1
|
Tang J, Liu C, Tan Y, Jiang J, Chen F, Xiong G, Chen S. Five Post-Translational Modification Residues of CmPT2 Play Key Roles in Yeast and Rice. Int J Mol Sci 2023; 24:ijms24032025. [PMID: 36768347 PMCID: PMC9953561 DOI: 10.3390/ijms24032025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is one of the largest cut flowers in the world. Phosphate transporter Pht1 family member CmPht1;2 protein (CmPT2) plays an important role in response to low-phosphate (LP) stress in chrysanthemum. Post-translational modification (PTM) can modulate the function of proteins in multiple ways. Here, we used yeast and rice systems to study the role of putative PTM in CmPT2 by determining the effect of mutation of key amino acid residues of putative glycosylation, phosphorylation, and myristoylation sites. We chose nine amino acid residues in the putative PTM sites and mutated them to alanine (A) (Cmphts). CmPT2 recovered the growth of yeast strain MB192 under LP conditions. However, G84A, G222A, T239A, Y242A, and N422A mutants could not grow normally under LP conditions. Analysis of phosphorus absorption kinetics showed that the Km of CmPT2 was 65.7 μM. Among the nine Cmphts, the expression of five with larger Km (124.4-397.5 μM) than CmPT2 was further evaluated in rice. Overexpression of CmPT2-OE increased plant height, effective panicle numbers, branch numbers, and yield compared with that of wild type 'Wuyunjing No. 7' (W7). Overexpression of Cmphts-OE led to decreased plant height and effective panicle numbers compared with that of the CmPT2-OE strain. The Pi content in roots of CmPT2-OE was higher than that of the W7 under both high (normal) phosphate (HP) and LP conditions. However, the Pi content in the leaves and roots was significantly lower in the N422A-OE strain than in the CmPT2-OE strain under both HP and LP conditions. Under LP conditions, the phosphorus starvation response (PSR) genes in CmPT2-OE were inhibited at the transcription level. The expression patterns of phosphorus-related genes in T239A, Y242A, and N422A-OE under LP conditions were different from those of CmPT2-OE. In conclusion, these five post-translational modification residues of CmPT2 play key roles in modulating the function of CmPT2. This work boosters our understanding of the function of phosphate transporters and provides genetic resources for improving the efficiency of phosphorus utilization in crop plants.
Collapse
Affiliation(s)
- Jiayi Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210046, China
| | - Yiqing Tan
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (G.X.); (S.C.)
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (G.X.); (S.C.)
| |
Collapse
|
2
|
Rejeeth C, Sharma A. Label-free designed nanomaterials enrichment and separation techniques for phosphoproteomics based on mass spectrometry. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1047055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The surface chemical characteristics of nanomaterials have a substantial impact on the affinity probe used to enrich proteins and peptides for MALDI-MS analysis of a real human sample. Detecting phosphoproteins involved in signalling is always difficult, even with recent developments in mass spectrometry, because protein phosphorylation is often temporary from complicated mixtures. This review summarizes current research on the successful enrichment of various intriguing glycoproteins and glycol peptides using surface affinity materials with distinctive qualities such as low cost, excellent structural stability, diversity, and multifunction. As a consequence, this review will provide a quick overview of the scholars from various backgrounds who are working in this intriguing interdisciplinary field. Label-free cancer biomarkers and other diseases will benefit from future challenges.
Collapse
|
3
|
van Wijk KJ, Leppert T, Sun Q, Boguraev SS, Sun Z, Mendoza L, Deutsch EW. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource. THE PLANT CELL 2021; 33:3421-3453. [PMID: 34411258 PMCID: PMC8566204 DOI: 10.1093/plcell/koab211] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
We developed a resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis thaliana proteome, such as the significance of protein splice forms and post-translational modifications (PTMs), or simply to obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) data collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical, and biological metadata. Nearly 40 million out of ∼143 million MS/MS (tandem MS) spectra were matched to the reference genome Araport11, identifying ∼0.5 million unique peptides and 17,858 uniquely identified proteins (only isoform per gene) at the highest confidence level (false discovery rate 0.0004; 2 non-nested peptides ≥9 amino acid each), assigned canonical proteins, and 3,543 lower-confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified that were generated from pseudogenes, alternative start, stops, and/or splice variants, and small Open Reading Frames; these features should be considered when updating the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB, and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS/MS data.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, USA
| | - Sascha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| |
Collapse
|
4
|
Sharma S, Sanyal SK, Sushmita K, Chauhan M, Sharma A, Anirudhan G, Veetil SK, Kateriya S. Modulation of Phototropin Signalosome with Artificial Illumination Holds Great Potential in the Development of Climate-Smart Crops. Curr Genomics 2021; 22:181-213. [PMID: 34975290 PMCID: PMC8640849 DOI: 10.2174/1389202922666210412104817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Changes in environmental conditions like temperature and light critically influence crop production. To deal with these changes, plants possess various photoreceptors such as Phototropin (PHOT), Phytochrome (PHY), Cryptochrome (CRY), and UVR8 that work synergistically as sensor and stress sensing receptors to different external cues. PHOTs are capable of regulating several functions like growth and development, chloroplast relocation, thermomorphogenesis, metabolite accumulation, stomatal opening, and phototropism in plants. PHOT plays a pivotal role in overcoming the damage caused by excess light and other environmental stresses (heat, cold, and salinity) and biotic stress. The crosstalk between photoreceptors and phytohormones contributes to plant growth, seed germination, photo-protection, flowering, phototropism, and stomatal opening. Molecular genetic studies using gene targeting and synthetic biology approaches have revealed the potential role of different photoreceptor genes in the manipulation of various beneficial agronomic traits. Overexpression of PHOT2 in Fragaria ananassa leads to the increase in anthocyanin content in its leaves and fruits. Artificial illumination with blue light alone and in combination with red light influence the growth, yield, and secondary metabolite production in many plants, while in algal species, it affects growth, chlorophyll content, lipid production and also increases its bioremediation efficiency. Artificial illumination alters the morphological, developmental, and physiological characteristics of agronomic crops and algal species. This review focuses on PHOT modulated signalosome and artificial illumination-based photo-biotechnological approaches for the development of climate-smart crops.
Collapse
Affiliation(s)
- Sunita Sharma
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sibaji K. Sanyal
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kumari Sushmita
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manisha Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Gireesh Anirudhan
- Integrated Science Education and Research Centre (ISERC), Institute of Science (Siksha Bhavana), Visva Bharati (A Central University), Santiniketan (PO), West Bengal, 731235, India
| | - Sindhu K. Veetil
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Chae HB, Kim MG, Kang CH, Park JH, Lee ES, Lee SU, Chi YH, Paeng SK, Bae SB, Wi SD, Yun BW, Kim WY, Yun DJ, Mackey D, Lee SY. Redox sensor QSOX1 regulates plant immunity by targeting GSNOR to modulate ROS generation. MOLECULAR PLANT 2021; 14:1312-1327. [PMID: 33962063 DOI: 10.1016/j.molp.2021.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 05/22/2023]
Abstract
Reactive oxygen signaling regulates numerous biological processes, including stress responses in plants. Redox sensors transduce reactive oxygen signals into cellular responses. Here, we present biochemical evidence that a plant quiescin sulfhydryl oxidase homolog (QSOX1) is a redox sensor that negatively regulates plant immunity against a bacterial pathogen. The expression level of QSOX1 is inversely correlated with pathogen-induced reactive oxygen species (ROS) accumulation. Interestingly, QSOX1 both senses and regulates ROS levels by interactingn with and mediating redox regulation of S-nitrosoglutathione reductase, which, consistent with previous findings, influences reactive nitrogen-mediated regulation of ROS generation. Collectively, our data indicate that QSOX1 is a redox sensor that negatively regulates plant immunity by linking reactive oxygen and reactive nitrogen signaling to limit ROS production.
Collapse
Affiliation(s)
- Ho Byoung Chae
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Joung Hun Park
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Sang-Uk Lee
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong Hun Chi
- Plant Propagation Team, Plant Production Division, Sejong National Arboretum, Sejong 30106, Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Su Bin Bae
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Seong Dong Wi
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - David Mackey
- Department of Horticulture and Crop Science, Department of Molecular Genetics, and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea; College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, P.R. China.
| |
Collapse
|
6
|
Balmant KM, Lawrence SR, Duong BV, Zhu F, Zhu N, Nicklay J, Chen S. Guard cell redox proteomics reveals a role of lipid transfer protein in plant defense. J Proteomics 2021; 242:104247. [PMID: 33940245 DOI: 10.1016/j.jprot.2021.104247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Redox-based post-translational modifications (PTMs) involving protein cysteine residues as redox sensors are important to various physiological processes. However, little is known about redox-sensitive proteins in guard cells and their functions in stomatal immunity. In this study, we applied an integrative protein labeling method cysTMTRAQ, and identified guard cell proteins that were altered by thiol redox PTMs in response to a bacterial flagellin peptide flg22. In total, eight, seven and 20 potential redox-responsive proteins were identified in guard cells treated with flg22 for 15, 30 and 60 min, respectively. The proteins fall into several functional groups including photosynthesis, lipid binding, oxidation-reduction, and defense. Among the proteins, a lipid transfer protein (LTP)-II was confirmed to be redox-responsive and involved in plant resistance to Pseudomonas syringe pv. tomato DC3000. This study not only creates an inventory of potential redox-sensitive proteins in flg22 signal transduction in guard cells, but also highlights the biological relevance of the lipid transfer protein in plant defense against bacterial pathogens. SIGNIFICANCE: Protein redox modifications play important roles in many physiological processes. However, redox proteomics has rarely been studied in plant single cell-types. In this study, isobaric tandem mass tag-based redox proteomics technology was applied to discover redox-sensitive proteins and corresponding cysteine residues in guard cell response to a bacterial flagellin peptide flg22. Many redox-responsive proteins related to photosynthesis, lipid binding, oxidation-reduction, and defense were identified. Using reverse genetics and biochemical analyses, a lipid transfer protein was functionally characterized to be involved in plant defense against pathogens. The study highlights the utility of redox proteomics in discovering new proteins and redox modifications in important stomatal guard cell functions. Furthermore, detailed functional characterization demonstrates the biological relevance of the redox-responsive lipid transfer protein in plant pathogen defense.
Collapse
Affiliation(s)
- Kelly M Balmant
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sheldon R Lawrence
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Benjamin V Duong
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Fanzhao Zhu
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Ning Zhu
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | | | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
7
|
Du W, Ruan C, Li J, Li H, Ding J, Zhao S, Jiang X. Quantitative proteomic analysis of Xanthoceras sorbifolium Bunge seedlings in response to drought and heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:8-17. [PMID: 33445043 DOI: 10.1016/j.plaphy.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Yellowhorn (Xanthoceras sorbifolium Bunge) is a woody oil species that is widely distributed in northwestern China. To investigate the molecular mechanisms underlying the drought and heat tolerance response of yellowhorn seedlings, changes in protein abundance were analyzed via comparative proteomics. Drought and heat treatment of seedlings was applied in growth chamber, and the leaves were harvested after 7 days of treatment. The total protein was extracted, and comparative proteomic analysis was performed via isobaric tag for relative and absolute quantitation (iTRAQ). The abundance of most of the proteins associated with oxidative phosphorylation, NADH dehydrogenase and superoxide dismutase (SOD) was reduced. The differential proteins associated with photosynthesis enzymes indicated that stress had different effects on photosystem I (PSI) and photosystem II (PSII). After comprehensively analyzing the results, we speculated that drought and heat stress could hinder the synthesis of riboflavin, reducing NADH dehydrogenase content, which might further have an impact on energy utilization. Yellowhorn seedlings relied on Fe-Mn SOD enzymes rather than Cu/Zn SOD enzymes to remove reactive oxygen species (ROS). In addition, heat-shock proteins (HSPs) had significant increase and played a key role in stress response, which could be divided into two categories according to their transcription and translation efficiency. Over all, the results can provide a basis for understanding the molecular mechanism underlying resistance to drought and heat stress in yellowhorn and for subsequent research of posttranslational modification-related omics of key proteins.
Collapse
Affiliation(s)
- Wei Du
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Nationalities University, Dalian, 116600, China
| | - Chengjiang Ruan
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Nationalities University, Dalian, 116600, China.
| | - Jingbin Li
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Nationalities University, Dalian, 116600, China
| | - He Li
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Nationalities University, Dalian, 116600, China
| | - Jian Ding
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Nationalities University, Dalian, 116600, China
| | - Siyang Zhao
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Nationalities University, Dalian, 116600, China
| | - Xin Jiang
- Institute of Plant Resources, Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Nationalities University, Dalian, 116600, China
| |
Collapse
|
8
|
Knockdown of a Novel Gene OsTBP2.2 Increases Sensitivity to Drought Stress in Rice. Genes (Basel) 2020; 11:genes11060629. [PMID: 32521717 PMCID: PMC7349065 DOI: 10.3390/genes11060629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Drought stress is a major environmental stress, which adversely affects the biological and molecular processes of plants, thereby impairing their growth and development. In the present study, we found that the expression level of OsTBP2.2 which encodes for a nucleus-localized protein member belonging to transcription factor IID (TFIID) family, was significantly induced by polyethylene glycol (PEG) treatment. Therefore, knockdown mutants of OsTBP2.2 gene were generated to investigate the role of OsTBP2.2 in rice response to drought stress. Under the condition of drought stress, the photosynthetic rate, transpiration rate, water use efficiency, and stomatal conductance were significantly reduced in ostbp2.2 lines compared with wild type, Dongjin (WT-DJ). Furthermore, the RNA-seq results showed that several main pathways involved in "MAPK (mitogen-activated protein kinase) signaling pathway", "phenylpropanoid biosynthesis", "defense response" and "ADP (adenosine diphosphate) binding" were altered significantly in ostbp2.2. We also found that OsPIP2;6, OsPAO and OsRCCR1 genes were down-regulated in ostbp2.2 compared with WT-DJ, which may be one of the reasons that inhibit photosynthesis. Our findings suggest that OsTBP2.2 may play a key role in rice growth and the regulation of photosynthesis under drought stress and it may possess high potential usefulness in molecular breeding of drought-tolerant rice.
Collapse
|
9
|
Zhang H, Liu X, Zhang X, Qin N, Xu K, Yin W, Zheng Y, Song Y, Zeng R, Liu J. Phosphoinositide 3-Kinase Promotes Oxidative Burst, Stomatal Closure and Plant Immunity in Bacterial Invasion. FRONTIERS IN PLANT SCIENCE 2020; 10:1740. [PMID: 32117334 PMCID: PMC7025545 DOI: 10.3389/fpls.2019.01740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/11/2019] [Indexed: 05/27/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) plays a vital role in plant response to abiotic stress. However, the role of PI3K in plant immunity is largely unknown. This study showed that PI3K enhanced Arabidopsis resistance to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) and Pst DC3000 (avrRpt2). Overexpression of AtVPS34 promoted stomatal closure while PI3K inhibitors blocked that after spray inoculation. Additionally, gene expression of AtVPS34 was increased upon infection by Pst DC3000 (avrRpt2), and SA upregulated AtVPS34 gene expression in this process. Furthermore, overexpression of AtVPS34 enhanced PR gene expression after syringe infiltration with Pst DC3000 (avrRpt2), while PI3K inhibitors inhibited that. The production of hydrogen peroxide and the expression of gene encoding antioxidant enzyme were both enhanced in AtVPS34 overexpressing lines after spray inoculation or syringe infiltration with Pst DC3000 (avrRpt2). Collectively, these results unraveled a novel and broad role of PI3K in plant immunity which promoted stomatal closure and PR gene expression possibly via regulating ROS production.
Collapse
Affiliation(s)
- Huiying Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Liu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiyong Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ningning Qin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaifang Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weihua Yin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yueqin Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Petřivalský M, Luhová L. Nitrated Nucleotides: New Players in Signaling Pathways of Reactive Nitrogen and Oxygen Species in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:598. [PMID: 32508862 PMCID: PMC7248558 DOI: 10.3389/fpls.2020.00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Nitration of diverse biomolecules, including proteins, lipids and nucleic acid, by reactive nitrogen species represents one of the key mechanisms mediating nitric oxide (NO) biological activity across all types of organisms. 8-nitroguanosine 3'5'-cyclic monophosphate (8-nitro-cGMP) has been described as a unique electrophilic intermediate involved in intracellular redox signaling. In animal cells, 8-nitro-cGMP is formed from guanosine-5'-triphosphate by a combined action of reactive nitrogen (RNS) and oxygen species (ROS) and guanylate cyclase. As demonstrated originally in animal models, 8-nitro-cGMP shows certain biological activities closely resembling its analog cGMP; however, its regulatory functions are mediated mainly by its electrophilic properties and chemical interactions with protein thiols resulting in a novel protein post-translational modification termed S-guanylation. In Arabidopsis thaliana, 8-nitro-cGMP was reported to mediate NO-dependent signaling pathways controlling abscisic acid (ABA)-induced stomatal closure, however, its derivative 8-mercapto-cGMP (8-SH-cGMP) was later shown as the active component of hydrogen sulfide (H2S)-mediated guard cell signaling. Here we present a survey of current knowledge on biosynthesis, metabolism and biological activities of nitrated nucleotides with special attention to described and proposed functions of 8-nitro-cGMP and its metabolites in plant physiology and stress responses.
Collapse
|
11
|
Zhang T, Chhajed S, Schneider JD, Feng G, Song WY, Chen S. Proteomic characterization of MPK4 signaling network and putative substrates. PLANT MOLECULAR BIOLOGY 2019; 101:325-339. [PMID: 31399934 DOI: 10.1007/s11103-019-00908-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Combining genetic engineering of MPK4 activity and quantitative proteomics, we established an in planta system that enables rapid study of MPK4 signaling networks and potential substrate proteins. Mitogen activated protein kinase 4 (MPK4) is a multifunctional kinase that regulates various signaling events in plant defense, growth, light response and cytokinesis. The question of how a single protein modulates many distinct processes has spurred extensive research into the physiological outcomes resulting from genetic perturbation of MPK4. However, the mechanism by which MPK4 functions is still poorly understood due to limited data on the MPK4 networks including substrate proteins and downstream pathways. Here we introduce an experimental system that combines genetic engineering of kinase activity and quantitative proteomics to rapidly study the signaling networks of MPK4. First, we transiently expressed a constitutively active (MPK4CA) and an inactive (MPK4IN) version of a Brassica napus MPK4 (BnMPK4) in Nicotiana benthamiana leaves. Proteomics analysis revealed that BnMPK4 activation affects multiple pathways (e.g., metabolism, redox regulation, jasmonic acid biosynthesis and stress responses). Furthermore, BnMPK4 activation also increased protein phosphorylation in the phosphoproteome, from which putative MPK4 substrates were identified. Using protein kinase assay, we validated that a transcription factor TCP8-like (TCP8) and a PP2A regulatory subunit TAP46-like (TAP46) were indeed phosphorylated by BnMPK4. Taken together, we demonstrated the utility of proteomics and phosphoproteomics in elucidating kinase signaling networks and in identification of downstream substrates.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Biological Sciences Division, Pacific Northwest National Lab, Richland, WA, 99354, USA
| | - Shweta Chhajed
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | | | - Guanqiao Feng
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Wen-Yuan Song
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Meng L, Zhang T, Geng S, Scott PB, Li H, Chen S. Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis. J Proteomics 2019; 196:81-91. [DOI: 10.1016/j.jprot.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/16/2023]
|
13
|
Zhang T, Schneider JD, Lin C, Geng S, Ma T, Lawrence SR, Dufresne CP, Harmon AC, Chen S. MPK4 Phosphorylation Dynamics and Interacting Proteins in Plant Immunity. J Proteome Res 2019; 18:826-840. [PMID: 30632760 DOI: 10.1021/acs.jproteome.8b00345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Arabidopsis MAP kinase 4 (MPK4) has been proposed to be a negative player in plant immunity, and it is also activated by pathogen-associated molecular patterns (PAMPs), such as flg22. The molecular mechanisms by which MPK4 is activated and regulates plant defense remain elusive. In this study, we investigated Arabidopsis defense against a bacterial pathogen Pseudomonas syringae pv tomato ( Pst) DC3000 when Brassica napus MPK4 ( BnMPK4) is overexpressed. We showed an increase in pathogen resistance and suppression of jasmonic acid (JA) signaling in the BnMPK4 overexpressing (OE) plants. We also showed that the OE plants have increased sensitivity to flg22-triggered reactive oxygen species (ROS) burst in guard cells, which resulted in enhanced stomatal closure compared to wild-type (WT). During flg22 activation, dynamic phosphorylation events within and outside of the conserved TEY activation loop were observed. To elucidate how BnMPK4 functions during the defense response, we used immunoprecipitation coupled with mass spectrometry (IP-MS) to identify BnMPK4 interacting proteins in the absence and presence of flg22. Quantitative proteomic analysis revealed a shift in the MPK4-associated protein network, providing insight into the molecular functions of MPK4 at the systems level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Craig P Dufresne
- Thermo Fisher Scientific , 1400 Northpoint Parkway , West Palm Beach , Florida 33407 , United States
| | | | | |
Collapse
|
14
|
Reactive oxygen species (ROS) and antioxidative enzyme status in Solanum lycopersicum on priming with fluorescent Pseudomonas spp. against Fusarium oxysporum. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0125-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
McConnell EW, Werth EG, Hicks LM. The phosphorylated redox proteome of Chlamydomonas reinhardtii: Revealing novel means for regulation of protein structure and function. Redox Biol 2018; 17:35-46. [PMID: 29673699 PMCID: PMC6006682 DOI: 10.1016/j.redox.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/16/2023] Open
Abstract
Post-translational modifications (PTMs) are covalent modifications to protein residues which may alter both conformation and activity, thereby modulating signaling and metabolic processes. While PTMs have been largely investigated independently, examination into how different modification interact, or crosstalk, will reveal a more complete understanding of the reciprocity of signaling cascades across numerous pathways. Combinatorial reversible thiol oxidation and phosphorylation in eukaryotes is largely recognized, but rigorous approaches for experimental discovery are underdeveloped. To begin meaningful interrogation of PTM crosstalk in systems biology research, knowledge of targeted proteins must be advanced. Herein, we demonstrate protein-level enrichment of reversibly oxidized proteoforms in Chlamydomonas reinhardtii with subsequent phosphopeptide analysis to determine the extent of phosphorylation in the redox thiol proteome. Label-free quantification was used to quantify 3353 oxidized Cys-sites on 1457 enriched proteins, where sequential phosphopeptide enrichment measured 1094 sites of phosphorylation on 720 proteins with 23% (172 proteins) also identified as reversibly oxidized. Proteins identified with both reversible oxidation and phosphorylation were involved in signaling transduction, ribosome and translation-related machinery, and metabolic pathways. Several redox-modified Calvin-Benson cycle proteins were found phosphorylated and many kinases/phosphatases involved in phosphorylation-dependent photosynthetic state transition and stress-response pathways had sites of reversible oxidation. Identification of redox proteins serves as a crucial element in understanding stress response in photosynthetic organisms and beyond, whereby knowing the ensemble of modifications co-occurring with oxidation highlights novel mechanisms for cellular control. Quantified reversible oxidation on protein cysteine residues. Sequential phosphopeptide enrichment to define the phosphorylated redox proteome. Found >3000 oxidized cysteines and >1000 phosphosites in Chlamydomonas reinhardtii. Co-modified proteins discovered across diverse metabolic and signaling pathways.
Collapse
Affiliation(s)
- Evan W McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emily G Werth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
16
|
Ma T, Yoo MJ, Zhang T, Liu L, Koh J, Song WY, Harmon AC, Sha W, Chen S. Characterization of thiol-based redox modifications of Brassica napusSNF1-related protein kinase 2.6-2C. FEBS Open Bio 2018; 8:628-645. [PMID: 29632815 PMCID: PMC5881534 DOI: 10.1002/2211-5463.12401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/09/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023] Open
Abstract
Sucrose nonfermenting 1‐related protein kinase 2.6 (SnRK2.6), also known as Open Stomata 1 (OST1) in Arabidopsis thaliana, plays a pivotal role in abscisic acid (ABA)‐mediated stomatal closure. Four SnRK2.6 paralogs were identified in the Brassica napus genome in our previous work. Here we studied one of the paralogs, BnSnRK2.6‐2C, which was transcriptionally induced by ABA in guard cells. Recombinant BnSnRK2.6‐2C exhibited autophosphorylation activity and its phosphorylation sites were mapped. The autophosphorylation activity was inhibited by S‐nitrosoglutathione (GSNO) and by oxidized glutathione (GSSG), and the inhibition was reversed by reductants. Using monobromobimane (mBBr) labeling, we demonstrated a dose‐dependent modification of BnSnRK2.6‐2C by GSNO. Furthermore, mass spectrometry analysis revealed previously uncharacterized thiol‐based modifications including glutathionylation and sulfonic acid formation. Of the six cysteine residues in BnSnRK2.6‐2C, C159 was found to have different types of thiol modifications, suggesting its high redox sensitivity and versatility. In addition, mBBr labeling on tyrosine residues was identified. Collectively, these data provide detailed biochemical characterization of redox‐induced modifications and changes of the BnSnRK2.6‐2C activity.
Collapse
Affiliation(s)
- Tianyi Ma
- College of Life Sciences Northeast Forestry University Harbin China.,Department of Biology Genetics Institute University of Florida Gainesville FL USA.,College of Life Sciences, Agriculture and Forestry Qiqihar University Heilongjiang China
| | - Mi-Jeong Yoo
- Department of Biology Genetics Institute University of Florida Gainesville FL USA
| | - Tong Zhang
- Department of Biology Genetics Institute University of Florida Gainesville FL USA
| | - Lihong Liu
- Department of Biology Genetics Institute University of Florida Gainesville FL USA
| | - Jin Koh
- Proteomics and Mass Spectrometry Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA
| | - Wen-Yuan Song
- Department of Plant Pathology University of Florida Gainesville FL USA.,Plant Molecular and Cellular Biology University of Florida Gainesville FL USA
| | - Alice C Harmon
- Department of Biology Genetics Institute University of Florida Gainesville FL USA.,Plant Molecular and Cellular Biology University of Florida Gainesville FL USA
| | - Wei Sha
- College of Life Sciences Northeast Forestry University Harbin China.,College of Life Sciences, Agriculture and Forestry Qiqihar University Heilongjiang China
| | - Sixue Chen
- Department of Biology Genetics Institute University of Florida Gainesville FL USA.,Proteomics and Mass Spectrometry Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA.,Plant Molecular and Cellular Biology University of Florida Gainesville FL USA
| |
Collapse
|
17
|
Zhang Z, Hu M, Feng X, Gong A, Cheng L, Yuan H. Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress. Proteomics 2018; 17. [PMID: 28665021 DOI: 10.1002/pmic.201600458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/02/2017] [Indexed: 12/24/2022]
Abstract
In flowering plants, anther development plays crucial role in sexual reproduction. Within the anther, microspore mother cells meiosis produces microspores, which further develop into pollen grains that play decisive role in plant reproduction. Previous studies on anther biology mainly focused on single gene functions relying on genetic and molecular methods. Recently, anther development has been expanded from multiple OMICS approaches like transcriptomics, proteomics/phosphoproteomics, and metabolomics. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins which can characterize proteomes and their modulation during normal development, biotic and abiotic stresses in anther development. In this review, we summarize the achievements of proteomics and phosphoproteomics with anther and pollen organs from model plant and crop species (i.e. Arabidopsis, rice, tobacco). The increased proteomic information facilitated translation of information from the models to crops and thus aid in agricultural improvement.
Collapse
Affiliation(s)
- Zaibao Zhang
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Menghui Hu
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Xiaobing Feng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Andong Gong
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Lin Cheng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Hongyu Yuan
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| |
Collapse
|
18
|
Pang Q, Zhang T, Wang Y, Kong W, Guan Q, Yan X, Chen S. Metabolomics of Early Stage Plant Cell-Microbe Interaction Using Stable Isotope Labeling. FRONTIERS IN PLANT SCIENCE 2018; 9:760. [PMID: 29922325 PMCID: PMC5996122 DOI: 10.3389/fpls.2018.00760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/17/2018] [Indexed: 05/02/2023]
Abstract
Metabolomics has been used in unraveling metabolites that play essential roles in plant-microbe (including pathogen) interactions. However, the problem of profiling a plant metabolome with potential contaminating metabolites from the coexisting microbes has been largely ignored. To address this problem, we implemented an effective stable isotope labeling approach, where the metabolome of a plant bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 was labeled with heavy isotopes. The labeled bacterial cells were incubated with Arabidopsis thaliana epidermal peels (EPs) with guard cells, and excessive bacterial cells were subsequently removed from the plant tissues by washing. The plant metabolites were characterized by liquid chromatography mass spectrometry using multiple reactions monitoring, which can differentiate plant and bacterial metabolites. Targeted metabolomic analysis suggested that Pst DC3000 infection may modulate stomatal movement by reprograming plant signaling and primary metabolic pathways. This proof-of-concept study demonstrates the utility of this strategy in differentiation of the plant and microbe metabolomes, and it has broad applications in studying metabolic interactions between microbes and other organisms.
Collapse
Affiliation(s)
- Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Tong Zhang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Yang Wang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Wenwen Kong
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Qijie Guan
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Xiufeng Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Xiufeng Yan, Sixue Chen,
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
- *Correspondence: Xiufeng Yan, Sixue Chen,
| |
Collapse
|
19
|
Watkins JM, Chapman JM, Muday GK. Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture. PLANT PHYSIOLOGY 2017; 175:1807-1825. [PMID: 29051198 PMCID: PMC5717730 DOI: 10.1104/pp.17.01010] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/17/2017] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA) increases reactive oxygen species (ROS) in guard cells to close Arabidopsis (Arabidopsis thaliana) stomata. In tomato (Solanum lycopersicum), we find that ABA-increased ROS is followed by stomatal closure and that both responses are blocked by inhibitors of ROS-producing respiratory burst oxidase enzymes. ABA-induced ROS sensor fluorescence accumulates in the nucleus, chloroplasts, and endomembranes. The accumulation of flavonol antioxidants in guard cells, but not surrounding pavement cells, was visualized by confocal microscopy using a flavonol-specific fluorescent dye. Decreased flavonols in guard cells in the anthocyanin reduced (are) mutant and elevated levels in the anthocyanin without (aw) mutant were quantified by confocal microscopy and in leaf extracts by mass spectrometry. Consistent with flavonols acting as antioxidants, higher levels of ROS were detected in guard cells of the tomato are mutant and lower levels were detected in aw both at homeostasis and after treatment with ABA. These results demonstrate the inverse relationship between flavonols and ROS. Guard cells of are show greater ABA-induced closure than the wild type, reduced light-dependent guard cell opening, and reduced water loss, with aw having opposite responses. Ethylene treatment of wild-type tomato plants increased flavonol accumulation in guard cells; however, no flavonol increases were observed in Neverripe (Nr), an ethylene receptor mutant. Consistent with lower levels of ROS due to elevated flavonols, ethylene treatments decreased ABA-induced stomatal closure in the wild type, but not Nr, with ethylene responses attenuated in the are mutant. Together, these results are consistent with flavonols dampening the ABA-dependent ROS burst that drives stomatal closure and facilitating stomatal opening to modulate leaf gas exchange.
Collapse
Affiliation(s)
- Justin M Watkins
- Wake Forest University, Department of Biology and Center for Molecular Signaling, Winston-Salem, North Carolina 27109
| | - Jordan M Chapman
- Wake Forest University, Department of Biology and Center for Molecular Signaling, Winston-Salem, North Carolina 27109
| | - Gloria K Muday
- Wake Forest University, Department of Biology and Center for Molecular Signaling, Winston-Salem, North Carolina 27109
| |
Collapse
|
20
|
Han W, Zhu J, Wang S, Xu D. Understanding the Phosphorylation Mechanism by Using Quantum Chemical Calculations and Molecular Dynamics Simulations. J Phys Chem B 2017; 121:3565-3573. [PMID: 27976577 PMCID: PMC6138447 DOI: 10.1021/acs.jpcb.6b09421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phosphorylation is one of the most frequent post-translational modifications on proteins. It regulates many cellular processes by modulation of phosphorylation on protein structure and dynamics. However, the mechanism of phosphorylation-induced conformational changes of proteins is still poorly understood. Here, we report a computational study of three representative groups of tyrosine in ADP-ribosylhydrolase 1, serine in BTG2, and serine in Sp100C by using six molecular dynamics (MD) simulations and quantum chemical calculations. Added phosphorylation was found to disrupt hydrogen bond, and increase new weak interactions (hydrogen bond and hydrophobic interaction) during MD simulations, leading to conformational changes. Quantum chemical calculations further indicate that the phosphorylation on tyrosine, threonine, and serine could decrease the optical band gap energy (Egap), which can trigger electronic transitions to form or disrupt interactions easily. Our results provide an atomic and electronic description of how phosphorylation facilitates conformational and dynamic changes in proteins, which may be useful for studying protein function and protein design.
Collapse
Affiliation(s)
- Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Department of Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201, USA
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Song Wang
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Dong Xu
- Department of Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201, USA
- College of Computer Science and Technology Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
21
|
Cai X, Cao C, Li J, Chen F, Zhang S, Liu B, Zhang W, Zhang X, Ye L. Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Oncotarget 2017; 8:58338-58352. [PMID: 28938560 PMCID: PMC5601656 DOI: 10.18632/oncotarget.16873] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/15/2017] [Indexed: 01/07/2023] Open
Abstract
In the connection between inflammation and cancer development, tumor necrosis factor-alpha (TNF-α) contributes to the tumorigenesis. However, the underlying mechanism remains poorly understood. In this study, we report that TNF-α enhances the growth of breast cancer through up-regulation of oncoprotein hepatitis B X-interacting protein (HBXIP). Our data showed that the levels of TNF-α were positively related to those of HBXIP in clinical breast cancer tissues. Moreover, TNF-α could up-regulate HBXIP in breast cancer cells. Interestingly, silencing of TNF-α receptor 1 (TNFR1) blocked the effect of TNF-α on HBXIP. Mechanistically, we revealed that TNF-α could increase the activities of HBXIP promoter through activating transcriptional factor signal transducer and activator of transcription 3 (STAT3). In addition, nuclear factor kappa B (NF-κB) and/or p38 signaling increased the levels of p-STAT3 in the cells. Strikingly, HBXIP could also up-regulate TNFR1, forming a positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Notably, TNF-α was able to up-regulate TNFR1 through driving the loop. In function, we demonstrated that the knockdown of HBXIP remarkably abolished the growth of breast cancer mediated by TNF-α in vitro and in vivo. Thus, we conclude that TNF-α promotes the growth of breast cancer through the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1.Our finding provides new insights into the mechanism by which TNF-α drives oncoprotein HBXIP in the development of breast cancer.
Collapse
Affiliation(s)
- Xiaoli Cai
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Can Cao
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiong Li
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bowen Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|