
Collapse
|
7
|
Microbial embryonal colonization during pipefish male pregnancy. Sci Rep 2019; 9:3. [PMID: 30626884 PMCID: PMC6327025 DOI: 10.1038/s41598-018-37026-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
While originally acquired from the environment, a fraction of the microbiota is transferred from parents to offspring. The immune system shapes the microbial colonization, while commensal microbes may boost host immune defences. Parental transfer of microbes in viviparous animals remains ambiguous, as the two transfer routes (transovarial vs. pregnancy) are intermingled within the maternal body. Pipefishes and seahorses (syngnathids) are ideally suited to disentangle transovarial microbial transfer from a contribution during pregnancy due to their maternal egg production and their unique male pregnancy. We assessed the persistency and the changes in the microbial communities of the maternal and paternal reproductive tracts over proceeding male pregnancy by sequencing microbial 16S rRNA genes of swabs from maternal gonads and brood pouches of non-pregnant and pregnant fathers. Applying parental immunological activation with heat-killed bacteria, we evaluated the impact of parental immunological status on microbial development. Our data indicate that maternal gonads and paternal brood pouches harbor distinct microbial communities, which could affect embryonal development in a sex-specific manner. Upon activation of the immune system, a shift of the microbial community was observed. The activation of the immune system induced the expansion of microbiota richness during late pregnancy, which corresponds to the time point of larval mouth opening, when initial microbial colonization must take place.
Collapse
|
8
|
Arias-Jayo N, Abecia L, Alonso-Sáez L, Ramirez-Garcia A, Rodriguez A, Pardo MA. High-Fat Diet Consumption Induces Microbiota Dysbiosis and Intestinal Inflammation in Zebrafish. MICROBIAL ECOLOGY 2018; 76:1089-1101. [PMID: 29736898 DOI: 10.1007/s00248-018-1198-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/27/2018] [Indexed: 05/26/2023]
Abstract
Energy-dense foods and overnutrition represent major starting points altering lipid metabolism, systemic inflammation and gut microbiota. The aim of this work was to investigate the effects of a high-fat diet (HFD) over a period of 25 days on intestinal microbiota and inflammation in zebrafish. Microbial composition of HFD-fed animals was analysed and compared to controls by 16S rRNA sequencing and quantitative PCR. The expression level on several genes related to inflammation was tested. Furthermore, microscopic assessment of the intestine was performed in both conditions. The consumption of the HFD resulted in microbial dysbiosis, characterised by an increase in the relative abundance of the phylum Bacteroidetes. Moreover, an emerging intestinal inflammation via NF-κβ activation was confirmed by the overexpression of several genes related to signalling receptors, antimicrobial metabolism and the inflammatory cascade. The intestinal barrier was also damaged, with an increase of goblet cell mucin production. This is the first study performed in zebrafish which suggests that the consumption of a diet enriched with 10% fat changes the intestinal microbial community composition, which was correlated with low-grade inflammation.
Collapse
Affiliation(s)
- Nerea Arias-Jayo
- Food research, Azti, Parque tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain.
| | - Leticia Abecia
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 801A, 48160, Derio, Spain
| | - Laura Alonso-Sáez
- Marine research, Azti, Txatxarramendi ugartea z/g, 48395, Txatxarramendi, Spain
| | - Andoni Ramirez-Garcia
- Departmento de Immunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940, Leioa, Spain
| | - Alfonso Rodriguez
- St Luke's General Hospital, Freshford Road, Friarsinch, Kilkenny, R95 FY71, Ireland
| | - Miguel A Pardo
- Food research, Azti, Parque tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain
| |
Collapse
|
9
|
Nikouli E, Meziti A, Antonopoulou E, Mente E, Kormas KA. Gut Bacterial Communities in Geographically Distant Populations of Farmed Sea Bream ( Sparus aurata) and Sea Bass ( Dicentrarchus labrax). Microorganisms 2018; 6:microorganisms6030092. [PMID: 30200504 PMCID: PMC6164763 DOI: 10.3390/microorganisms6030092] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 01/21/2023] Open
Abstract
This study investigated the profile of the autochthonous gut bacterial communities in adult individuals of Sparus aurata and Dicentrarchus labrax reared in sea cages in five distantly located aquaculture farms in Greece and determine the impact of geographic location on them in order to detect the core gut microbiota of these commercially important fish species. Data analyses resulted in no significant geographic impact in the gut microbial communities within the two host species, while strong similarities between them were also present. Our survey revealed the existence of a core gut microbiota within and between the two host species independent of diet and geographic location consisting of the Delftia, Pseudomonas, Pelomonas, Propionibacterium, and Atopostipes genera.
Collapse
Affiliation(s)
- Eleni Nikouli
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos 384 46, Greece.
| | - Alexandra Meziti
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos 384 46, Greece.
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece.
| | - Eleni Mente
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos 384 46, Greece.
| | - Konstantinos A Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos 384 46, Greece.
| |
Collapse
|
10
|
Palstra AP, Kals J, Blanco Garcia A, Dirks RP, Poelman M. Immunomodulatory Effects of Dietary Seaweeds in LPS Challenged Atlantic Salmon Salmo salar as Determined by Deep RNA Sequencing of the Head Kidney Transcriptome. Front Physiol 2018; 9:625. [PMID: 29910738 PMCID: PMC5992350 DOI: 10.3389/fphys.2018.00625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/09/2018] [Indexed: 02/03/2023] Open
Abstract
Seaweeds may represent immuno-stimulants that could be used as health-promoting fish feed components. This study was performed to gain insights into the immunomodulatory effects of dietary seaweeds in Atlantic salmon. Specifically tested were 10% inclusion levels of Laminaria digitata (SW1) and a commercial blend of seaweeds (Oceanfeed®) (SW2) against a fishmeal based control diet (FMC). Differences between groups were assessed in growth, feed conversion ratio and blood parameters hematocrit and hemoglobin. After a LPS challenge of fish representing each of the three groups, RNAseq was performed on the head kidney as major immune organ to determine transcriptomic differences in response to the immune activation. Atlantic salmon fed with dietary seaweeds did not show major differences in performance in comparison with fishmeal fed fish. RNAseq resulted in ∼154 million reads which were mapped against a NCBI Salmo salar reference and against a de novo assembled S. salar reference for analyses of expression of immune genes and ontology of immune processes among the 87,600 cDNA contigs. The dietary seaweeds provoked a more efficient immune response which involved more efficient identification of the infection site, and processing and presentation of antigens. More specifically, chemotaxis and the chemokine-mediated signaling were improved and therewith the defense response to Gram-positive bacterium reduced. Specific Laminaria digitata effects included reduction of the interferon-gamma-mediated signaling. Highly upregulated and specific for this diet was the expression of major histocompatibility complex class I-related gene protein. The commercial blend of seaweeds caused more differential expression than Laminaria digitata and improved immune processes such as receptor-mediated endocytosis and cell adhesion, and increased the expression of genes involved in response to lipopolysaccharide and inflammatory response. Particularly, expression of many important immune receptors was up-regulated illustrating increased responsiveness. NF-kappa-B inhibitor alpha is an important gene that marked the difference between both seaweed diets as Laminaria digitata inhibits the expression for this cytokine while the blend of seaweeds stimulates it. It can be concluded that the inclusion of seaweeds such as Laminaria digitata can have important modulatory effects on the immune capacity of Atlantic salmon resulting in a more efficient immune response.
Collapse
Affiliation(s)
- Arjan P Palstra
- Wageningen Marine Research, Wageningen University & Research, Yerseke, Netherlands.,Department of Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| | - Jeroen Kals
- Wageningen Marine Research, Wageningen University & Research, Yerseke, Netherlands.,Department of Animal Nutrition, Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| | - Ainhoa Blanco Garcia
- Wageningen Marine Research, Wageningen University & Research, Yerseke, Netherlands
| | | | - Marnix Poelman
- Wageningen Marine Research, Wageningen University & Research, Yerseke, Netherlands
| |
Collapse
|
11
|
Chen M, Wang S, Liang X, Ma D, He L, Liu Y. Effect of Dietary Acidolysis-Oxidized Konjac Glucomannan Supplementation on Serum Immune Parameters and Intestinal Immune-Related Gene Expression of Schizothorax prenanti. Int J Mol Sci 2017; 18:E2558. [PMID: 29182557 PMCID: PMC5751161 DOI: 10.3390/ijms18122558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 11/28/2022] Open
Abstract
The present study was conducted to investigate the effects of dietary acidolysis-oxidized konjac glucomannan (A-OKGM) (0%, 0.4%, 0.8%, and 1.6%) supplementation on the immunity and expression of immune-related genes in Schizothorax prenanti. After feeding for eight weeks, the serum and guts were used for measurement of biochemical parameters, and immune-related gene expression in the gut were also analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). C-reactive protein and IgM levels were significantly higher in the A-OKGM fed groups than in the control group, regardless of the dosage. The 0.4% and 1.6% A-OKGM groups showed significant up-regulation of tumor necrosis factor α (TNFα) in the anterior gut. The 0.8% and 1.6% A-OKGM groups also showed significantly enhanced TNFα expression in the mid- and distal guts. Interleukin-1β (IL-1β) expression in the anterior gut of fish fed with 0.4% and 1.6% A-OKGM diets was significantly enhanced. The 0.8% and 1.6% A-OKGM diets resulted in significantly increased the expression of IL-1β in the distal gut. Similarly, the interleukin-6 (IL-6) messenger RNA (mRNA) levels in the 0.4% and 1.6% diet groups were significantly higher in the anterior gut. The 0.8% and 1.6% A-OKGM diet groups showed significant induction of IL-6 gene expression in the distal gut. A-OKGM modified from KGM can act as an immunostimulant to enhance the immunity of S. prenanti.
Collapse
Affiliation(s)
- Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Shuyao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Xue Liang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Donghui Ma
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Li He
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
12
|
Martin SAM, Król E. Nutrigenomics and immune function in fish: new insights from omics technologies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:86-98. [PMID: 28254621 PMCID: PMC5495911 DOI: 10.1016/j.dci.2017.02.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 05/29/2023]
Abstract
The interplay between nutrition and immune system is well recognised, however the true integration of research between nutrition, animal energy status and immune function is still far from clear. In fish nutrition, especially for species maintained in aquaculture, formulated feeds are significantly different from the natural diet with recent changes in nutrient sources, especially with protein and oil sources now being predominated by terrestrial derived ingredients. Additionally, many feeds are now incorporated to health management and termed functional feeds, which are believed to improve fish health, reduce disease outbreaks and/or improve post-infection recovery. Using new omics technologies, including transcriptomics (microarray and RNA-seq) and proteomics, the impacts of nutrition on the immune system is becoming clearer. By using molecular pathway enrichment analysis, modules of genes can indicate how both local (intestinal) and systemic immune function are being altered. Although great progress has been made to define the changes in host immune function, understanding the interplay between fish nutrition, intestinal microbiome and immune system is only just beginning to emerge.
Collapse
Affiliation(s)
- Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
13
|
Tarnecki AM, Burgos FA, Ray CL, Arias CR. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol 2017; 123:2-17. [PMID: 28176435 DOI: 10.1111/jam.13415] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
Abstract
The gut microbiome of vertebrates plays an integral role in host health by stimulating development of the immune system, aiding in nutrient acquisition and outcompeting opportunistic pathogens. Development of next-generation sequencing technologies allows researchers to survey complex communities of microorganisms within the microbiome at great depth with minimal costs, resulting in a surge of studies investigating bacterial diversity of fishes. Many of these studies have focused on the microbial structure of economically significant aquaculture species with the goal of manipulating the microbes to increase feed efficiency and decrease disease susceptibility. The unravelling of intricate host-microbe symbioses and identification of core microbiome functions is essential to our ability to use the benefits of a healthy microbiome to our advantage in fish culture, as well as gain deeper understanding of bacterial roles in vertebrate health. This review aims to summarize the available knowledge on fish gastrointestinal communities obtained from metagenomics, including biases from sample processing, factors influencing assemblage structure, intestinal microbiology of important aquaculture species and description of the teleostean core microbiome.
Collapse
Affiliation(s)
| | - F A Burgos
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - C L Ray
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - C R Arias
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
14
|
Califano G, Castanho S, Soares F, Ribeiro L, Cox CJ, Mata L, Costa R. Molecular Taxonomic Profiling of Bacterial Communities in a Gilthead Seabream ( Sparus aurata) Hatchery. Front Microbiol 2017; 8:204. [PMID: 28261166 PMCID: PMC5306143 DOI: 10.3389/fmicb.2017.00204] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/27/2017] [Indexed: 12/20/2022] Open
Abstract
As wild fish stocks decline worldwide, land-based fish rearing is likely to be of increasing relevance to feeding future human generations. Little is known about the structure and role of microbial communities in fish aquaculture, particularly at larval developmental stages where the fish microbiome develops and host animals are most susceptible to disease. We employed next-generation sequencing (NGS) of 16S rRNA gene reads amplified from total community DNA to reveal the structure of bacterial communities in a gilthead seabream (Sparus aurata) larviculture system. Early- (2 days after hatching) and late-stage (34 days after hatching) fish larvae presented remarkably divergent bacterial consortia, with the genera Pseudoalteromonas, Marinomonas, Acinetobacter, and Acidocella (besides several unclassified Alphaproteobacteria) dominating the former, and Actinobacillus, Streptococcus, Massilia, Paracoccus, and Pseudomonas being prevalent in the latter. A significant reduction in rearing-water bacterial diversity was observed during the larviculture trial, characterized by higher abundance of the Cryomorphaceae family (Bacteroidetes), known to populate microniches with high organic load, in late-stage rearing water in comparison with early-stage rearing-water. Furthermore, we observed the recruitment, into host tissues, of several bacterial phylotypes-including putative pathogens as well as mutualists-that were detected at negligible densities in rearing-water or in the live feed (i.e., rotifers and artemia). These results suggest that, besides host-driven selective forces, both the live feed and the surrounding rearing environment contribute to shaping the microbiome of farmed gilthead sea-bream larvae, and that a differential establishment of host-associated bacteria takes place during larval development.
Collapse
Affiliation(s)
- Gianmaria Califano
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of AlgarveFaro, Portugal; Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität JenaJena, Germany
| | - Sara Castanho
- Portuguese Institute for the Ocean and Atmosphere, Aquaculture Research Station Olhão, Portugal
| | - Florbela Soares
- Portuguese Institute for the Ocean and Atmosphere, Aquaculture Research Station Olhão, Portugal
| | - Laura Ribeiro
- Portuguese Institute for the Ocean and Atmosphere, Aquaculture Research Station Olhão, Portugal
| | - Cymon J Cox
- Plant Systematics and Bioinformatics, Centre of Marine Sciences, University of Algarve Faro, Portugal
| | - Leonardo Mata
- MACRO-the Centre for Macroalgal Resources and Biotechnology, James Cook University Townsville, QLD, Australia
| | - Rodrigo Costa
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of AlgarveFaro, Portugal; Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
15
|
Martin SAM, Dehler CE, Król E. Transcriptomic responses in the fish intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:103-117. [PMID: 26995769 DOI: 10.1016/j.dci.2016.03.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/05/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
The intestine, being a multifunctional organ central to both nutrient uptake, pathogen recognition and regulating the intestinal microbiome, has been subjected to intense research. This review will focus on the recent studies carried out using high-throughput gene expression approaches, such as microarray and RNA sequencing (RNA-seq). These techniques have advanced greatly in recent years, mainly as a result of the massive changes in sequencing methodologies. At the time of writing, there is a transition between relatively well characterised microarray platforms and the developing RNA-seq, with the prediction that within a few years as costs decrease and computation power increase, RNA-seq related approaches will supersede the microarrays. Comparisons between the approaches are made and specific examples of how the techniques have been used to examine intestinal responses to pathogens, dietary manipulations and osmoregulatory challenges are given.
Collapse
Affiliation(s)
- Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Carola E Dehler
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
16
|
Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Front Physiol 2016; 7:359. [PMID: 27610085 PMCID: PMC4997091 DOI: 10.3389/fphys.2016.00359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| |
Collapse
|