1
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
2
|
Takahashi S, Ferdousi F, Yamamoto S, Hirano A, Nukaga S, Nozaki H, Isoda H. Botryococcus terribilis Ethanol Extract Exerts Anti-inflammatory Effects on Murine RAW264 Cells. Int J Mol Sci 2023; 24:ijms24076666. [PMID: 37047640 PMCID: PMC10095501 DOI: 10.3390/ijms24076666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The present study aimed to evaluate the effects of Botryococcus terribilis ethanol extract (BTEE) on lipopolysaccharide (LPS)-induced inflammation in RAW264 cells. BTEE significantly attenuated LPS-induced nitric oxide production and inflammatory cytokines release, including Ccl2, Cox2, and Il6. On the other hand, several anti-inflammatory mediators, such as Pgc1β and Socs1, were increased in BTEE-treated cells. Further, we performed an untargeted whole-genome microarray analysis to explore the anti-inflammatory molecular mechanism of BTEE. Enrichment analysis showed BTEE significantly downregulated ‘response to stimulus’, ‘locomotion’, and ‘immune system response’ and upregulated ‘cell cycle’ gene ontologies in both 6- and 17-h post-LPS stimulation conditions. Pathway analysis revealed BTEE could downregulate the expressions of chemokines of the CC and CXC subfamily, and cytokines of the TNF family, TGFβ family, IL1-like, and class I helical. PPI analysis showed AXL receptor tyrosine kinase (Axl), a receptor tyrosine kinase from the TAM family, and its upstream transcription factors were downregulated in both conditions. Node neighborhood analysis showed several Axl coexpressed genes were also downregulated. Further, kinase enrichment and chemical perturbation analyses supported Axl inhibition in BTEE-treated conditions. Altogether, these findings suggest anti-inflammatory effects of BTEE that are mediated via the suppression of pro-inflammatory cytokines and predict its potential as an Axl inhibitor.
Collapse
Affiliation(s)
- Shinya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
| | - Seri Yamamoto
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsushi Hirano
- Tokyo Electric Power Company Holdings, Inc., Tokyo 100-8560, Japan
| | - Sachiko Nukaga
- Tokyo Electric Power Company Holdings, Inc., Tokyo 100-8560, Japan
| | - Hiroyuki Nozaki
- Tokyo Electric Power Company Holdings, Inc., Tokyo 100-8560, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
3
|
Parameswari RP, Lakshmi T. Microalgae as a potential therapeutic drug candidate for neurodegenerative diseases. J Biotechnol 2022; 358:128-139. [PMID: 36122597 DOI: 10.1016/j.jbiotec.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022]
Abstract
Microalgae are highly photosynthetic unicellular organism that have increased demand in the recent days owing to the presence of valuable cellular metabolites. They are ubiquitous in terrestrial and aquatic habitats, rich in species diversity and are capable of generating significant biomass by efficiently using CO2, light and other nutrients like nitrogen, phosphate etc., The microalgal biomass has upsurged in economic potential and is used as both food and feed in many countries across the world, accounting for more than 75 % of annual microalgal biomass production in the past decades. The microalgal cells are sustainable resource that synthesize various secondary metabolites such as carotenoids, polysaccharides, polyphenols, essential amino acids, sterols, and polyunsaturated fatty acids (PUFA). Microalgae and its derived compounds possess significant pharmacological and biological effects such as antioxidant, anti-inflammatory, anti-cancer, immunomodulatory and anti-obesity. Because of their potential health promoting properties, the utilization of microalgae and its derived substances in food, pharmaceutical and cosmetic industries has skyrocketed in recent years. In this context, the current review discusses about the benefits of microalgae and its bioactive compounds against several neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- R P Parameswari
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Thangavelu Lakshmi
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
4
|
Elucidation of the Potential Hair Growth-Promoting Effect of Botryococcus terribilis, Its Novel Compound Methylated-Meijicoccene, and C32 Botryococcene on Cultured Hair Follicle Dermal Papilla Cells Using DNA Microarray Gene Expression Analysis. Biomedicines 2022; 10:biomedicines10051186. [PMID: 35625924 PMCID: PMC9138970 DOI: 10.3390/biomedicines10051186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
A person’s quality of life can be adversely affected by hair loss. Microalgae are widely recognized for their abundance and rich functional components. Here, we evaluated the hair growth effect of a green alga, Botryococcus terribilis (B. terribilis), in vitro using hair follicle dermal papilla cells (HFDPCs). We isolated two types of cells from B. terribilis—green and orange cells, obtained from two different culture conditions. Microarray and real time-PCR results revealed that both cell types stimulated the expression of several pathways and genes associated with different aspect of the hair follicle cycle. Additionally, we demonstrated B. terribilis’ effect on collagen and keratin synthesis and inflammation reduction. We successfully isolated a novel compound, methylated-meijicoccene (me-meijicoccene), and C32 botryococcene from B. terribilis to validate their promising effects. Our study revealed that treatment with the two compounds had no cytotoxic effect on HFDPCs and significantly enhanced the gene expression levels of hair growth markers at low concentrations. Our study provides the first evidence of the underlying hair growth promoting effect of B. terribilis and its novel compound, me-meijicoccene, and C32 botryococcene.
Collapse
|
5
|
Ito N, Sasaki K, Hirose E, Nagai T, Isoda H, Odaguchi H. Preventive effect of a Kampo medicine, kososan, on recurrent depression in a mouse model of repeated social defeat stress. Gene 2022; 806:145920. [PMID: 34455026 DOI: 10.1016/j.gene.2021.145920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Depression is deemed a mood disorder characterized by a high rate of relapse. Therefore, overcoming of the recurrent depression is globally expecting. Kososan, a traditional Japanese herbal medicine, has been clinically used for mild depressive mood, and our previous studies have shown some evidence for its antidepressive-like efficacy in experimental animal models of depression. However, it remains unclear whether kososan has beneficial effects on recurrent depression. Here, we examined its effect using a mouse model of modified repeated social defeat stress (SDS) paradigm. Male BALB/c mice were exposed to a 5-min SDS from unfamiliar aggressive CD-1 mice for 5 days. Kososan extract (1.0 kg/kg/day) or an antidepressant milnacipran (60 mg/kg/day) was administered orally for 26 days (days 7-32) to depression-like mice with social avoidant behaviors on day 6. Single 5 min of SDS was subjected to mice recovered from the social avoidance on day 31, and then the recurrence of depression-like behaviors was evaluated on day 32. Hippocampal gene expression patterns were also assayed by DNA microarray analysis. Water- or milnacipran-administered mice resulted in a recurrence of depression-like behaviors by re-exposure of single SDS, whereas kososan-administered mice did not recur depression-like behaviors. Distinct gene expression patterns were also found for treating kososan and milnacipran. Collectively, this finding suggests that kososan exerts a preventive effect on recurrent depression-like behaviors in mice. Pretreatment of kososan is more useful for recurrent depression than that of milnacipran.
Collapse
Affiliation(s)
- Naoki Ito
- Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan.
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan
| | - Eiji Hirose
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Takayuki Nagai
- Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan; Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| |
Collapse
|
6
|
Subermaniam K, Teoh SL, Yow YY, Tang YQ, Lim LW, Wong KH. Marine algae as emerging therapeutic alternatives for depression: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:997-1013. [PMID: 34804417 PMCID: PMC8591755 DOI: 10.22038/ijbms.2021.54800.12291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Depression is a complex heterogeneous brain disorder characterized by a range of symptoms, resulting in psychomotor and cognitive disabilities and suicidal thoughts. Its prevalence has reached an alarming level affecting millions of people globally. Despite advances in current pharmacological treatments, the heterogenicity of clinical response and incidences of adverse effects have shifted research focus to identification of new natural substances with minimal or no adverse effects as therapeutic alternatives. Marine algae-derived extracts and their constituents are considered potential sources of secondary metabolites with diverse beneficial effects. Marine algae with enormous health benefits are emerging as a natural source for discovering new alternative antidepressants. Its medicinal properties exhibited shielding efficacy against neuroinflammation, oxidative stress, and mitochondrial dysfunction, which are indicated to underlie the pathogenesis of many neurological disorders. Marine algae have been found to ameliorate depressive-like symptoms and behaviors in preclinical and clinical studies by restoring monoaminergic neurotransmission, hypothalamic-pituitary-adrenal axis function, neuroplasticity, and continuous neurogenesis in the dentate gyrus of the hippocampus via modulating brain-derived neurotrophic factors and antineuroinflammatory activity. Although antidepressant effects of marine algae have not been validated in comparison with currently available synthetic antidepressants, they have been reported to have effects on the pathophysiology of depression, thus suggesting their potential as novel antidepressants. In this review, we analyzed the currently available research on the potential benefits of marine algae on depression, including their effects on the pathophysiology of depression, potential clinical relevance of their antidepressant effects in preclinical and clinical studies, and the underlying mechanisms of these effects.
Collapse
Affiliation(s)
- Kogilavani Subermaniam
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia,Training Management Division, Ministry of Health Malaysia, 62675 Putrajaya, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia,Corresponding author: K.H. Wong, Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia. Tel: +60379674729; Fax: +60379674724;
| |
Collapse
|
7
|
Jung HY, Kim W, Kwon HJ, Yoo DY, Nam SM, Hahn KR, Yi SS, Choi JH, Kim DW, Yoon YS, Hwang IK. Physical Stress Induced Reduction of Proliferating Cells and Differentiated Neuroblasts Is Ameliorated by Fermented Laminaria japonica Extract Treatment. Mar Drugs 2020; 18:E587. [PMID: 33255381 PMCID: PMC7760277 DOI: 10.3390/md18120587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Laminaria japonica is widely cultivated in East Asia, including South Korea. Fucoidan, a main component of L. japonica, protects neurons from neurological disorders such as ischemia and traumatic brain injury. In the present study, we examined the effects of extract from fermented L. japonica on the reduction of proliferating cells and neuroblasts in mice that were physically (with electric food shock) or psychologically (with visual, auditory and olfactory sensation) stressed with the help of a communication box. Vehicle (distilled water) or fermented L. japonica extract (50 mg/kg) were orally administered to the mice once a day for 21 days. On the 19th day of the treatment, physical and psychological stress was induced by foot shock using a communication box and thereafter for three days. Plasma corticosterone levels were significantly increased after exposure to physical stress and decreased Ki67 positive proliferating cells and doublecortin immunoreactive neuroblasts. In addition, western blot analysis demonstrated that physical stress as well as psychological stress decreased the expression levels of brain-derived neurotrophic factor (BDNF) and the number of phosphorylated cAMP response element binding protein (pCREB) positive nuclei in the dentate gyrus. Fermentation of L. japonica extract significantly increased the contents of reduced sugar and phenolic compounds. Supplementation with fermented L. japonica extract significantly ameliorated the increases of plasma corticosterone revels and decline in the proliferating cells, neuroblasts, and expression of BDNF and pCREB in the physically stressed mice. These results indicate that fermented L. japonica extract has positive effects in ameliorating the physical stress induced reduction in neurogenesis by modulating BDNF and pCREB expression in the dentate gyrus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea;
| | - Sung Min Nam
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Iksan 54538, Korea;
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| |
Collapse
|
8
|
Antihyperuricemic Effect of Urolithin A in Cultured Hepatocytes and Model Mice. Molecules 2020; 25:molecules25215136. [PMID: 33158257 PMCID: PMC7662530 DOI: 10.3390/molecules25215136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperuricemia is defined as a disease with high uric acid (UA) levels in the blood and a strong risk factor for gout. Urolithin A (UroA) is a main microbial metabolite derived from ellagic acid (EA), which occurs in strawberries and pomegranates. In this study, we evaluated antihyperuricemic effect of UroA in both cultured hepatocytes and hyperuricemic model mice. In cultured hepatocytes, UroA significantly and dose-dependently reduced UA production. In model mice with purine bodies-induced hyperuricemia, oral administration of UroA significantly inhibited the increase in plasma UA levels and hepatic xanthine oxidase (XO) activity. In addition, DNA microarray results exhibited that UroA, as well as allopurinol, a strong XO inhibitor, induced downregulation of the expression of genes associated with hepatic purine metabolism. Thus, hypouricemic effect of UroA could be, at least partly, attributed to inhibition of purine metabolism and UA production by suppressing XO activity in the liver. These results indicate UroA possesses a potent antihyperuricemic effect and it could be a potential candidate for a molecule capable of preventing and improving hyperuricemia and gout.
Collapse
|
9
|
Sasaki K, Iwata N, Ferdousi F, Isoda H. Antidepressant-Like Effect of Ferulic Acid via Promotion of Energy Metabolism Activity. Mol Nutr Food Res 2019; 63:e1900327. [PMID: 31394019 PMCID: PMC6790570 DOI: 10.1002/mnfr.201900327] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/07/2019] [Indexed: 11/11/2022]
Abstract
SCOPE Ferulic acid (FA), a natural phenolic phytochemical abundantly present in whole grains, herbs, and dried fruits, exhibits anti-inflammatory, antioxidant, and neuroprotective effects. In the present study, the antidepressant-like effects of FA in male ICR mice using tail suspension test (TST) are investigated and its molecular mechanisms are explored. METHODS AND RESULTS Oral administration of FA at a dose of 5 mg kg-1 for 7 days significantly reduces immobility of mice compared to vehicle-administered control group. Microarray and real-time PCR analyses reveal that FA upregulates the expression of several genes associated with cell survival and proliferation, energy metabolism, and dopamine synthesis in mice limbic system of brain. Interestingly, it is found that FA, unlike antidepressant drug bupropion, strongly promotes energy metabolism. Additionally, FA increases catecholamine (dopamine and noradrenaline), brain-derived neurotrophic factor, and ATP levels, and decreases glycogen levels in the limbic system of the mice brain. CONCLUSION The research provides the first evidence that FA enhances energy production, which can be the underlying mechanism of the antidepressant-like effects of FA observed in this study.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8572Japan
- Interdisciplinary Research Center for Catalytic ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)AIST Tsukuba Central 5‐2TsukubaIbaraki305–8565Japan
- Faculty of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8571Japan
| | - Nozomu Iwata
- School of Integrative and Global Majors (SIGMA)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8577Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8572Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8572Japan
- Interdisciplinary Research Center for Catalytic ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)AIST Tsukuba Central 5‐2TsukubaIbaraki305–8565Japan
- Faculty of Life and Environmental SciencesUniversity of TsukubaJapan1‐1‐1 TennodaiTsukubaIbaraki305–8572Japan
| |
Collapse
|
10
|
Modulation of the neurotransmitter systems through the anti-inflammatory and antidepressant-like effects of squalene from Aurantiochytrium sp. PLoS One 2019; 14:e0218923. [PMID: 31251788 PMCID: PMC6599144 DOI: 10.1371/journal.pone.0218923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/13/2019] [Indexed: 11/19/2022] Open
Abstract
Although algae have been the focal point of biofuel research, studies on their biological activities have been limited. In recent years, however, the importance of algae as sources of functional ingredients has been recognized due to their health beneficial effects. In this study, we evaluated the antidepressant-like activities of ethanol extract of Aurantiochytrium sp. (EEA) in the forced swimming test (FST)-induced depression in ICR mice. Imipramine, a commercially available tricyclic antidepressant drug, was used as positive control. Animals were administered EEA orally for 14 consecutive days and were subjected to the locomotor activity testing. Additionally, changes in gene expression in mice brain were assessed by real-time PCR and microarray assays to understand the molecular mechanisms underlying the effect of EEA. We found that the immobility time in FST was significantly reduced in the EEA-treated mice compared to that of in the control mice. Microarray and real-time PCR results revealed that EEA treatment induced changes in several genes in mice brain associated with pro-inflammation and dopaminergic, cholinergic, glutamatergic, and serotonergic synapses. It has previously been reported that several cytokines, such as IL-6 and TNF-α, which mediate neuroinflammation, are also responsible for indirectly altering brain neurotransmitter levels in neuropsychiatric disorders. Therefore, the regulation of the expression of pro-inflammatory genes in EEA-administered mice brain is considered to contribute to the enhancement of neurotransmitter systems-related gene expression in our study. Moreover, our in vitro study suggested that squalene, a component produced by Aurantiochytrium, was one of the active substances in EEA. In conclusion, our study provides the first evidence that Aurantiochytrium sp. can reduce neuroinflammation that may contribute to the modulation of the neurotransmitter systems, which could underlie its antistress and antidepressant effects.
Collapse
|
11
|
Anti-Inflammatory Effects of Aurantiochytrium limacinum 4W-1b Ethanol Extract on Murine Macrophage RAW264 Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3104057. [PMID: 30809537 PMCID: PMC6369496 DOI: 10.1155/2019/3104057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 11/17/2022]
Abstract
Aurantiochytrium limacinum 4W-1b (AL4W-1b) is a newly discovered microalgal strain with unique features. In the present study, we investigated the effects of ethanol extracts of AL4W-1b on lipopolysaccharide- (LPS-) induced inflammatory responses in RAW264 murine macrophage cells. Pretreatment of RAW264 cells with the AL4W-1b extract significantly reduced the production of LPS-induced nitric oxide (NO) and the expression of proinflammatory cytokine genes, including tumor necrosis factor α, interleukin- (IL-) 1β, and IL-6. Treatment with the AL4W-1b extract also decreased the production of IL-1β and IL-6. These results suggest that AL4W-1b might have anti-inflammatory effects in RAW264 cells. The NF-κB inhibitor, BAY 11-7082, synergistically prevented LPS-induced NO production after pretreatment with the AL4W-1b extract. Thus, the AL4W-1b extract may affect not only the NF-κB pathway but also other inflammatory pathways. To the best of our knowledge, this is the first study to report the anti-inflammatory effects of AL4W-1b extract and its mechanism of action in LPS-stimulated murine macrophage cells.
Collapse
|