1
|
Shi X, Niida N, Yamamoto K, Ohtsuki T, Matsui Y, Owada K. A Robust Approach Assisted by Signal Quality Assessment for Fetal Heart Rate Estimation from Doppler Ultrasound Signal. SENSORS (BASEL, SWITZERLAND) 2023; 23:9698. [PMID: 38139544 PMCID: PMC10747258 DOI: 10.3390/s23249698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Fetal heart rate (FHR) monitoring, typically using Doppler ultrasound (DUS) signals, is an important technique for assessing fetal health. In this work, we develop a robust DUS-based FHR estimation approach complemented by DUS signal quality assessment (SQA) based on unsupervised representation learning in response to the drawbacks of previous DUS-based FHR estimation and DUS SQA methods. We improve the existing FHR estimation algorithm based on the autocorrelation function (ACF), which is the most widely used method for estimating FHR from DUS signals. Short-time Fourier transform (STFT) serves as a signal pre-processing technique that allows the extraction of both temporal and spectral information. In addition, we utilize double ACF calculations, employing the first one to determine an appropriate window size and the second one to estimate the FHR within changing windows. This approach enhances the robustness and adaptability of the algorithm. Furthermore, we tackle the challenge of low-quality signals impacting FHR estimation by introducing a DUS SQA method based on unsupervised representation learning. We employ a variational autoencoder (VAE) to train representations of pre-processed fetal DUS data and aggregate them into a signal quality index (SQI) using a self-organizing map (SOM). By incorporating the SQI and Kalman filter (KF), we refine the estimated FHRs, minimizing errors in the estimation process. Experimental results demonstrate that our proposed approach outperforms conventional methods in terms of accuracy and robustness.
Collapse
Affiliation(s)
- Xintong Shi
- Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Japan; (X.S.); (N.N.)
| | - Natsuho Niida
- Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Japan; (X.S.); (N.N.)
| | - Kohei Yamamoto
- Department of Information and Computer Science, Keio University, Yokohama 223-8522, Japan;
| | - Tomoaki Ohtsuki
- Department of Information and Computer Science, Keio University, Yokohama 223-8522, Japan;
| | - Yutaka Matsui
- Atom Medical Co., Tokyo 113-0021, Japan; (Y.M.); (K.O.)
| | | |
Collapse
|
2
|
Kodkin V. Cardiotocography in Obstetrics: New Solutions for "Routine" Technology. SENSORS (BASEL, SWITZERLAND) 2022; 22:5126. [PMID: 35890806 PMCID: PMC9320740 DOI: 10.3390/s22145126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This work is devoted to the problems of one of the most common screening examinations used in medical practice: fetal cardiotocography (CTG). The technology of ultrasonic monitoring of fetal heart rate (HR) variations has been used for more than 70 years. During this time, it has undergone many upgrades and has been characterized several times as a hopelessly outdated routine technology. Over the past 5-7 years, many in-depth studies and review papers on cardiotocography have appeared, which revealed both the problems and prospects of the technology. Basically, hopes are associated with artificial intelligence, which should increase the accuracy of the analysis of initially inaccurate measurements obtained using ultrasonic testing. At the same time, after the introduction of pulsed operating modes and the appearance of multi-chip sensors, the quality of the original signal remains practically unchanged. This circumstance makes the prospects of the technology very problematic. However, until now, there has not been a reliable replacement for this screening, which is equally safe, non-invasive, and accessible to a wide range of specialists, medical institutions, and patients. The paper discusses and substantiates proposals for improving the technology based on original (different from traditional CTG) methods of processing information received from ultrasonic sensors, which, in the author's opinion, allow for solving the main problems of CTG: identifying the correct direction of radiation to the fetal heart and to reliably evaluate beat-to-beat heart rate.
Collapse
Affiliation(s)
- Vladimir Kodkin
- Department of Electric Drive and Mechatronics, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
3
|
Valderrama CE, Ketabi N, Marzbanrad F, Rohloff P, Clifford GD. A review of fetal cardiac monitoring, with a focus on low- and middle-income countries. Physiol Meas 2020; 41:11TR01. [PMID: 33105122 PMCID: PMC9216228 DOI: 10.1088/1361-6579/abc4c7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is limited evidence regarding the utility of fetal monitoring during pregnancy, particularly during labor and delivery. Developed countries rely on consensus 'best practices' of obstetrics and gynecology professional societies to guide their protocols and policies. Protocols are often driven by the desire to be as safe as possible and avoid litigation, regardless of the cost of downstream treatment. In high-resource settings, there may be a justification for this approach. In low-resource settings, in particular, interventions can be costly and lead to adverse outcomes in subsequent pregnancies. Therefore, it is essential to consider the evidence and cost of different fetal monitoring approaches, particularly in the context of treatment and care in low-to-middle income countries. This article reviews the standard methods used for fetal monitoring, with particular emphasis on fetal cardiac assessment, which is a reliable indicator of fetal well-being. An overview of fetal monitoring practices in low-to-middle income counties, including perinatal care access challenges, is also presented. Finally, an overview of how mobile technology may help reduce barriers to perinatal care access in low-resource settings is provided.
Collapse
Affiliation(s)
- Camilo E Valderrama
- Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nasim Ketabi
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
| | - Faezeh Marzbanrad
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC, Australia
| | - Peter Rohloff
- Wuqu' Kawoq, Maya Health Alliance, Santiago Sacatepéquez, Guatemala
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| |
Collapse
|
4
|
Katebi N, Marzbanrad F, Stroux L, Valderrama CE, Clifford GD. Unsupervised hidden semi-Markov model for automatic beat onset detection in 1D Doppler ultrasound. Physiol Meas 2020; 41:085007. [PMID: 32585651 DOI: 10.1088/1361-6579/aba006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE One dimensional (1D) Doppler ultrasound (DUS) is commonly used for fetal health assessment, during both regular prenatal visits and labor. It is used in preference to ECG and other modalities because of its simplicity and cost. To date, all analysis of such data has been confined to a smoothed, windowed heart rate estimation derived from the 1D DUS signal, reducing the potential of short-term variability information. A first step in improving the assessment of short-term variability of the fetal heart rate (FHR) is through implementing an accurate beat detector for 1D DUS signals. APPROACH This work presents an unsupervised probabilistic segmentation method enabled by a hidden semi-Markov model (HSMM). The proposed method employs envelope and spectral features for an online segmentation of fetal 1D DUS signal. The beat onsets and fetal cardiac beat-to-beat intervals are then estimated from the segmentations. For this work, two data sets were used, including 1D DUS recordings from five fetuses recorded in Germany, comprising 6521 beats and 45.06 minutes of data (dataset 1). Simultaneous fetal ECG (fECG) was used as the reference for beat timing. Dataset 2, comprising 4044 beats captured from 17 subjects in the UK was hand scored for beat location and was used as an independent held-out test set. Leave-one-out subject cross-validation was used for parameter tuning on dataset 1. No retraining was performed for dataset 2. To assess the performance of the beat onset detection, the root mean square error (RMSE), F1 score, sensitivity, positive predictivity (PPV) and the error in several standard common heart rate variability metrics were used. These metrics were evaluated on three fiducial points: (1) beat onset, (2) beat offset, and (3) middle of beat interval. MAIN RESULTS In dataset 1, the proposed method provided an RMSE of 20 ms, F1 score of 97.5 %, a Se of 97.6%, and a PPV of 97.3%. In dataset 2, the proposed method achieved an RMSE of 26 ms, an F1 score of 98.5 %, a Se of 98.0 % and a PPV of 98.9 %. It was also determined that the best beat-to-beat interval was derived from the onset of each beat. For the dataset 2, significant correlations were found in all short term heart rate variability metrics tested, both in the time and frequency domain. Only the proportion of successive normal-to-normal interval differences greater than 20 ms (pNN20) exhibited a significant absolute difference. SIGNIFICANCE This work presents the first-ever description of an algorithm to identify cardiac beats with 1D DUS, closely matching the fetal ECG-derived beats, to enable short-term heart rate variability analysis. The novel algorithm proposed requires no human labeling of data, and could have applicability beyond 1D DUS to other similar highly variable time series.
Collapse
Affiliation(s)
- Nasim Katebi
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
| | | | | | | | | |
Collapse
|
5
|
Valderrama CE, Marzbanrad F, Hall-Clifford R, Rohloff P, Clifford GD. A Proxy for Detecting IUGR Based on Gestational Age Estimation in a Guatemalan Rural Population. Front Artif Intell 2020; 3:56. [PMID: 33733173 PMCID: PMC7861337 DOI: 10.3389/frai.2020.00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/29/2020] [Indexed: 11/19/2022] Open
Abstract
In-utero progress of fetal development is normally assessed through manual measurements taken from ultrasound images, requiring relatively expensive equipment and well-trained personnel. Such monitoring is therefore unavailable in low- and middle-income countries (LMICs), where most of the perinatal mortality and morbidity exists. The work presented here attempts to identify a proxy for IUGR, which is a significant contributor to perinatal death in LMICs, by determining gestational age (GA) from data derived from simple-to-use, low-cost one-dimensional Doppler ultrasound (1D-DUS) and blood pressure devices. A total of 114 paired 1D-DUS recordings and maternal blood pressure recordings were selected, based on previously described signal quality measures. The average length of 1D-DUS recording was 10.43 ± 1.41 min. The min/median/max systolic and diastolic maternal blood pressures were 79/102/121 and 50.5/63.5/78.5 mmHg, respectively. GA was estimated using features derived from the 1D-DUS and maternal blood pressure using a support vector regression (SVR) approach and GA based on the last menstrual period as a reference target. A total of 50 trials of 5-fold cross-validation were performed for feature selection. The final SVR model was retrained on the training data and then tested on a held-out set comprising 28 normal weight and 25 low birth weight (LBW) newborns. The mean absolute GA error with respect to the last menstrual period was found to be 0.72 and 1.01 months for the normal and LBW newborns, respectively. The mean error in the GA estimate was shown to be negatively correlated with the birth weight. Thus, if the estimated GA is lower than the (remembered) GA calculated from last menstruation, then this could be interpreted as a potential sign of IUGR associated with LBW, and referral and intervention may be necessary. The assessment system may, therefore, have an immediate impact if coupled with suitable intervention, such as nutritional supplementation. However, a prospective clinical trial is required to show the efficacy of such a metric in the detection of IUGR and the impact of the intervention.
Collapse
Affiliation(s)
- Camilo E Valderrama
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Faezeh Marzbanrad
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - Rachel Hall-Clifford
- Department of Sociology, Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Peter Rohloff
- Wuqu' Kawoq
- Maya Health Alliance, Santiago Sacatepéquez, Guatemala.,Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, United States
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States.,Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Kupka T, Matonia A, Jezewski M, Jezewski J, Horoba K, Wrobel J, Czabanski R, Martinek R. New Method for Beat-to-Beat Fetal Heart Rate Measurement Using Doppler Ultrasound Signal. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4079. [PMID: 32707863 PMCID: PMC7435740 DOI: 10.3390/s20154079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022]
Abstract
The most commonly used method of fetal monitoring is based on heart activity analysis. Computer-aided fetal monitoring system enables extraction of clinically important information hidden for visual interpretation-the instantaneous fetal heart rate (FHR) variability. Today's fetal monitors are based on monitoring of mechanical activity of the fetal heart by means of Doppler ultrasound technique. The FHR is determined using autocorrelation methods, and thus it has a form of evenly spaced-every 250 ms-instantaneous measurements, where some of which are incorrect or duplicate. The parameters describing a beat-to-beat FHR variability calculated from such a signal show significant errors. The aim of our research was to develop new analysis methods that will both improve an accuracy of the FHR determination and provide FHR representation as time series of events. The study was carried out on simultaneously recorded (during labor) Doppler ultrasound signal and the reference direct fetal electrocardiogram Two subranges of Doppler bandwidths were separated to describe heart wall movements and valve motions. After reduction of signal complexity by determining the Doppler ultrasound envelope, the signal was analyzed to determine the FHR. The autocorrelation method supported by a trapezoidal prediction function was used. In the final stage, two different methods were developed to provide signal representation as time series of events: the first using correction of duplicate measurements and the second based on segmentation of instantaneous periodicity measurements. Thus, it ensured the mean heart interval measurement error of only 1.35 ms. In a case of beat-to-beat variability assessment the errors ranged from -1.9% to -10.1%. Comparing the obtained values to other published results clearly confirms that the new methods provides a higher accuracy of an interval measurement and a better reliability of the FHR variability estimation.
Collapse
Affiliation(s)
- Tomasz Kupka
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, PL41800 Zabrze, Poland; (A.M.); (J.J.); (K.H.); (J.W.)
| | - Adam Matonia
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, PL41800 Zabrze, Poland; (A.M.); (J.J.); (K.H.); (J.W.)
| | - Michal Jezewski
- Department of Cybernetics, Nanotechnology and Data Processing, Silesian University of Technology, PL44100 Gliwice, Poland; (M.J.); (R.C.)
| | - Janusz Jezewski
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, PL41800 Zabrze, Poland; (A.M.); (J.J.); (K.H.); (J.W.)
| | - Krzysztof Horoba
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, PL41800 Zabrze, Poland; (A.M.); (J.J.); (K.H.); (J.W.)
| | - Janusz Wrobel
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, PL41800 Zabrze, Poland; (A.M.); (J.J.); (K.H.); (J.W.)
| | - Robert Czabanski
- Department of Cybernetics, Nanotechnology and Data Processing, Silesian University of Technology, PL44100 Gliwice, Poland; (M.J.); (R.C.)
| | - Radek Martinek
- Department of Cybernetics and Biomedical Engineering, VSB—Technical University of Ostrava, 70800 Ostrava-Poruba, Czech Republic;
| |
Collapse
|
7
|
Hamelmann P, Vullings R, Kolen AF, Bergmans JWM, van Laar JOEH, Tortoli P, Mischi M. Doppler Ultrasound Technology for Fetal Heart Rate Monitoring: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:226-238. [PMID: 31562079 DOI: 10.1109/tuffc.2019.2943626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fetal well-being is commonly assessed by monitoring the fetal heart rate (fHR). In clinical practice, the de facto standard technology for fHR monitoring is based on the Doppler ultrasound (US). Continuous monitoring of the fHR before and during labor is performed using a US transducer fixed on the maternal abdomen. The continuous fHR monitoring, together with simultaneous monitoring of the uterine activity, is referred to as cardiotocography (CTG). In contrast, for intermittent measurements of the fHR, a handheld Doppler US transducer is typically used. In this article, the technology of Doppler US for continuous fHR monitoring and intermittent fHR measurements is described, with emphasis on fHR monitoring for CTG. Special attention is dedicated to the measurement environment, which includes the clinical setting in which fHR monitoring is commonly performed. In addition, to understand the signal content of acquired Doppler US signals, the anatomy and physiology of the fetal heart and the surrounding maternal abdomen are described. The challenges encountered in these measurements have led to different technological strategies, which are presented and critically discussed, with a focus on the US transducer geometry, Doppler signal processing, and fHR extraction methods.
Collapse
|
8
|
Valderrama CE, Stroux L, Katebi N, Paljug E, Hall-Clifford R, Rohloff P, Marzbanrad F, Clifford GD. An open source autocorrelation-based method for fetal heart rate estimation from one-dimensional Doppler ultrasound. Physiol Meas 2019; 40:025005. [PMID: 30699403 PMCID: PMC8325598 DOI: 10.1088/1361-6579/ab033d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Open research on fetal heart rate (FHR) estimation is relatively rare, and evidence for the utility of metrics derived from Doppler ultrasound devices has historically remained hidden in the proprietary documentation of commercial entities, thereby inhibiting its assessment and improvement. Nevertheless, recent studies have attempted to improve FHR estimation; however, these methods were developed and tested using datasets composed of few subjects and are therefore unlikely to be generalizable on a population level. The work presented here introduces a reproducible and generalizable autocorrelation (AC)-based method for FHR estimation from one-dimensional Doppler ultrasound (1D-DUS) signals. APPROACH Simultaneous fetal electrocardiogram (fECG) and 1D-DUS signals generated by a hand-held Doppler transducer in a fixed position were captured by trained healthcare workers in a European hospital. The fECG QRS complexes were identified using a previously published fECG extraction algorithm and were then over-read to ensure accuracy. An AC-based method to estimate FHR was then developed on this data, using a total of 721 1D-DUS segments, each 3.75 s long, and parameters were tuned with Bayesian optimization. The trained FHR estimator was tested on two additional (independent) hand-annotated Doppler-only datasets recorded with the same device but on different populations: one composed of 3938 segments (from 99 fetuses) acquired in rural Guatemala, and another composed of 894 segments (from 17 fetuses) recorded in a hospital in the UK. MAIN RESULTS The proposed AC-based method was able to estimate FHR within 10% of the reference FHR values 96% of the time, with an accuracy of 97% for manually identified good quality segments in both of the independent test sets. SIGNIFICANCE This is the first work to publish open source code for FHR estimation from 1D-DUS data. The method was shown to satisfy estimations within 10% of the reference FHR values and it therefore defines a minimum accuracy for the field to match or surpass. Our work establishes a basis from which future methods can be developed to more accurately estimate FHR variability for assessing fetal wellbeing from 1D-DUS signals.
Collapse
Affiliation(s)
- Camilo E Valderrama
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Marzbanrad F, Stroux L, Clifford GD. Cardiotocography and beyond: a review of one-dimensional Doppler ultrasound application in fetal monitoring. Physiol Meas 2018; 39:08TR01. [PMID: 30027897 PMCID: PMC6237616 DOI: 10.1088/1361-6579/aad4d1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One-dimensional Doppler ultrasound (1D-DUS) provides a low-cost and simple method for acquiring a rich signal for use in cardiovascular screening. However, despite the use of 1D-DUS in cardiotocography (CTG) for decades, there are still challenges that limit the effectiveness of its users in reducing fetal and neonatal morbidities and mortalities. This is partly due to the noisy, transient, complex and nonstationary nature of the 1D-DUS signals. Current challenges also include lack of efficient signal quality metrics, insufficient signal processing techniques for extraction of fetal heart rate and other vital parameters with adequate temporal resolution, and lack of appropriate clinical decision support for CTG and Doppler interpretation. Moreover, the almost complete lack of open research in both hardware and software in this field, as well as commercial pressures to market the much more expensive and difficult to use Doppler imaging devices, has hampered innovation. This paper reviews the basics of fetal cardiac function, 1D-DUS signal generation and processing, its application in fetal monitoring and assessment of fetal development and wellbeing. It also provides recommendations for future development of signal processing and modeling approaches, to improve the application of 1D-DUS in fetal monitoring, as well as the need for annotated open databases.
Collapse
Affiliation(s)
- Faezeh Marzbanrad
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|