1
|
Yan R, Liu Z, Wang S, Fan D. 1α,25-Dihydroxyvitamin D3 accelerates skin wound re-epithelialization by promoting epidermal stem cell proliferation and differentiation through PI3K activation: an in vitro and in vivo study. Braz J Med Biol Res 2025; 58:e14121. [PMID: 40053036 PMCID: PMC11884782 DOI: 10.1590/1414-431x2025e14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/28/2025] [Indexed: 03/10/2025] Open
Abstract
1α,25-Dihydroxyvitamin D3 (VD3), the active form of vitamin D, plays a crucial role in wound healing. In this study, we aimed to investigate the effect of VD3 on the proliferation and differentiation of epidermal stem cells (EpSCs) and monitor its impact on re-epithelialization. We established a murine full-thickness skin defect model and applied four doses of VD3 (0, 5, 50, and 250 ng/mouse/day) to the wounds topically for three days. Immunostaining and flow cytometry confirmed the effect of VD3 on the proliferation and differentiation of EpSCs in wounds. This effect of VD3 (0, 1, 10, and 50 nM) on EpSCs and its possible mechanism were further confirmed in vitro by CCK8, westen blot, immunostaining, and flow cytometry. We found that on day five post-wounding, the means±SD length of the neo-epidermis was 195.88±11.57, 231.84±16.45, 385.80±17.50, and 268.00±8.22 μm in the control, 5, 50, and 250 ng groups, respectively, with a significant difference from the control (all P<0.05). Immunostaining and flow cytometry showed that VD3 improved the proliferation and differentiation of K15+ EpSC (vs control, all P<0.05), K14+ epidermal progenitor cells (vs control, all P<0.05), and K10+ epidermal terminal cells (vs control, all P<0.05) in vivo and in vitro. The PI3K signaling pathway appeared to underlie this response because significant inhibition of the response was found when inhibitors were used to inhibit PI3K. Our study demonstrated that VD3 is a potent promoter of cutaneous wound healing by stimulating EpSC proliferation and differentiation through PI3K activation.
Collapse
Affiliation(s)
- Rongshuai Yan
- Department of Plastic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Song Wang
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command, Wuhan, China
| | - Dongli Fan
- Department of Plastic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Zhang Y, Zhao H, Su Y, Yang S, Kang T, Li L. Hypoxic human adipose mesenchymal stem cells-derived extracellular vesicles induce P311 expression and inhibit activation and injury of human brain microvascular endothelial cells. Clin Hemorheol Microcirc 2025; 89:205-216. [PMID: 39973441 DOI: 10.1177/13860291241291326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
ObjectiveStem cell therapy can modify angiogenic pathways. Neural protein 3.1 (P311) possesses the pro-angiogenic property. This study strived to explore the action and mechanism of human adipose mesenchymal stem cells (hADSCs) in human brain microvascular endothelial cell (hBMEC) injury by regulating P311.MethodsThe hADSCs of the 3rd passage were stained with oil red O, Alizarin red, and Alcian blue to assess adipogenic, osteogenic, and chondrogenic differentiation, followed by an analysis of immune phenotype via flow cytometry. After culturing hADSCs in hypoxic (5% oxygen) and normoxic (20% oxygen) conditions, extracellular vesicles (EVs) were extracted via ultracentrifugation, followed by morphology observation by microscopy, size distribution analysis via Nanoparticle tracking analysis, and surface marker determination by Western blot. hBMECs were treated with lipopolysaccharide (LPS) and cultured with normoxia or hypoxic hADSC-EVs. The effects of normoxia and hypoxic hADSC-EVs on proliferation, migration, and tube formation of hBMECs were assessed via CCK-8, Transwell, and tube formation assays. hBMECs were transfected with pcDNA3.0-P311 or P311 siRNA to evaluate the action of P311 on hBMEC injury.ResultsHypoxic hADSC-EVs had a larger mean diameter, a wider diameter distribution range, and a higher particle concentration than normoxic hADSC-EVs. Hypoxia and normoxic hADSC-EVs were internalized by hBMECs, and hypoxic hADSC-EVs were more internalized. LPS suppressed hBMEC proliferation, migration, and tube formation and induced hBMEC injury. Hypoxia and normoxic hADSC-EVs ameliorated hBMEC injury, and hypoxic hADSC-EVs were superior to normoxic hADSC-EVs. P311 overexpression mitigated hBMEC injury, whereas P311 knockdown partly averted hypoxic hADSC-EV-exerted suppression on hBMEC injury.ConclusionHypoxic hADSC-EVs can protect against LPS-induced hBMEC injury by upregulating P311.
Collapse
Affiliation(s)
- Yun Zhang
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Hanghang Zhao
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Yu Su
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Shudong Yang
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Tao Kang
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Li Li
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| |
Collapse
|
3
|
Salnikov P, Korablev A, Serova I, Belokopytova P, Yan A, Stepanchuk Y, Tikhomirov S, Fishman V. Structural variants in the Epb41l4a locus: TAD disruption and Nrep gene misregulation as hypothetical drivers of neurodevelopmental outcomes. Sci Rep 2024; 14:5288. [PMID: 38438377 PMCID: PMC10912600 DOI: 10.1038/s41598-024-52545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024] Open
Abstract
Structural variations are a pervasive feature of human genomes, and there is growing recognition of their role in disease development through their impact on spatial chromatin architecture. This understanding has led us to investigate the clinical significance of CNVs in noncoding regions that influence TAD structures. In this study, we focused on the Epb41l4a locus, which contains a highly conserved TAD boundary present in both human chromosome 5 and mouse chromosome 18, and its association with neurodevelopmental phenotypes. Analysis of human data from the DECIPHER database indicates that CNVs within this locus, including both deletions and duplications, are often observed alongside neurological abnormalities, such as dyslexia and intellectual disability, although there is not enough evidence of a direct correlation or causative relationship. To investigate these possible associations, we generated mouse models with deletion and inversion mutations at this locus and carried out RNA-seq analysis to elucidate gene expression changes. We found that modifications in the Epb41l4a TAD boundary led to dysregulation of the Nrep gene, which plays a crucial role in nervous system development. These findings underscore the potential pathogenicity of these CNVs and highlight the crucial role of spatial genome architecture in gene expression regulation.
Collapse
Affiliation(s)
- Paul Salnikov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alexey Korablev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Aleksandra Yan
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Yana Stepanchuk
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Savelii Tikhomirov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
4
|
Zhou Z, Zou M, Chen H, Zhu F, Wang T, Huang X. Forkhead box A1 induces angiogenesis through activation of the S100A8/p38 MAPK axis in cutaneous wound healing. Immunopharmacol Immunotoxicol 2023; 45:742-753. [PMID: 37459395 DOI: 10.1080/08923973.2023.2233693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/30/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The association between S100 calcium-binding protein A8 (S100A8) and angiogenesis has been reported in previous reports. This study focuses on the roles of S100A8 in the angiogenesis of human dermal microvascular endothelial cells (HDMECs) and in cutaneous wound healing in mice. METHODS Candidate genes related to angiogenesis activity were screened using a GSE83582 dataset. The overexpression DNA plasmid of S100A8 was transfected into HDMECs to analyze its effect on cell proliferation, migration, and angiogenesis. Full-thickness skin wounds were induced on mice, followed by adenovirus treatments to analyze the function of gene alteration in wound healing and pathological changes. The upstream regulator of S100A8 was predicted by bioinformatics analysis and verified by luciferase and immunoprecipitation assays. The role of the forkhead box A1 (FOXA1)-S100A8 interaction in p38 MAPK activation and angiogenesis were validated by rescue experiments. RESULTS S100A8 was identified as a gene significantly correlated with angiogenesis. The S100A8 upregulation promoted the proliferation, migration, and angiogenesis of HDMECs, and it promoted p38 MAPK phosphorylation. Treatment of SB203580, a p38 MAPK inhibitor, blocked the promoting effect of S100A8. FOXA1 was identified as an upstream factor of S100A8 promoting its transcription. FOXA1 overexpression in HDMECs increased p38 MAPK phosphorylation and enhanced the activity of cells, which were blocked by the S100A8 inhibition. Similar results were reproduced in vivo where FOXA1 overexpression accelerated whereas the S100A8 knockdown retarded the cutaneous wound healing in mice. CONCLUSION FOXA1 mediates the phosphorylation of p38 MAPK through transcription activation of S100A8, thereby inducing angiogenesis and promoting cutaneous wound healing.
Collapse
Affiliation(s)
- Zhongzhi Zhou
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Meilin Zou
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Hongping Chen
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Furong Zhu
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Tingting Wang
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Xinling Huang
- Department of Burn Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| |
Collapse
|
5
|
Chen W, Xu GC, Huang ZL, Chen L, Nie KY. [Research advances on the mechanism of nerve regeneration-related protein in skin fibrosis]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:491-495. [PMID: 37805761 DOI: 10.3760/cma.j.cn501225-20220701-00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
The healing process after skin injury is a dynamic process of interaction between various cells, cytokines, and extracellular matrix. Fibrosis is one of the main ways of skin injury repair. The process of fibrosis involves the regulation of many factors. Studies have shown that nerve regeneration-related protein (NREP) plays a key role in the fibrosis of skin tissue and organs. Based on the mechanism of skin fibrosis, this paper discusses the construction of tertiary structure of NREP, summarizes the effects of NREP and different cells in the skin on skin fibrosis and the research progress of mechanism of NREP in skin fibrosis, thus providing new ideas for the treatment of skin fibrosis diseases.
Collapse
Affiliation(s)
- W Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - G C Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Z L Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - L Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - K Y Nie
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
6
|
Chen C, Tang Y, Zhu X, Yang J, Liu Z, Chen Y, Wang J, Shang R, Zheng W, Zhang X, Hu X, Tan J, Zhou J, Peng S, Lu Q, Ju Z, Luo G, He W. P311 Promotes IL-4 Receptor‒Mediated M2 Polarization of Macrophages to Enhance Angiogenesis for Efficient Skin Wound Healing. J Invest Dermatol 2023; 143:648-660.e6. [PMID: 36309321 DOI: 10.1016/j.jid.2022.09.659] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The transition from the proinflammatory phase to the prohealing phase in wound healing is essential for effective skin wound repair, which involves the balance of M1 and M2 polarization of wound-infiltrating macrophages. P311 plays an essential role in promoting wound closure by enhancing the biological function of epidermal stem cells, endothelial cells, and fibroblasts. Nevertheless, whether and how P311 regulates macrophage polarization remains unclear. In this study, we showed that P311 deficiency reduced the M2 polarization of macrophages, thereby attenuating the secretion of M2-like cytokines. The P311 deficiency prolonged the transition from the proinflammatory phase to the prohealing phase, accompanied by weakened angiogenesis and retarded granulation tissue formation, both of which coordinately hinder the healing of skin wounds. Mechanistically, P311 deficiency downregulated the expression of IL-4 receptor on macrophages, followed by less activation of the IL-4 receptor‒signal transducer and activator of transcription 6 signaling pathway, resulting in impaired M2 macrophage polarization. We further revealed that the mTOR signaling pathway was associated with the regulation of P311 on the expression of IL-4 receptor in macrophages. Thus, our study has highlighted the pivotal role of P311 in promoting the M2 polarization of macrophages for effective skin wound healing.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Xudong Zhu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wenxia Zheng
- Department of Technical Support, Chengdu Zhijing Technologies, Chengdu, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jianglin Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Junyi Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Shiya Peng
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Department of Dermatology, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Qudong Lu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| |
Collapse
|
7
|
Zhang QR, Chen CY, Xu N, Lyu DL, Jia JZ, Li WW, Luo GX, Yu YL, Zhang Y. [Effect of P311 microspheres-loaded thermosensitive chitosan hydrogel on the wound healing of full-thickness skin defects in rats]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:914-922. [PMID: 36299202 DOI: 10.3760/cma.j.cn501225-20220414-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objective: To explore the effect of P311 microspheres-loaded thermosensitive chitosan hydrogel on the wound healing of full-thickness skin defects in rats. Methods: The method of experimental study was adopted. The polyvinyl alcohol/sodium alginate microspheres (simple microspheres), P311 microspheres, and bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA) microspheres were prepared by water-in-oil emulsification, and then their morphology was observed under a light microscope/inverted fluorescence microscope. Chitosan solution was prepared, chitosan solution and β-glycerol phosphate disodium hydrate were mixed to prepare simple thermosensitive hydrogels, and thermosensitive hydrogels loaded with simple microspheres or P311 microspheres were prepared by adding corresponding substances in simple thermosensitive hydrogels. The morphological changes of the prepared four liquids in the state of tilt was observed at 37 ℃. After being freeze-dried, the micromorphology of the prepared four liquids was observed under a scanning electron microscope. Eighteen 3-4-week-old male Sprague-Dawley rats were divided into normal group without any treatment, dressing group, chitosan group, hydrogel alone group, simple microspheres-loaded hydrogel group, and P311 microspheres-loaded hydrogel group, which were inflicted with one full-thickness skin defect wound on both sides of the back spine and were dealt correspondingly, with 3 rats in each group. Rats with full-thickness skin defects in the five groups were collected, the wound healing was observed on post injury day (PID) 0 (immediately), 5, 10, and 15, and the wound healing rates on PID 5, 10, and 15 were calculated. The wound and wound margin tissue of rats with full-thickness skin defects in the five groups on PID 15 and normal skin tissue in the same site of rats in normal group were collected, hematoxylin and eosin staining was conducted to observe the histological changes, immunohistochemical staining was performed to observe the expressions of CD31 and vascular endothelial growth factor (VEGF), and Western blotting was conducted to detect the protein expressions of CD31 and VEGF. The number of samples was all three. Data were statistically analyzed with one-way analysis of variance, analysis of variance for repeated measurement, and Bonferroni correction. Results: Simple microspheres were spherical, with loose and porous surface. The surfaces of P311 microspheres and FITC-BSA microspheres were smooth without pores, and the FITC-BSA microspheres emitted uniform green fluorescence. The diameters of the three microspheres were basically consistent, being 33.1 to 37.7 μm. Compared with chitosan solution and simple thermosensitive hydrogel, the structures of the two microspheres-loaded hydrogels were more stable in the state of tilt at 37 ℃. The two microspheres-loaded hydrogels had denser network structures than those of chitosan solution and simple thermosensitive hydrogel, and in the cross section of which microspheres with a diameter of about 30 μm could be seen. Within PID 15, the wounds of rats in the five groups were healed to different degrees, and the wound healing of rats in P311 microspheres-loaded hydrogel group was the best. On PID 5, 10, and 15, the wound healing rates of rats in dressing group and chitosan group were (26.6±2.4)%, (38.5±3.1)%, (50.9±1.5)%, (47.6±2.0)%, (58.5±3.6)%, and (66.7±4.1)%, respectively, which were significantly lower than (59.3±4.8)%, (87.6±3.2)%, (97.2±1.0)% in P311 microspheres-loaded hydrogel group (P<0.05 or P<0.01). The wound healing rates of rats in hydrogel alone group on PID 10 and 15, and in simple microspheres-loaded hydrogel group on PID 15 were (76.0±3.3)%, (84.5±3.6)%, and (88.0±2.6)%, respectively, which were significantly lower than those in P311 microspheres-loaded hydrogel group (P<0.05). The epidermis, hair follicles, and sebaceous glands could be seen in the normal skin of rats in normal group, without positive expressions of CD31 or VEGF. The wounds of rats in P311 microspheres-loaded hydrogel group on PID 15 were almost completely epithelialized, with more blood vessels, hair follicles, sebaceous glands, and positive expressions of CD31 and VEGF in the wounds than those of rats with full-thickness skin defects in the other four groups, and more protein expressions of CD31 and VEGF than those of rats in the other five groups. Conclusions: The P311 microspheres-loaded thermosensitive chitosan hydrogel can release the encapsulated drug slowly, prolong the drug action time, and promote wound healing in rats with full-thickness skin defects by promoting wound angiogenesis and re-epithelialization.
Collapse
Affiliation(s)
- Q R Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - C Y Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - N Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - D L Lyu
- Department of Burns and Plastic Surgery, the First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China Beijing Jayyalife Biological Technology Company, Beijing 100094, China
| | - J Z Jia
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - W W Li
- Beijing Jayyalife Biological Technology Company, Beijing 100094, China
| | - G X Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Y L Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Wang J, Shang R, Yang J, Liu Z, Chen Y, Chen C, Zheng W, Tang Y, Zhang X, Hu X, Huang Y, Shen HM, Luo G, He W. P311 promotes type II transforming growth factor-β receptor mediated fibroblast activation and granulation tissue formation in wound healing. BURNS & TRAUMA 2022; 10:tkac027. [PMID: 37469904 PMCID: PMC9562783 DOI: 10.1093/burnst/tkac027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Indexed: 07/21/2023]
Abstract
Background P311, a highly conserved 8 kDa intracellular protein, has recently been reported to play an important role in aggravating hypertrophic scaring by promoting the differentiation and secretion of fibroblasts. Nevertheless, how P311 regulates the differentiation and function of fibroblasts to affect granulation tissue formation remains unclear. In this work, we studied the underlying mechanisms via which P311 affects fibroblasts and promotes acute skin wound repair. Methods To explore the role of P311, both in vitro and in vivo wound-healing models were used. Full-thickness skin excisional wounds were made in wild-type and P311-/- C57 adult mice. Wound healing rate, re-epithelialization, granulation tissue formation and collagen deposition were measured at days 3, 6 and 9 after skin injury. The biological phenotypes of fibroblasts, the expression of target proteins and relevant signaling pathways were examined both in vitro and in vivo. Results P311 could promote the proliferation and differentiation of fibroblasts, enhance the ability of myofibroblasts to secrete extracellular matrix and promote cell contraction, and then facilitate the formation of granulation tissue and eventually accelerate skin wound closure. Importantly, we discovered that P311 acts via up-regulating the expression of type II transforming growth factor-β receptor (TGF-βRII) in fibroblasts and promoting the activation of the TGF-βRII-Smad signaling pathway. Mechanistically, the mammalian target of rapamycin signaling pathway is closely implicated in the regulation of the TGF-βRII-Smad pathway in fibroblasts mediated by P311. Conclusions P311 plays a critical role in activation of the TGF-βRII-Smad pathway to promote fibroblast proliferation and differentiation as well as granulation tissue formation in the process of skin wound repair.
Collapse
Affiliation(s)
| | | | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Wenxia Zheng
- Department of Technical Support, Chengdu Zhijing Technology Co.,
Ltd, Chengdu 610041, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Academy of Biological Engineering, Chongqing University,
Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn
Research, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics,
Chongqing 400038, China
| | - Han-Ming Shen
- Correspondence. Weifeng He, ;
Gaoxing Luo, ; Han-ming Shen,
| | - Gaoxing Luo
- Correspondence. Weifeng He, ;
Gaoxing Luo, ; Han-ming Shen,
| | - Weifeng He
- Correspondence. Weifeng He, ;
Gaoxing Luo, ; Han-ming Shen,
| |
Collapse
|
9
|
NREP is a Diagnostic and Prognostic Biomarker, and Promotes Gastric Cancer Cell Proliferation and Angiogenesis. Biochem Genet 2022; 61:669-686. [PMID: 36094607 DOI: 10.1007/s10528-022-10276-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Neuronal regeneration related protein (NREP), also known as P311, has been reported to participate in multiple biological processes. The detection of tumor biomarker favored a non-invasive early entry for cancer diagnosis and disease monitoring to prevent its worsening symptoms. This study is intended to investigate the clinical roles of NREP in gastric cancer (GC) and its effect on gastric cancer cell proliferation and angiogenesis. Our results demonstrated that NREP was typically upregulated in GC tissues compared with normal control. The Kaplan-Meier analysis showed correlations between increased NREP level and poor survival, indicating the prognostic value of NREP in GC patients. The expression levels of NREP varied by races, clinical T stages, and histologic grades. NREP expression was associated with tumor-associated immune infiltration. The NREP expression was powerfully associated with clinical characteristics of GC patients, in particular, with T stage and histologic grade. Gene ontology and KEGG signaling analysis indicated that NREP-related genes were predominantly enriched in various pathways. Additionally, knockdown of NREP inhibited human gastric adenocarcinoma cell proliferation and angiogenesis. Collectively, our results suggested that NREP may be an excellent biomarker for the clinical diagnosis, prognosis, and therapy of GC.
Collapse
|
10
|
Wang X, He J, Li Z, Zhu J, Wu J. The early association of water irrigation with negative pressure wound therapy does not more efficiently reduce the depth of the alkali infiltration progress into the burn. Int Wound J 2022; 20:351-358. [PMID: 35854477 PMCID: PMC9885477 DOI: 10.1111/iwj.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/03/2023] Open
Abstract
Water irrigation is an efficacious decontaminating method for dermis exposures to corrosive agents and hence has been widely applied to treat especially alkali burns. Nevertheless, once alkali has infiltrated the deep subcutaneous tissue, washing the tissue surface with water irrigation does not attenuate the damage progress. Therefore, significant efforts have been devoted to promising strategies aimed at removing the deeply infiltrated lye. According to a recent report, the negative pressure wound therapy (NPWT) reduces the pH value of the exudate from alkali-provoked burns thus accelerating wound healing. However, it remains to be ascertained whether or not NPWT coupled with water irrigation, that is, iNPWT, more effectively hinders the alkali injury deepening. In this study, we compared the effectiveness of an early application of water irrigation with or without NPWT in preventing the progressive deepening of the alkali burn in an animal model. Our histological examination results showed no appreciable difference in tissue injury depth, dermal retention, inflammatory cell infiltration, re-epithelization, and cellular function between iNPWT and water irrigation alone treatments. Thus, our results prove that the more expensive NPWT coupled with water irrigation does not more effectively hinder the alkali's injury deepening. Hence, iNPWT use should be more cautious in clinical practice.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Burn Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Jinqing He
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenPeople's Republic of China
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenPeople's Republic of China
| | - Jiayuan Zhu
- Department of Burn Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenPeople's Republic of China,Section of Human Histology & Embryology, Department of Surgery, Dentistry, Paediatrics & ObstetricsUniversity of VeronaVerona, VenetiaItaly
| |
Collapse
|
11
|
Liu Z, Yang J, Chen Y, Chen C, Wang J, Lee YM, Zheng W, Shang R, Tang Y, Zhang X, Hu X, Huang Y, Peng S, Liou YC, He W, Luo G. P311 Facilitates the Angiogenesis and Wound Healing Function of MSCs by Increasing VEGF Production. Front Immunol 2022; 13:821932. [PMID: 35154140 PMCID: PMC8831272 DOI: 10.3389/fimmu.2022.821932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
As a potential clinical therapeutic cell for injured tissue repair, mesenchymal stem cells (MSCs) have attracted increasing attention. Enhancing the pro-healing function of MSCs has gradually become an essential topic in improving the clinical efficacy of MSCs. Recently, studies have shown that neuronal protein 3.1 (P311) plays a crucial role in promoting skin wound healing, suggesting P311 gene modification may improve the pro-healing function of MSCs. In this study, we demonstrated that increasing the in vivo expression of P311 could significantly enhance the ability of MSCs to lessen the number of inflammatory cells, increase the expression of IL10, reduce the levels of TNF-α and IFN-γ, increase collagen deposition, promote angiogenesis, and ultimately accelerate skin wound closure and improve the quality of wound healing. Importantly, we uncovered that P311 enhanced the pro-angiogenesis function of MSCs by increasing the production of vascular endothelial growth factor (VEGF) in vitro and in vivo. Mechanistically, we revealed that the mTOR signalling pathway was closely related to the regulation of P311 on VEGF production in MSCs. Together, our data displayed that P311 gene modification in MSCs augments their capabilities to promote skin wound closure, which might bring the dawn for its clinical application in the future.
Collapse
Affiliation(s)
- Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Wenxia Zheng
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Shiya Peng
- Department of Dermatology, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| |
Collapse
|
12
|
Wang S, Li HS, Qian W, Zhang XR, He WF, Luo GX. [Effects of P311 on the angiogenesis ability of human microvascular endothelial cell 1 in vitro and its molecular mechanism]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:119-129. [PMID: 35220700 DOI: 10.3760/cma.j.cn501120-20211210-00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objective: To explore the effects of P311 on the angiogenesis ability of human microvascular endothelial cell 1 (HMEC-1) in vitro and the potential molecular mechanism. Methods: The experimental research method was used. HMEC-1 was collected and divided into P311 adenovirus group and empty adenovirus group according to the random number table (the same grouping method below), which were transfected correspondingly for 48 h. The cell proliferation activity was detected using the cell counting kit 8 on 1, 3, and 5 days of culture. The residual scratch area of cells at post scratch hour 6 and 11 was detected by scratch test, and the percentage of the residual scratch area was calculated. The blood vessel formation of cells at 8 h of culture was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. The protein expressions of vascular endothelial growth factor receptor 2 (VEGFR2), phosphorylated VEGFR2 (p-VEGFR2), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated ERK1/2 (p-ERK1/2) in cells were detected by Western blotting. HMEC-1 was collected and divided into P311 adenovirus+small interfering RNA (siRNA) negative control group, empty adenovirus+siRNA negative control group, P311 adenovirus+siRNA-VEGFR2 group, and empty adenovirus+siRNA-VEGFG2 group, which were treated correspondingly. The protein expressions of VEGFR2, p-VEGFR2, ERK1/2, and p-ERK1/2 in cells were detected by Western blotting at 24 h of transfection. The blood vessel formation of cells at 24 h of transfection was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. HMEC-1 was collected and divided into P311 adenovirus+dimethylsulfoxide (DMSO) group, empty adenovirus+DMSO group, P311 adenovirus+ERK1/2 inhibitor group, and empty adenovirus+ERK1/2 inhibitor group, which were treated correspondingly. The protein expressions of ERK1/2 and p-ERK1/2 in cells were detected by Western blotting at 2 h of treatment. The blood vessel formation of cells at 2 h of treatment was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. The sample number at each time point in each group was 6. Data were statistically analyzed with independent sample t test, analysis of variance for repeated measurement, one-way analysis of variance, and least significant difference test. Results: Compared with that of empty adenovirus group, the proliferation activity of cells in P311 adenovirus group did not show significant difference on 1, 3, and 5 days of culture (with t values of -0.23, -1.30, and -1.52, respectively, P>0.05). The residual scratch area percentages of cells in P311 adenovirus group were significantly reduced at post scratch hour 6 and 11 compared with those of empty adenovirus group (with t values of -2.47 and -2.62, respectively, P<0.05). At 8 h of culture, compared with those of empty adenovirus group, the number of nodes and total length of the tubular structure of cells in P311 adenovirus group were significantly increased (with t values of 4.49 and 4.78, respectively, P<0.01). At 48 h of transfection, compared with those of empty adenovirus group, the protein expressions of VEGFR2 and ERK1/2 of cells in P311 adenovirus group showed no obvious changes (P>0.05), and the protein expressions of p-VEGFR2 and p-ERK1/2 of cells in P311 adenovirus group were significantly increased (with t values of 17.27 and 16.08, P<0.01). At 24 h of transfection, the protein expressions of p-VEGFR2 and p-ERK1/2 of cells in P311 adenovirus+siRNA negative control group were significantly higher than those in empty adenovirus+siRNA negative control group (P<0.01). The protein expressions of VEGFR2, p-VEGFR2, and p-ERK1/2 of cells in P311 adenovirus+siRNA negative control group were significantly higher than those in P311 adenovirus+siRNA-VEGFR2 group (P<0.01). The protein expressions of VEGFR2 and p-ERK1/2 of cells in empty adenovirus+siRNA negative control group were significantly higher than those in empty adenovirus+siRNA-VEGFR2 group (P<0.05 or P<0.01). At 24 h of transfection, the number of nodes of the tubular structure in cells of P311 adenovirus+siRNA negative control group was 720±62, which was significantly more than 428±38 in empty adenovirus+siRNA negative control group and 364±57 in P311 adenovirus+siRNA-VEGFR2 group (with P values both <0.01). The total length of the tubular structure of cells in P311 adenovirus+siRNA negative control group was (21 241±1 139) μm, which was significantly longer than (17 005±1 156) μm in empty adenovirus+siRNA negative control group and (13 494±2 465) μm in P311 adenovirus+siRNA-VEGFR2 group (with P values both <0.01). The number of nodes of the tubular structure in cells of empty adenovirus+siRNA negative control group was significantly more than 310±75 in empty adenovirus+siRNA-VEGFR2 group (P<0.01), and the total length of the tubular structure of cells in empty adenovirus+siRNA negative control group was significantly longer than (11 600±2 776) μm in empty adenovirus+siRNA-VEGFR2 group (P<0.01). At 2 h of treatment, the protein expression of p-ERK1/2 of cells in P311 adenovirus+DMSO group was significantly higher than that in empty adenovirus+DMSO group and P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01), and the protein expression of p-ERK1/2 of cells in empty adenovirus+DMSO group was significantly higher than that in empty adenovirus+ERK1/2 inhibitor group (P<0.05). At 2 h of treatment, the number of nodes of the tubular structure in cells of P311 adenovirus+DMSO group was 726±72, which was significantly more than 421±39 in empty adenovirus+DMSO group and 365±41 in P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01). The total length of the tubular structure of cells in P311 adenovirus+DMSO group was (20 318±1 433) μm, which was significantly longer than (16 846±1 464) μm in empty adenovirus+DMSO group and (15 114±1 950) μm in P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01). The number of nodes of the tubular structure in cells of empty adenovirus+DMSO group was significantly more than 317±67 in empty adenovirus+ERK1/2 inhibitor group (P<0.01), and the total length of the tubular structure of cells in empty adenovirus+DMSO group was significantly longer than (13 188±2 306) μm in empty adenovirus+ERK1/2 inhibitor group (P<0.01). Conclusions: P311 can enhance the angiogenesis ability of HMEC-1 by activating the VEGFR2/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- S Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Wound Repair and Regeneration, Chongqing 400038, China Department of Burns and Plastic Surgery, General Hospital of Central Theater Command of People's Liberation Army, Wuhan 430064, China
| | - H S Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Wound Repair and Regeneration, Chongqing 400038, China
| | - W Qian
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Wound Repair and Regeneration, Chongqing 400038, China
| | - X R Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Wound Repair and Regeneration, Chongqing 400038, China
| | - W F He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Wound Repair and Regeneration, Chongqing 400038, China
| | - G X Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Wound Repair and Regeneration, Chongqing 400038, China
| |
Collapse
|
13
|
Yang Z, Hu X, Zhou L, He Y, Zhang X, Yang J, Ju Z, Liou YC, Shen HM, Luo G, Hamblin MR, He W, Yin R. Photodynamic therapy accelerates skin wound healing through promoting re-epithelialization. BURNS & TRAUMA 2021; 9:tkab008. [PMID: 34514005 PMCID: PMC8420953 DOI: 10.1093/burnst/tkab008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Background Epidermal stem cells (EpSCs) that reside in cutaneous hair follicles and the basal layer of the epidermis are indispensable for wound healing and skin homeostasis. Little is known about the effects of photochemical activation on EpSC differentiation, proliferation and migration during wound healing. The present study aimed to determine the effects of photodynamic therapy (PDT) on wound healing in vivo and in vitro. Methods We created mouse full-thickness skin resection models and applied 5-aminolevulinic acid (ALA) for PDT to the wound beds. Wound healing was analysed by gross evaluation and haematoxylin–eosin staining in vivo. In cultured EpSCs, protein expression was measured using flow cytometry and immunohistochemistry. Cell migration was examined using a scratch model; apoptosis and differentiation were measured using flow cytometry. Results PDT accelerated wound closure by enhancing EpSC differentiation, proliferation and migration, thereby promoting re-epithelialization and angiogenesis. PDT inhibited inflammatory infiltration and expression of proinflammatory cytokines, whereas the secretion of growth factors was greater than in other groups. The proportion of transient amplifying cells was significantly greater in vivo and in vitro in the PDT groups. EpSC migration was markedly enhanced after ALA-induced PDT. Conclusions Topical ALA-induced PDT stimulates wound healing by enhancing re-epithelialization, promoting angiogenesis as well as modulating skin homeostasis. This work provides a preliminary theoretical foundation for the clinical administration of topical ALA-induced PDT in skin wound healing.
Collapse
Affiliation(s)
- Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lina Zhou
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yaxiong He
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601 Huangpu Street, Tianhe District, Guangzhou, Guangdong Province, 510632, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
14
|
Nogueira BCF, Campos AK, Alves RS, Sarandy MM, Novaes RD, Esposito D, Gonçalves RV. What Is the Impact of Depletion of Immunoregulatory Genes on Wound Healing? A Systematic Review of Preclinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8862953. [PMID: 33488938 PMCID: PMC7787779 DOI: 10.1155/2020/8862953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/09/2022]
Abstract
Cytokines and growth factors are known to play an important role in the skin wound closure process; however, in knockout organisms, the levels of these molecules can undergo changes that result in the delay or acceleration of this process. Therefore, we systematically reviewed evidence from preclinical studies about the main immunoregulatory molecules involved in skin repair through the analysis of the main mechanisms involved in the depletion of immunoregulatory genes, and we carried out a critical analysis of the methodological quality of these studies. We searched biomedical databases, and only original studies were analyzed according to the PRISMA guidelines. The included studies were limited to those which used knockout animals and excision or incision wound models without intervention. A total of 27 studies were selected; data for animal models, gene depletion, wound characteristics, and immunoregulatory molecules were evaluated and compared whenever possible. Methodological quality assessments were examined using the ARRIVE and SYRCLE's bias of risk tool. In our review, the extracellular molecules act more negatively in the wound healing process when silenced and the metabolic pathway most affected involved in these processes was TGF-β/Smad, and emphasis was given to the importance of the participation of macrophages in TGF-β signaling. Besides that, proinflammatory molecules were more evaluated than anti-inflammatory ones, and the main molecules evaluated were, respectively, TGF-β1, followed by VEGF, IL-6, TNF-α, and IL-1β. Overall, most gene depletions delayed wound healing, negatively influenced the concentrations of proinflammatory cytokines, and consequently promoted a decrease of inflammatory cell infiltration, angiogenesis, and collagen deposition, compromising the formation of granulation tissue. The studies presented heterogeneous data and exhibited methodological limitations; therefore, mechanistic and highly controlled studies are required to improve the quality of the evidence.
Collapse
Affiliation(s)
| | - Artur Kanadani Campos
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Raul Santos Alves
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Debora Esposito
- Department of Animal Science, North Carolina State University, USA
| | | |
Collapse
|
15
|
Lagares D. P311 in Scar Wars: Myofibroblasts Lost without Transforming Growth Factor β Translation. Am J Respir Cell Mol Biol 2019; 60:139-140. [PMID: 30277809 DOI: 10.1165/rcmb.2018-0255ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- David Lagares
- 1 Division of Pulmonary and Critical Care Medicine.,2 Center for Immunology and Inflammatory Diseases.,3 Andy Tager Fibrosis Research Center Massachusetts General Hospital Boston, Massachusetts and.,4 Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Guidoni M, Figueira MM, Ribeiro GP, Lenz D, Grizotto PA, de Melo Costa Pereira T, Scherer R, Bogusz S, Fronza M. Development and evaluation of a vegetable oil blend formulation for cutaneous wound healing. Arch Dermatol Res 2019; 311:443-452. [PMID: 31011875 DOI: 10.1007/s00403-019-01919-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/01/2019] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
Abstract
This work aimed to evaluate the in vivo capacity of a vegetable oil blend formulation (VOB) developed to accelerate cutaneous wound closure. Total thickness wounds were punctured on the skin on the back side of each animal and topically treated with the VOB formulation, Dersani® ointment or the vehicle control. After 2, 7, 14, 21 days post-wounding, five animals from each group were euthanized, and the rates of wound closure and re-epithelialization were evaluated. The wounds were harvested for histological and biochemical analysis. VOB resulted in faster and greater re-epithelialization in the in vivo excisional wounds, exhibiting significant wound area reduction of 8.9, 8.0, 35.1, 45.2 and 47.0% after 2, 5, 10, 14 and 21 days post-wounding, respectively, when compared with the vehicle control. Histological and biochemical analyses showed that the VOB-treated wounds exhibited a significant increase of granular tissue and controlled inflammatory response by modulation of the release of pro-inflammatory cytokines TNF-α, IL-6 and IL-1. Moreover, VOB-treated wounds showed a significant and concrete increase in the deposition and organisation of collagen fibres in the wound site and improved the quality of the scar tissue. Altogether, these data revealed that VOB accelerates wound healing processes and might be beneficial for treating wound disorders.
Collapse
Affiliation(s)
- Marcio Guidoni
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Mariana Moreira Figueira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Gabrielly Pereira Ribeiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Dominik Lenz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Pamela Aparecida Grizotto
- Instituto de Química de São Carlos-IQSC, Universidade de São Paulo-USP, São Carlos, São Paulo, Brazil
| | - Thiago de Melo Costa Pereira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Rodrigo Scherer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Stanislau Bogusz
- Instituto de Química de São Carlos-IQSC, Universidade de São Paulo-USP, São Carlos, São Paulo, Brazil
| | - Marcio Fronza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil.
| |
Collapse
|
17
|
Wang S, Zhang X, Hao F, Li Y, Sun C, Zhan R, Wang Y, He W, Li H, Luo G. Reconstruction and Functional Annotation of P311 Protein-Protein Interaction Network Reveals Its New Functions. Front Genet 2019; 10:109. [PMID: 30838032 PMCID: PMC6390203 DOI: 10.3389/fgene.2019.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
P311 is a highly conserved multifunctional protein. However, it does not belong to any established family of proteins, and its biological function has not been entirely determined. This study aims to reveal the unknown molecular and cellular function of P311. OCG (Overlapping Cluster Generator) is a clustering method used to partition a protein-protein network into overlapping clusters. Multifunctional proteins are at the intersection of relevant clusters. DAVID is an analytic tool used to extract biological meaning from a large protein list. Here we presented OD2 (OCG + DAVID + 2 human PPI datasets), a novel strategy to increase the likelihood to identify biological functions most pertinent to the multifunctional proteins. The principle of OD2 is that OCG prepares the protein lists from multifunctional protein relevant overlapping clusters, for a functional enrichment analysis by DAVID, and the similar functional enrichments, which occurs simultaneously when analyzing two human PPI datasets, are supposed to be the predicted functions. By applying OD2 to two reconstructed human PPI datasets, we supposed the function of the P311 in inflammatory responses, cell proliferation and coagulation, which were confirmed by the following biological experiments. Collectively, our study preliminarily found that P311 could play a role in inflammatory responses, cell proliferation and coagulation. Further studies are required to validate and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Song Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fen Hao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yan Li
- Laboratory Center of Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Sun
- The Sixth Resignation Cadre Sanatorium of Shandong Province Military Region, Qingdao, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.,The 324th Hospital of Chinese People's Liberation Army, Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|