1
|
Bredt BH, Tripet F, Müller P. Revealing complex mosquito behaviour: a review of current automated video tracking systems suitable for tracking mosquitoes in the field. Parasit Vectors 2025; 18:66. [PMID: 39985064 PMCID: PMC11846416 DOI: 10.1186/s13071-025-06666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/08/2025] [Indexed: 02/24/2025] Open
Abstract
Mosquito-borne pathogens continue to cause tremendous suffering, morbidity and mortality. For many of these diseases, vector control remains the most effective approach. The development and deployment of effective and efficient mosquito control products and strategies require a profound understanding of mosquito behaviour. To study complex mosquito behaviour, automated video tracking of mosquito flight paths has proven to be a comprehensive approach, and several video tracking approaches have emerged in recent years, making the choice for a suitable system challenging. Here, we conducted a literature review by searching PubMed and Google Scholar, and we identified 66 publications focusing on mosquito video tracking, which made use of eight different systems. We then compared and scored those video tracking systems by assessing their performance in the laboratory as well as their potential suitability for tracking mosquito behaviour in a field setting. While all eight systems have produced valuable information on mosquito behaviour, for tracking mosquitoes in the field, 'Braid', 'EthoVision XT' and 'Trackit3D' appear to be the most suitable systems as they need small disk capacity and are well adaptable to different settings. However, the optimal choice will ultimately depend on the specifications required to answer a given research question, the financial resources available and user preferences.
Collapse
Affiliation(s)
- Beatrice H Bredt
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Frédéric Tripet
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pie Müller
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Caves EM, Davis AL, Nowicki S, Johnsen S. Backgrounds and the evolution of visual signals. Trends Ecol Evol 2024; 39:188-198. [PMID: 37802667 DOI: 10.1016/j.tree.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Color signals which mediate behavioral interactions across taxa and contexts are often thought of as color 'patches' - parts of an animal that appear colorful compared to other parts of that animal. Color patches, however, cannot be considered in isolation because how a color is perceived depends on its visual background. This is of special relevance to the function and evolution of signals because backgrounds give rise to a fundamental tradeoff between color signal detectability and discriminability: as its contrast with the background increases, a color patch becomes more detectable, but discriminating variation in that color becomes more difficult. Thus, the signal function of color patches can only be fully understood by considering patch and background together as an integrated whole.
Collapse
Affiliation(s)
- Eleanor M Caves
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | - Stephen Nowicki
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
3
|
Suresh T, Roscoe LE, Hillier NK. Pheromone and Host Plant Odor Detection in Eastern Spruce Budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). INSECTS 2023; 14:653. [PMID: 37504659 PMCID: PMC10380843 DOI: 10.3390/insects14070653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Spruce budworm, Choristoneura fumiferana Clemens, is an ecologically significant defoliator of spruce and balsam fir in North America. Optimization of semiochemical-mediated control is needed to improve the existing integrated pest management systems such as mating disruption and population estimation. This study used single sensillum recordings (SSR) to identify the responses of olfactory receptor neurons (ORNs) in the antennal sensilla of adult male and female C. fumiferana to host plant volatiles, and female sex pheromones. There have been few SSR studies done on spruce budworm, and to our knowledge, the present study represents the first attempt to examine the responses of ORNs from antennal sensilla in response to a range of host and conspecific stimuli. A total of 86 sensilla were characterized and sorted into 15 possible sensillum categories based on odor responses. We observed that specialist sensilla responding to few ligands were more abundant in both male and female than sensilla exhibiting more generalized odorant responses. (E/Z)-11-tetradecenal elicited responses from ORNs from any sensilla which were sensitive to pheromones in both males and females. Female C. fumiferana ORNs were able to detect and physiologically respond to female-produced sex pheromones with the same degree of sensitivity as their male counterparts. Together, these data improve our knowledge of mechanisms by which adult budworms respond to pheromone and host plant volatiles and provide insights that may be complementary to existing integrated pest management (IPM) strategies based on the chemical ecology of spruce budworm.
Collapse
Affiliation(s)
- Thanusha Suresh
- Biology Department, Acadia University, 33 Westwood Ave, Wolfville, NS B4P 2R6, Canada
| | - Lucas E Roscoe
- Canadian Forest Service-Atlantic Forestry Centre, 1350 Regent Street, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada
| | - N Kirk Hillier
- Biology Department, Acadia University, 33 Westwood Ave, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
4
|
Vandroux P, Li Z, Capoduro R, François MC, Renou M, Montagné N, Jacquin-Joly E. Activation of pheromone-sensitive olfactory neurons by plant volatiles in the moth Agrotis ipsilon does not occur at the level of the pheromone receptor protein. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1035252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In moths, mate finding relies on female-emitted sex pheromones that the males have to decipher within a complex environmental odorant background. Previous studies have shown that interactions of both sex pheromones and plant volatiles can occur in the peripheral olfactory system, and that some plant volatiles can activate the pheromone-specific detection pathway. In the noctuid moth Agrotis ipsilon, plant volatiles such as heptanal activate the receptor neurons tuned to the pheromone component (Z)7-12:OAc. However, the underlying mechanisms remain totally unknown. Following the general rule that states that one olfactory receptor neuron usually expresses only one type of receptor protein, a logic explanation would be that the receptor protein expressed in (Z)7-12:OAc-sensitive neurons recognizes both pheromone and plant volatiles. To test this hypothesis, we first annotated odorant receptor genes in the genome of A. ipsilon and we identified a candidate receptor putatively tuned to (Z)7-12:OAc, named AipsOR3. Then, we expressed it in Drosophila olfactory neurons and determined its response spectrum to a large panel of pheromone compounds and plant volatiles. Unexpectedly, the receptor protein AipsOR3 appeared to be very specific to (Z)7-12:OAc and was not activated by any of the plant volatiles tested, including heptanal. We also found that (Z)7-12:OAc responses of Drosophila neurons expressing AipsOR3 were not affected by a background of heptanal. As the Drosophila olfactory sensilla that house neurons in which AipsOR3 was expressed contain other olfactory proteins – such as odorant-binding proteins – that may influence its selectivity, we also expressed AipsOR3 in Xenopus oocytes and confirmed its specificity and the lack of activation by plant volatiles. Altogether, our results suggest that a still unknown second odorant receptor protein tuned to heptanal and other plant volatiles is expressed in the (Z)7-12:OAc-sensitive neurons of A. ipsilon.
Collapse
|
5
|
Host-plant volatiles enhance the attraction of Cnaphalocrocis medinalis (Lepidoptera: Crambidae) to sex pheromone. CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-022-00372-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Zhou 周绍群 S, Jander G. Molecular ecology of plant volatiles in interactions with insect herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:449-462. [PMID: 34581787 DOI: 10.1093/jxb/erab413] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Plant-derived volatile organic compounds (VOCs) play pivotal roles in interactions with insect herbivores. Individual VOCs can be directly toxic or deterrent, serve as signal molecules to attract natural enemies, and/or be perceived by distal plant tissues as a priming signal to prepare for expected herbivory. Environmental conditions, as well as the specific plant-insect interaction being investigated, strongly influence the observed functions of VOC blends. The complexity of plant-insect chemical communication via VOCs is further enriched by the sophisticated molecular perception mechanisms of insects, which can respond to one or more VOCs and thereby influence insect behavior in a manner that has yet to be fully elucidated. Despite numerous gaps in the current understanding of VOC-mediated plant-insect interactions, successful pest management strategies such as push-pull systems, synthetic odorant traps, and crop cultivars with modified VOC profiles have been developed to supplement chemical pesticide applications and enable more sustainable agricultural practices. Future studies in this field would benefit from examining the responses of both plants and insects in the same experiment to gain a more complete view of these interactive systems. Furthermore, a molecular evolutionary study of key genetic elements of the ecological interaction phenotypes could provide new insights into VOC-mediated plant communication with insect herbivores.
Collapse
Affiliation(s)
- Shaoqun Zhou 周绍群
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | |
Collapse
|
7
|
Conchou L, Lucas P, Deisig N, Demondion E, Renou M. Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. INSECTS 2021; 12:insects12050409. [PMID: 34062868 PMCID: PMC8147264 DOI: 10.3390/insects12050409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary It is well acknowledged that some of the volatile plant compounds (VPC) naturally present in insect natural habitats alter the perception of their own pheromone when presented individually as a background to pheromone. However, the effects of mixing VPCs as they appear to insects in natural olfactory landscapes are poorly understood. We measured the activity of brain neurons and neurons that detect a sex pheromone component in a moth antenna, while exposed to simple or composite backgrounds of VPCs representative of the odorant variety encountered by this moth. Maps of activities were built using calcium imaging to visualize which brain areas were most affected by VPCs. In the antenna, we observed differences in VPC capacity to elicit firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to volatility. The neuronal network, which reformats the input from antenna neurons in the brain, did not improve pheromone salience. We postulate that moth olfactory system evolved to increase sensitivity and encode fast changes of concentration at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component, VPC salience seems more important than background complexity. Abstract The volatile plant compounds (VPC) alter pheromone perception by insects but mixture effects inside insect olfactory landscapes are poorly understood. We measured the activity of receptor neurons tuned to Z7-12Ac (Z7-ORN), a pheromone component, in the antenna and central neurons in male Agrotis ipsilon while exposed to simple or composite backgrounds of a panel of VPCs representative of the odorant variety encountered by a moth. Maps of activities were built using calcium imaging to visualize which areas in antennal lobes (AL) were affected by VPCs. We compared the VPC activity and their impact as backgrounds at antenna and AL levels, individually or in blends. At periphery, VPCs showed differences in their capacity to elicit Z7-ORN firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to vapor pressures. The AL neuronal network, which reformats the ORN input, did not improve pheromone salience. We postulate that the AL network evolved to increase sensitivity and to encode for fast changes of pheromone at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component. VPC salience seems to be more important than background complexity.
Collapse
|
8
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
9
|
Renou M, Anton S. Insect olfactory communication in a complex and changing world. CURRENT OPINION IN INSECT SCIENCE 2020; 42:1-7. [PMID: 32485594 DOI: 10.1016/j.cois.2020.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Insect intraspecific olfactory communication occurs in a complex sensory environment. Here we present recent results on how the olfactory system extracts specific information from a sensory background, and integrates it with complementary information to improve odor source localization. Recent advances on mechanisms of olfactory mixture processing, multi-modal integration, as well as plasticity of sensory processing are reviewed. Significant progress in the understanding of neural coding and molecular bases of olfaction reinforce our perception of the tremendous adaptability of insects to a changing environment. However several reports demonstrate that anthropogenic environmental perturbations interfere with insect olfactory communication and might as a consequence significantly alter the functioning of ecosystems and agroecosystems.
Collapse
Affiliation(s)
- Michel Renou
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris). INRAE, Sorbonne Université, CNRS, IRD, UPEC, Univ. P7. Versailles, France
| | - Sylvia Anton
- Institute for Genetics, Environment and Plant Protection - EGI, INRAE-Institut Agro-Université de Rennes 1, Angers, France.
| |
Collapse
|
10
|
Pannequin R, Jouaiti M, Boutayeb M, Lucas P, Martinez D. Automatic tracking of free-flying insects using a cable-driven robot. Sci Robot 2020; 5:5/43/eabb2890. [PMID: 33022614 DOI: 10.1126/scirobotics.abb2890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/01/2020] [Indexed: 11/02/2022]
Abstract
Flying insects have evolved to develop efficient strategies to navigate in natural environments. Yet, studying them experimentally is difficult because of their small size and high speed of motion. Consequently, previous studies were limited to tethered flights, hovering flights, or restricted flights within confined laboratory chambers. Here, we report the development of a cable-driven parallel robot, named lab-on-cables, for tracking and interacting with a free-flying insect. In this approach, cameras are mounted on cables, so as to move automatically with the insect. We designed a reactive controller that minimizes the online tracking error between the position of the flying insect, provided by an embedded stereo-vision system, and the position of the moving lab, computed from the cable lengths. We validated the lab-on-cables with Agrotis ipsilon moths (ca. 2 centimeters long) flying freely up to 3 meters per second. We further demonstrated, using prerecorded trajectories, the possibility to track other insects such as fruit flies or mosquitoes. The lab-on-cables is relevant to free-flight studies and may be used in combination with stimulus delivery to assess sensory modulation of flight behavior (e.g., pheromone-controlled anemotaxis in moths).
Collapse
Affiliation(s)
| | | | | | - Philippe Lucas
- Institute of Ecology and Environmental Sciences of Paris, INRAE, 78000 Versailles, France
| | | |
Collapse
|
11
|
Hoffmann A, Bourgeois T, Munoz A, Anton S, Gevar J, Dacher M, Renou M. A plant volatile alters the perception of sex pheromone blend ratios in a moth. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:553-570. [PMID: 32335729 DOI: 10.1007/s00359-020-01420-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 11/29/2022]
Abstract
Mate finding in most moths is based on male perception of a female-emitted pheromone whose species specificity resides in component chemistry and proportions. Components are individually detected by specialized olfactory receptor neurons (ORNs) projecting into the macroglomerular complex (MGC) of the male brain. We asked how robust ratio recognition is when challenged by a plant volatile background. To test this, we investigated the perception of the pheromone blend in Agrotis ipsilon, a moth species whose females produce a blend of Z7-dodecenyl acetate (Z7-12:Ac), Z9-tetradecenyl acetate (Z9-14:Ac), and Z11-hexadecenyl acetate in a 4:1:4 ratio optimally attractive for males. First, we recorded the responses of specialist ORNs for Z7 and Z9 and showed that heptanal, a flower volatile, activated Z7 but not Z9 neurons. Then, we recorded intracellularly the responses of MGC neurons to various ratios and showed that heptanal altered ratio responses of pheromone-sensitive neurons. Finally, we analyzed the behavior of males in a wind tunnel and showed that their innate preference for the 4:1:4 blend was shifted in the presence of heptanal. Pheromone ratio recognition may thus be altered by background odorants. Therefore, the olfactory environment might be a selective force for the evolution of pheromone communication systems.
Collapse
Affiliation(s)
- Antoine Hoffmann
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France.,Department of Neurobiology, Max Planck Institute of Animal Behavior, University of Konstanz, Univeristätsstraße 10, 78464, Konstanz, Germany
| | - Thomas Bourgeois
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France
| | - Alicia Munoz
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France.,Centre d'élevage conservatoire de l'outarde canepetière-Zoodyssée, 79360, Villiers-en-Bois, France
| | - Sylvia Anton
- Institute for Genetics, Environment and Plant Protection-EGI, INRA-Agrocampus Ouest, Université de Rennes 1, 49045, Angers, France
| | - Jeremy Gevar
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France
| | - Matthieu Dacher
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France
| | - Michel Renou
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France.
| |
Collapse
|
12
|
Li Y, Jiang X, Wang Z, Zhang J, Klett K, Mehmood S, Qu Y, Tan K. Losing the Arms Race: Greater Wax Moths Sense but Ignore Bee Alarm Pheromones. INSECTS 2019; 10:insects10030081. [PMID: 30909564 PMCID: PMC6468870 DOI: 10.3390/insects10030081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022]
Abstract
The greater wax moth, Galleria mellonella L., is one of main pests of honeybees. The larvae burrow into the wax, damaging the bee comb and degenerating bee products, but also causes severe effects like driving the whole colony to abscond. In the present study, we used electroantennograms, a Y maze, and an oviposition site choice bioassay to test whether the greater wax moth can eavesdrop on bee alarm pheromones (isopentyl acetate, benzyl acetate, octyl acetate, and 2-heptanone), to target the bee colony, or if the bee alarm pheromones would affect their preference of an oviposition site. The results revealed that the greater wax moth showed a strong electroantennogram response to these four compounds of bee alarm pheromones even in a low concentration (100 ng/μL), while they showed the highest response to octyl acetate compared to the other three main bee alarm components (isopentyl acetate, benzyl acetate, and 2-heptanone). However, the greater wax moth behavioral results showed no significant preference or avoidance to these four bee alarm pheromones. These results indicate that bees are currently losing the arms race since the greater wax moth can sense bee alarm pheromones, however, these alarm pheromones are ignored by the greater wax moth.
Collapse
Affiliation(s)
- Yuan Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingchuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
| | - Junjun Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Katrina Klett
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shahid Mehmood
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yufeng Qu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China.
| |
Collapse
|
13
|
Orsucci M, Audiot P, Nidelet S, Dorkeld F, Pommier A, Vabre M, Severac D, Rohmer M, Gschloessl B, Streiff R. Transcriptomic response of female adult moths to host and non-host plants in two closely related species. BMC Evol Biol 2018; 18:145. [PMID: 30236059 PMCID: PMC6148789 DOI: 10.1186/s12862-018-1257-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/30/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Divergent selection has been shown to promote speciation in many taxa and especially in phytophagous insects. In the Ostrinia species complex, the European corn borer (ECB) and adzuki bean borer (ABB) are two sibling species specialized to different host plants. The first is a well-known maize pest, whereas the second is a polyphagous species associated with various dicotyledons. Their specialization to host plants is driven by morphological, behavioral and physiological adaptations. In particular, previous studies have shown that ECB and ABB display marked behavior with regard to plant choice during oviposition, involving specific preference and avoidance mechanisms. In this study, our goal was to identify the mechanisms underlying this host-plant specialization in adult females through an analysis of their gene expression. We assembled and annotated a de novo reference transcriptome and measured differences in gene expression between ECB and ABB females, and between environments. We related differentially expressed genes to host preference behavior, and highlighted the functional categories involved. We also conducted a specific analysis of chemosensory genes, which are considered to be good candidates for host recognition before oviposition. RESULTS We recorded more differentially expressed genes in ECB than in ABB samples, and noticed that the majority of genes potentially involved in the host preference were different between the two species. At the functional level, the response to plant environment in adult females involved many processes, including the metabolism of carbohydrates, lipids, proteins, and amino acids; detoxification mechanisms and immunity; and the chemosensory repertoire (as expected). Until now, most of the olfactory receptors described in Ostrinia spp. had been tested for their putative role in pheromone recognition by males. Here we observed that one specific olfactory receptor was clearly associated with ECB's discrimination between maize and mugwort conditions, highlighting a potential new candidate involved in plant odor discrimination in adult females. CONCLUSIONS Our results are a first step toward the identification of candidate genes and functions involved in chemosensory processes, carbohydrate metabolism, and virus and retrovirus dynamics. These candidates provide new avenues for research into understanding the role of divergent selection between different environments in species diversification.
Collapse
Affiliation(s)
- M. Orsucci
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- DGIMI, INRA, Univ Montpellier, Montpellier, France
- Present address: Department of Ecology and Genetics, EBC, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - P. Audiot
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - S. Nidelet
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - F. Dorkeld
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - A. Pommier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - D. Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 34094 Montpellier Cedex 5, France
| | - M. Rohmer
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 34094 Montpellier Cedex 5, France
| | - B. Gschloessl
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - R. Streiff
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- DGIMI, INRA, Univ Montpellier, Montpellier, France
| |
Collapse
|
14
|
Vuts J, Woodcock CM, Caulfield JC, Powers SJ, Pickett JA, Birkett MA. Isolation and identification of floral attractants from a nectar plant for the dried bean beetle, Acanthoscelides obtectus (Coleoptera: Chrysomelidae, Bruchinae). PEST MANAGEMENT SCIENCE 2018; 74:2069-2075. [PMID: 29516673 DOI: 10.1002/ps.4903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/01/2018] [Accepted: 03/01/2018] [Indexed: 02/28/2024]
Abstract
BACKGROUND The response of virgin females of the legume pest Acanthoscelides obtectus (Coleoptera: Bruchidae) to headspace extracts of volatiles collected from flowers of a nectar plant, Daucus carota, was investigated using behaviour (four-arm olfactometry) and coupled gas chromatography-electroantennography (GC-EAG). RESULTS Odours from inflorescences were significantly more attractive to virgin female beetles than clean air. Similarly, a sample of volatile organic compounds (VOCs) collected by air entrainment (dynamic headspace collection) was more attractive to beetles than a solvent control. In coupled GC-EAG experiments with beetle antennae and the VOC extract, six components showed EAG activity. Using coupled GC-mass spectrometry (GC-MS) and GC peak enhancement with authentic standards, the components were identified as α-pinene (S:R 16:1), sabinene, myrcene, limonene (S:R 1:3), terpinolene and (S)-bornyl acetate. Females preferred the synthetic blend of D. carota EAG-active volatiles to the solvent control in bioassays. When compared directly, odours of D. carota inflorescences elicited stronger positive behaviour than the synthetic blend. CONCLUSION This is the first report of behaviourally active volatiles linked to pollen location for A. obtectus, and development of the six-component blend is being pursued, which could underpin the design of semiochemical-based field management approaches against this major pest of stored products. © 2018 Society of Chemical Industry.
Collapse
|