1
|
Shen J, Guo Y, Cao R. The relationship between amino acids and gastroesophageal reflux disease: evidence from a mendelian randomization analysis combined with a meta-analysis. Front Immunol 2025; 16:1420132. [PMID: 40103821 PMCID: PMC11914792 DOI: 10.3389/fimmu.2025.1420132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/06/2025] [Indexed: 03/20/2025] Open
Abstract
Background Gastroesophageal Reflux Disease (GERD), a prevalent gastrointestinal disorder globally, exhibits variable prevalence across regions, with higher frequencies observed in Western nations and lower in Asian countries. Key contributing factors encompass unhealthy eating patterns, tobacco use, consumption of alcohol, excess weight, and obesity, along with health conditions such as gestation and diabetes. Common manifestations include heartburn and a burning discomfort behind the breastbone, which, without appropriate management, can progress to more severe issues like esophagitis and Barrett's esophagus. Approaches to management and prevention primarily involve modifications in lifestyle, pharmacotherapy, and surgical interventions when deemed necessary. Utilizing Omics Mendelian Randomization (OMR) to investigate the causative links between genetic variants and diseases provides insights into the biological underpinnings of gastroesophageal reflux diseasec. It aids in pinpointing novel targets for therapy. The influence of amino acids in gastroesophageal reflux disease demonstrates the complexity, having the potential to both mitigate and intensify symptoms, underscoring the significance of personalized nutrition and therapeutic strategies. Methods This study is based on the omics mendelian randomization method, coupled with meta-analysis techniques, to enhance the precision of the research findings. Furthermore, a reverse validation procedure was implemented to validate the association between the positive findings and disease outcomes further. Throughout the study, multiple correction measures were employed to ensure the accuracy and reliability of the results. Results Based on our research methodology, we have ultimately discovered that glutamate exacerbates gastroesophageal reflux disease, increasing its risk. The data supporting this includes analysis of 20 amino acids and outcomes from the Finnish database, which showed that glutamate had an odds ratio (OR) for gastroesophageal reflux disease risk of 1.175(95% confidence interval (CI): 1.000 ~ 1.380, P = 0.05), and a beta value of 0.161. Analysis with outcomes from the UK database indicated that glutamate had an OR for gastroesophageal reflux disease risk of 1.399(95% CI: 1.060 ~ 1.847, P = 0.018) and a beta value of 0.336. After conducting a meta-analysis of the MR results and applying multiple corrections, the combined OR of glutamate for gastroesophageal reflux disease risk was 1.227 (95% CI: 1.068 ~ 1.411 P = 0.043); the beta values of the three primary MR outcomes were consistent in direction. Building on the positive results, reverse validation with outcome data from two different database sources for glutamate showed: in the Finngen database, with gastroesophageal reflux disease as the exposure, the Inverse Variance Weighted (IVW) method resulted in a P-value of 0.059; in the IEU database under the same condition, the IVW P-value was 1.433. Conclusions Glutamate may increase the risk and exacerbate the progression of gastroesophageal reflux disease through mechanisms such as impacting the nervous system and promoting inflammatory responses. Delving into the role of glutamate in gastroesophageal reflux disease enriches our understanding of the disease's biological mechanisms and may offer new strategies for clinical treatment and nutritional management. This insight can aid in developing healthier dietary plans, thereby benefiting patients.
Collapse
Affiliation(s)
- Jianjun Shen
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Yongqing Guo
- Capital University of Physical Education and Sports, Beijing, China
| | - Rui Cao
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| |
Collapse
|
2
|
Marco-Bonilla M, Fresnadillo M, Largo R, Herrero-Beaumont G, Mediero A. Energy Regulation in Inflammatory Sarcopenia by the Purinergic System. Int J Mol Sci 2023; 24:16904. [PMID: 38069224 PMCID: PMC10706580 DOI: 10.3390/ijms242316904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The purinergic system has a dual role: the maintenance of energy balance and signaling within cells. Adenosine and adenosine triphosphate (ATP) are essential for maintaining these functions. Sarcopenia is characterized by alterations in the control of energy and signaling in favor of catabolic pathways. This review details the association between the purinergic system and muscle and adipose tissue homeostasis, discussing recent findings in the involvement of purinergic receptors in muscle wasting and advances in the use of the purinergic system as a novel therapeutic target in the management of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain; (M.M.-B.); (M.F.); (R.L.); (G.H.-B.)
| |
Collapse
|
3
|
Garg SS, Gupta J. Guar gum-based nanoformulations: Implications for improving drug delivery. Int J Biol Macromol 2023; 229:476-485. [PMID: 36603711 DOI: 10.1016/j.ijbiomac.2022.12.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Poorly soluble drugs are reported to easily degrade in the gastrointestinal tract and contribute in limiting the effect of drug to its targeted site. Oral administration of drug is one of the prominent ways to deliver a drug, although, it experiences barriers like acidic pH, presence of microflora and enzymes in the gastrointestinal tract. Collectively all of these participate in the degradation of drug before it reaches its target site and thus, they impede the sustained effect of drug. A quest of choosing a polymer with good stability profile and releasing the drug to its targeted site is always been a challenge for the scientists worldwide. Many polymers have been reported to prevent the degradation of drug and one such naturally occurring biocompatible polymer is guar gum. Guar gum-based nanoformulations have been extensively used in past decades to achieve controlled drug release which defines its importance. The coating of guar gum over the drug improves the bioavailability of the drug and thus helps in minimizing the risk of drug degradation. This review intends to highlight the beneficial role of guar gum-based nanoformulations to improve drug delivery by ameliorating the bioavailibility.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
4
|
Farooqi MS, Podury S, Crowley G, Javed U, Li Y, Liu M, Kwon S, Grunig G, Khan AR, Francois F, Nolan A. Noninvasive, MultiOmic, and Multicompartmental Biomarkers of Reflux Disease: A Systematic Review. GASTRO HEP ADVANCES 2023; 2:608-620. [PMID: 38009162 PMCID: PMC10673619 DOI: 10.1016/j.gastha.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/18/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND AND AIMS Gastroesophageal reflux disease (GERD) is a prevalent gastrointestinal disorder that may complicate conditions such as obstructive airway disease. Our group has identified predictive biomarkers of GERD in particulate exposed first responders with obstructive airway disease. In addition, GERD diagnosis and treatment is costly and invasive. In light of these clinical concerns, we aimed to systematically review studies identifying noninvasive, multiOmic, and multicompartmental biomarkers of GERD. METHODS A systematic review of PubMed and Embase was performed using keywords focusing on reflux disease and biomarkers and registered with PROSPERO. We included original human studies in English, articles focusing on noninvasive biomarkers of GERD published after December 31, 2009. GERD subtypes (non-erosive reflux disease and erosive esophagitis) and related conditions (Barrett's Esophagus [BE] and Esophageal Adenocarcinoma). Predictive measures were synthesized and risk of bias assessed (Newcastle-Ottawa Scale). RESULTS Initial search identified n = 238 studies andn 13 articles remained after applying inclusion/exclusion criteria. Salivary pepsin was the most studied biomarker with significant sensitivity and specificity for GERD. Serum assessment showed elevated levels of Tumor Necrosis Factor-alpha in both GERD and Barrett's. Exhaled breath volatile sulfur compounds and acetic acid were associated with GERD. Oral Microbiome: Models with Lautropia, Streptococcus, and Bacteroidetes showed the greatest discrimination between BE and controls vs Lautropia; ROCAUC 0.94 (95% confidence interval; 0.85-1.00). CONCLUSION Prior studies identified significant multiOmic, multicompartmental noninvasive biomarker risks for GERD and BE. However, studies have a high risk of bias and the reliability and accuracy of the biomarkers identified are greatly limited, which further highlights the need to discover and validate clinically relevant noninvasive biomarkers of GERD.
Collapse
Affiliation(s)
- Muhammad S. Farooqi
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, New York
| | - Sanjiti Podury
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, New York
| | - George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, New York
| | - Urooj Javed
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, New York
| | - Yiwei Li
- Department of Population Health, Division of Biostatistics, NYUGSoM, New York, New York
| | - Mengling Liu
- Department of Population Health, Division of Biostatistics, NYUGSoM, New York, New York
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, New York
| | - Gabriele Grunig
- Department of Environmental Medicine, NYUGSoM, New York, New York
| | - Abraham R. Khan
- Department of Medicine, Center for Esophageal Health, NYUGSoM, New York, New York
- Department of Medicine, Division of Gastroenterology, NYUGSoM, New York, New York
| | - Fritz Francois
- Department of Medicine, Division of Gastroenterology, NYUGSoM, New York, New York
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, New York
- Department of Environmental Medicine, NYUGSoM, New York, New York
| |
Collapse
|
5
|
Qi Q, Li Q, Li J, Mo J, Tian Y, Guo J. Transcriptomic analysis and transgenerational effects of ZnO nanoparticles on Daphnia magna: Endocrine-disrupting potential and energy metabolism. CHEMOSPHERE 2022; 290:133362. [PMID: 34933032 DOI: 10.1016/j.chemosphere.2021.133362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The widespread application of zinc oxide nanoparticles (ZnO NPs) has raised concerns over the adverse effects on aquatic species. In this study, transcriptomic analysis was applied to evaluate the chronic toxicity of ZnO NPs on the freshwater invertebrate Daphnia magna and the intergenerational effects were then further investigated. Parent daphnia (F0) were exposed to ZnO NPs at 3, 60, and 300 μg L-1 for 21 days. ZnO NPs significantly inhibited the reproduction (first pregnancy and spawning time, total number of offspring) and growth (molting frequency and body length) of F0. Here, differentially expressed genes (DEGs) involved in lysosomal and phagosome, energy metabolism and endocrine disruption pathways were significantly downregulated. Furthermore, disruption on the transport and catabolic processes probably resulted in the particle accumulation. The inhibited pathways related to energy metabolism may partially account for the body length, molting and reproductive restriction. The suppression of growth and reproduction may attribute to the down-regulation of insulin secretion and ovarian steroidogenesis pathways, respectively. Partial recovery of growth and reproductive inhibition in F1 - F3 descended from the F0 generation exposure did not support constant transgenerational effects. This study unravels the molecular mechanisms and transgenerational consequences of the toxicity of nanoparticles on Daphnia.
Collapse
Affiliation(s)
- Qianju Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jing Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
6
|
Di Cerbo A, Carnevale G, Avallone R, Zavatti M, Corsi L. Protective Effects of Borago officinalis (Borago) on Cold Restraint Stress-Induced Gastric Ulcers in Rats: A Pilot Study. Front Vet Sci 2020; 7:427. [PMID: 32984407 PMCID: PMC7492383 DOI: 10.3389/fvets.2020.00427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/15/2020] [Indexed: 01/23/2023] Open
Abstract
Stress is a typical body's natural defense to a generic physical or psychic change. A specific linking mechanism between ulcer onset and psycho-physical stress prolonged exposure has been reported. We decided to investigate the possible effects of Borago officinalis L. (Borago) in preventing physical (stress)-induced gastric ulcers in a rat model. Eighty male Sprague-Dawley rats were randomly divided into 16 groups, pretreated with a control solution, omeprazole (20 mg/kg), Borago methanolic extract (25, 50, 100, 250, and 500 mg/kg), Borago organic extract (50, 100, 250, and 500 mg/kg), Borago aqueous extract (5, 10, 20, 30, and 40 mg/kg), and D(-)-2-Amino-5-phosphonovaleric acid (AP5) (25 mg/kg) and kept in stressful conditions such as water immersion and restraint-induced stress ulcers. The animals were sacrificed and their stomach scored for the severity and the number of gastric ulcers. Methanolic extract (500 mg/kg) significantly reduced both ulcer parameters (***p < 0.001 and **p < 0.01, respectively). Aqueous and organic extract significantly decreased severity score at 5 and 10 mg/kg (**p < 0.01 and ***p < 0.001, respectively), and at 250 and 500 mg/kg (***p < 0.001), respectively, while gastric ulcers' resulted number significantly reduced only at 10 mg/kg (*p < 0.05) and at 500 mg/kg (**p < 0.01), respectively. On the other hand, aqueous extract significantly increased the mucosal gastric content of cAMP (*p < 0.05) and NR2A and NR2B subunits (*p < 0.05 and **p < 0.01, respectively) at 5 mg/kg. Organic extract showed also a significant cytotoxic effect at 500 and 1,000 mg/kg with a 3T3 cell viability reduction of 43.6% (**p < 0.01) and 92.1% (***p < 0.001), respectively. Borago aqueous extract at 10 mg/kg could be considered as a potential protective agent against stress-induced ulcers, and it is reasonable to possibly ascribe such protective activity to a modulation of the NR2A and NR2B subunit expression.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Gianluca Carnevale
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Zavatti
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Molavipordanjani S, Abedi SM, Hosseinimehr SJ, Fatahian A, Mardanshahi A. The effects of pharmacological interventions, exercise, and dietary supplements on extra-cardiac radioactivity in myocardial perfusion single-photon emission computed tomography imaging. Nucl Med Commun 2020; 41:841-847. [PMID: 32796471 DOI: 10.1097/mnm.0000000000001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myocardial perfusion imaging (MPI) as an imaging modality plays a key role in the monitoring of patients with cardiovascular disease. MPI enables the assessment of cardiovascular disease, the effectiveness of therapy, and viable myocardial tissue. However, MPI suffers from some downfalls and limitations, which can influence its clinical applications. These limitations can arise from the patient's condition, equipment, or the actions of the technologist. In this review, we mainly focused on the different effective parameters on radioactivity uptake of organs including liver, intestines, stomach, and gall bladder and how they affect the quality of the acquired images in nuclear medicine. More importantly, we cover how different suggested medicines, foods and exercise alleviative this problem.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences
| | - Alireza Fatahian
- Department of Cardiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences
| |
Collapse
|
8
|
Wang S, Gao S, Zhou D, Qian X, Luan J, Lv X. The role of the CD39-CD73-adenosine pathway in liver disease. J Cell Physiol 2020; 236:851-862. [PMID: 32648591 DOI: 10.1002/jcp.29932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Extracellular adenosine triphosphate (ATP) is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. The ectonucleotidases CD39/ectonucleoside triphosphate diphosphohydrolase-1 and CD73/ecto-5'-nucleotidase are cell-surface enzymes that breakdown extracellular ATP into adenosine. This drives a shift from an ATP-driven proinflammatory environment to an anti-inflammatory milieu induced by adenosine. The CD39-CD73-adenosine pathway changes dynamically with the pathophysiological context in which it is embedded. Accumulating evidence suggests that CD39 and CD73 play important roles in liver disease as critical components of the extracellular adenosinergic pathway. Recent studies have shown that the modification of the CD39-CD73-adenosine pathway alters the liver's response to injury. Moreover, adenosine exerts different effects on the pathophysiology of the liver through different receptors. In this review, we aim to describe the role of the CD39-CD73-adenosine pathway and adenosine receptors in liver disease, highlighting potential therapeutic targets in this pathway, which will facilitate the development of therapeutic strategies for the treatment of liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Chen G, Feng Y, Sun Z, Gao Y, Wu C, Zhang H, Cao J, Chen Z, Cao J, Zhu Y, Zhang S. mRNA and lncRNA Expression Profiling of Radiation-Induced Gastric Injury Reveals Potential Radiation-Responsive Transcription Factors. Dose Response 2019; 17:1559325819886766. [PMID: 31762715 PMCID: PMC6851613 DOI: 10.1177/1559325819886766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023] Open
Abstract
Radiation-induced gastric injury is a serious concern that may limit the duration
and the delivered dose of radiation. However, the genome-wide molecular changes
in stomach upon ionizing radiation have not been reported. In this study, mouse
stomach was irradiated with 6 or 12 Gy X-ray irradiation and we found that
radiation resulted in the atrophy of gastric mucosa and abnormal morphology of
chief and parietal cells. Radiation-induced gastric injury was accompanied by an
increase in the serum levels of pepsinogen A and pepsinogen C but not
gastrin-17. The expression profiles of messenger RNA (mRNA) and long noncoding
RNA (lncRNA) in normal and irradiated gastric tissues were measured by
microarray analysis. Results revealed 17 upregulated and 10 downregulated mRNAs
were consistent in 6 and 12 Gy irradiated gastric tissues, including D
site-binding protein (Dbp) and fibrinogen-like protein 1
(Fgl1). Thirteen upregulated and 96 downregulated lncRNAs
were commonly changed in 6 and 12 Gy irradiated gastric tissues. The
dysregulated mRNAs were implicated in multiple pathways and showed coexpression
with lncRNAs. To identify motifs for transcription factors and coactivators in
the proximal promoter regions of the dysregulated RNAs, the bioinformatic tool
Biopython was used. A variety of common motifs that are associated with
transcription factors were identified, including ZNF263, LMX1B, and Dlx1. Our
findings illustrate the molecular changes during radiation-induced gastric
injury and the potential transcription factors driving this alteration.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yang Feng
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Zhiqiang Sun
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Yiying Gao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Chuannan Wu
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Haihan Zhang
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Jinming Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Zhuo Chen
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Soochow University, Suzhou, China.,State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Radioprotection, Soochow University, Suzhou, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| |
Collapse
|
11
|
Ni X, Tan Z, Ding C, Zhang C, Song L, Yang S, Liu M, Jia R, Zhao C, Song L, Liu W, Zhou Q, Gong T, Li X, Tai Y, Zhu W, Shi T, Wang Y, Xu J, Zhen B, Qin J. A region-resolved mucosa proteome of the human stomach. Nat Commun 2019; 10:39. [PMID: 30604760 PMCID: PMC6318339 DOI: 10.1038/s41467-018-07960-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The human gastric mucosa is the most active layer of the stomach wall, involved in food digestion, metabolic processes and gastric carcinogenesis. Anatomically, the human stomach is divided into seven regions, but the protein basis for cellular specialization is not well understood. Here we present a global analysis of protein profiles of 82 apparently normal mucosa samples obtained from living individuals by endoscopic stomach biopsy. We identify 6,258 high-confidence proteins and estimate the ranges of protein expression in the seven stomach regions, presenting a region-resolved proteome reference map of the near normal, human stomach. Furthermore, we measure mucosa protein profiles of tumor and tumor nearby tissues (TNT) from 58 gastric cancer patients, enabling comparisons between tumor, TNT, and normal tissue. These datasets provide a rich resource for the gastrointestinal tract research community to investigate the molecular basis for region-specific functions in mucosa physiology and pathology including gastric cancer. The human stomach is divided into seven anatomically distinct regions but their protein composition is largely unknown. Here, the authors present a region-resolved map of the healthy human stomach mucosa as well as mucosa proteomes of tumor and tumor nearby tissue from gastric cancer patients.
Collapse
Affiliation(s)
- Xiaotian Ni
- Department of Gastrointestinal Oncology, The Fifth Medical Center, General Hospital of PLA, Beijing, 100071, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China.,Center for Bioinformatics, East China Normal University, Shanghai, 200241, China
| | - Zhaoli Tan
- Department of Gastrointestinal Oncology, The Fifth Medical Center, General Hospital of PLA, Beijing, 100071, China
| | - Chen Ding
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China.,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunchao Zhang
- Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lan Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China.,Department of Bioinformatics, College of Life Science, Hebei University, Baoding, 071002, China
| | - Shuai Yang
- Department of Gastrointestinal Oncology, The Fifth Medical Center, General Hospital of PLA, Beijing, 100071, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China
| | - Ru Jia
- Department of Gastrointestinal Oncology, The Fifth Medical Center, General Hospital of PLA, Beijing, 100071, China
| | - Chuanhua Zhao
- Department of Gastrointestinal Oncology, The Fifth Medical Center, General Hospital of PLA, Beijing, 100071, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China
| | - Wanlin Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China
| | - Quan Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China
| | - Tongqing Gong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China
| | - Xianju Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China
| | - Yanhong Tai
- Department of Gastrointestinal Oncology, The Fifth Medical Center, General Hospital of PLA, Beijing, 100071, China
| | - Weimin Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China
| | - Tieliu Shi
- Center for Bioinformatics, East China Normal University, Shanghai, 200241, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China.,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, General Hospital of PLA, Beijing, 100071, China.
| | - Bei Zhen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of lifeomics, Beijing, 102206, China. .,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|