1
|
Hao Y, Gkasti A, Managh AJ, Dagher J, Sifis A, Tiron L, Chriqui LE, Marie DN, De Souza Silva O, Christodoulou M, Peters S, Joyce JA, Krueger T, Gonzalez M, Abdelnour-Berchtold E, Sempoux C, Clerc D, Teixeira-Farinha H, Hübner M, Meylan E, Dyson PJ, Cavin S, Perentes JY. Hyperthermic Intrathoracic Chemotherapy Modulates the Immune Microenvironment of Pleural Mesothelioma and Improves the Impact of Dual Immune Checkpoint Inhibition. Cancer Immunol Res 2025; 13:185-199. [PMID: 39585317 DOI: 10.1158/2326-6066.cir-24-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Pleural mesothelioma is a fatal disease with limited treatment options. Recently, pleural mesothelioma management has improved with the development of immune checkpoint inhibitors (ICI). In first-line therapy, dual PD-1 and CTLA-4 blockade enhances tumor control and patient survival compared with chemotherapy. Unfortunately, only a fraction of patients is responsive to immunotherapy, and approaches to reshape the tumor immune microenvironment and make ICIs more effective are urgently required. In this study, we evaluated the effect of hyperthermic intrathoracic chemotherapy (HITOC), a treatment that combines fever-range hyperthermia with local intrapleural cisplatin chemotherapy, on the tumor immune microenvironment and response to ICIs. To do this, we developed a murine pleural mesothelioma model of HITOC. We found that HITOC significantly improved tumor control and animal survival through a mechanism involving the development of a cytotoxic immune response. Additionally, HITOC enhanced immune checkpoint expression by T lymphocytes and synergized with dual PD-1 and CTLA-4 inhibition, leading to further improvement in animal survival. Finally, the analysis of peritoneal mesothelioma patient samples treated by pressurized intraperitoneal aerosol chemotherapy revealed a similar immunomodulation. In conclusion, HITOC remodels the tumor immune microenvironment of pleural mesothelioma by promoting T-cell infiltration into the tumor and could be considered in combination with ICIs in the context of a clinical trial.
Collapse
Affiliation(s)
- Yameng Hao
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aspasia Gkasti
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Amy J Managh
- Department of Chemistry, Loughborough University, Loughborough, United Kingdom
| | - Julien Dagher
- Institute of Pathology, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alexandros Sifis
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Luca Tiron
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Louis-Emmanuel Chriqui
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Damien N Marie
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Olga De Souza Silva
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | | | - Solange Peters
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Johanna A Joyce
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
- Lundin Family Brain Tumor Research Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Thorsten Krueger
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michel Gonzalez
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Etienne Abdelnour-Berchtold
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Daniel Clerc
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Hugo Teixeira-Farinha
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martin Hübner
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Etienne Meylan
- Lung Cancer and Immuno-Oncology Laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Faculty of Medicine, Université libre de Bruxelles, Anderlecht, Belgium
- Laboratory of Immunobiology, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sabrina Cavin
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Jean Y Perentes
- Department of Thoracic Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Roshini A, Goparaju C, Kundu S, Nandhu MS, Longo SL, Longo JA, Chou J, Middleton FA, Pass HI, Viapiano MS. The extracellular matrix protein fibulin-3/EFEMP1 promotes pleural mesothelioma growth by activation of PI3K/Akt signaling. Front Oncol 2022; 12:1014749. [PMID: 36303838 PMCID: PMC9593058 DOI: 10.3389/fonc.2022.1014749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited therapeutic options. The extracellular matrix protein fibulin-3/EFEMP1 accumulates in the pleural effusions of MPM patients and has been proposed as a prognostic biomarker of these tumors. However, it is entirely unknown whether fibulin-3 plays a functional role on MPM growth and progression. Here, we demonstrate that fibulin-3 is upregulated in MPM tissue, promotes the malignant behavior of MPM cells, and can be targeted to reduce tumor progression. Overexpression of fibulin-3 increased the viability, clonogenic capacity and invasion of mesothelial cells, whereas fibulin-3 knockdown decreased these phenotypic traits as well as chemoresistance in MPM cells. At the molecular level, fibulin-3 activated PI3K/Akt signaling and increased the expression of a PI3K-dependent gene signature associated with cell adhesion, motility, and invasion. These pro-tumoral effects of fibulin-3 on MPM cells were disrupted by PI3K inhibition as well as by a novel, function-blocking, anti-fibulin-3 chimeric antibody. Anti-fibulin-3 antibody therapy tested in two orthotopic models of MPM inhibited fibulin-3 signaling, resulting in decreased tumor cell proliferation, reduced tumor growth, and extended animal survival. Taken together, these results demonstrate for the first time that fibulin-3 is not only a prognostic factor of MPM but also a relevant molecular target in these tumors. Further development of anti-fibulin-3 approaches are proposed to increase early detection and therapeutic impact against MPM.
Collapse
Affiliation(s)
- Arivazhagan Roshini
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Chandra Goparaju
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Somanath Kundu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Mohan S. Nandhu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Sharon L. Longo
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - John A. Longo
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Joan Chou
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Frank A. Middleton
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Mariano S. Viapiano,
| |
Collapse
|
3
|
Saito N, Haniu H, Aoki K, Nishimura N, Uemura T. Future Prospects for Clinical Applications of Nanocarbons Focusing on Carbon Nanotubes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201214. [PMID: 35754236 PMCID: PMC9404397 DOI: 10.1002/advs.202201214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Over the past 15 years, numerous studies have been conducted on the use of nanocarbons as biomaterials towards such applications as drug delivery systems, cancer therapy, and regenerative medicine. However, the clinical use of nanocarbons remains elusive, primarily due to short- and long-term safety concerns. It is essential that the biosafety of each therapeutic modality be demonstrated in logical and well-conducted experiments. Accordingly, the fundamental techniques for assessing nanocarbon biomaterial safety have become more advanced. Optimal controls are being established, nanocarbon dispersal techniques are being refined, the array of biokinetic evaluation methods has increased, and carcinogenicity examinations under strict conditions have been developed. The medical implementation of nanocarbons as a biomaterial is in sight. With a particular focus on carbon nanotubes, these perspectives aim to summarize the contributions to date on nanocarbon applications and biosafety, introduce the recent achievements in evaluation techniques, and clarify the future prospects and systematic introduction of carbon nanomaterials for clinical use through practical yet sophisticated assessment methods.
Collapse
Affiliation(s)
- Naoto Saito
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Hisao Haniu
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Kaoru Aoki
- Department of Applied Physical TherapyShinshu University School of Health Sciences3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Naoyuki Nishimura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Takeshi Uemura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
- Division of Gene ResearchResearch Center for Supports to Advanced ScienceShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| |
Collapse
|
4
|
Gupta SS, Singh KP, Gupta S, Dusinska M, Rahman Q. Do Carbon Nanotubes and Asbestos Fibers Exhibit Common Toxicity Mechanisms? NANOMATERIALS 2022; 12:nano12101708. [PMID: 35630938 PMCID: PMC9145953 DOI: 10.3390/nano12101708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
During the last two decades several nanoscale materials were engineered for industrial and medical applications. Among them carbon nanotubes (CNTs) are the most exploited nanomaterials with global production of around 1000 tons/year. Besides several commercial benefits of CNTs, the fiber-like structures and their bio-persistency in lung tissues raise serious concerns about the possible adverse human health effects resembling those of asbestos fibers. In this review, we present a comparative analysis between CNTs and asbestos fibers using the following four parameters: (1) fibrous needle-like shape, (2) bio-persistent nature, (3) high surface to volume ratio and (4) capacity to adsorb toxicants/pollutants on the surface. We also compare mechanisms underlying the toxicity caused by certain diameters and lengths of CNTs and asbestos fibers using downstream pathways associated with altered gene expression data from both asbestos and CNT exposure. Our results suggest that indeed certain types of CNTs are emulating asbestos fiber as far as associated toxicity is concerned.
Collapse
Affiliation(s)
- Suchi Smita Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Krishna P. Singh
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway;
| | - Qamar Rahman
- Amity Institute of Biotechnology, Amity University, Lucknow 226028, India
- Correspondence:
| |
Collapse
|
5
|
Liaw J, Hsieh WH, Chiou SH, Huang YS, Chang SF. Assessment of the Oral Delivery of a Myelin Basic Protein Gene Promoter with Antiapoptotic bcl-x L (pMBP-bcl-x L) DNA by Cyclic Peptide Nanotubes with Two Aspect Ratios and Its Biodistribution in the Brain and Spinal Cord. Mol Pharm 2021; 18:2556-2573. [PMID: 34110176 DOI: 10.1021/acs.molpharmaceut.1c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs) were reported to be potential carriers for oral gene delivery in our previous study; however, the effect of the aspect ratio (AR) of these PNTs on gene delivery in vivo could affect penetration or interception in biological environments. The aim of this study was to assess the feasibility of cyclo-(D-Trp-Tyr) PNTs with two ARs as carriers for oral pMBP-bcl-xL-hRluc delivery to the spinal cord to treat spinal cord injury (SCI). We evaluated the biodistribution of oligodendrocyte (OLG)-specific myelin basic protein gene promoter-driven antiapoptotic DNA (pMBP-bcl-xL) to the brain and spinal cord delivered with cyclo-(D-Trp-Tyr) PNTs with large (L) and small (S) PNTs with two ARs. After complex formation, the length, width, and AR of the L-PNTs/DNA were 77.86 ± 3.30, 6.51 ± 0.28, and 13.75 ± 7.29 μm, respectively, and the length and width of the S-PNTs/DNA were 1.17 ± 0.52 and 0.17 ± 0.05 μm, respectively, giving an AR of 7.12 ± 3.17 as detected by scanning electron microscopy. Each of these three parameters exhibited significant differences (p < 0.05) between L-PNTs/DNA and S-PNTs/DNA. However, there were no significant differences (p > 0.05) between the L-PNTs and S-PNTs for either their DNA encapsulation efficiency (29.72 ± 14.19 and 34.31 ± 16.78%, respectively) or loading efficiency (5.15 ± 2.58 and 5.95 ± 2.91%). The results of the in vitro analysis showed that the S-PNT/DNA complexes had a significantly higher DNA release rate and DNA permeation in the duodenum than the L-PNT/DNA complexes. Using Cy5 and TM-rhodamine to individually and chemically conjugate the PNTs with plasmid DNA, we observed, using laser confocal microscopy, that the PNTs and DNA colocalized in complexes. We further confirmed the complexation between DNA and the PNTs using fluorescence resonance energy transfer (FRET). Data from an in vivo imaging system (IVIS) showed that there was no significant difference (p > 0.05) in PNT distribution between L-PNTs/DNA and S-PNTs/DNA within 4 h. However, the S-PNT/DNA group had a significantly higher DNA distribution (p < 0.05) in several organs, including the ilium, heart, lungs, spleen, kidneys, testes, brain, and spinal cord. Finally, we determined the bcl-xL protein expression levels in the brain and spinal cord regions for the L-PNT/DNA and S-PNT/DNA complex formulations. These results suggested that either L-PNTs or S-PNTs may be used as potential carriers for oral gene delivery to treat SCI.
Collapse
Affiliation(s)
- Jiahorng Liaw
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Hsien Hsieh
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Shih-Hsun Chiou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Shan Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 111, Taiwan
| |
Collapse
|
6
|
Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. The role of nitric oxide in pleural disease. Respir Med 2021; 179:106350. [PMID: 33662805 DOI: 10.1016/j.rmed.2021.106350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) regulates various physiological and pathophysiological functions in the lungs. However, there is much less information about the effects of NO in the pleura. The present review aimed to explore the available evidence regarding the role of NO in pleural disease. NO, has a double-edged role in the pleural cavity. It is an essential signaling molecule mediating various physiological cell functions such as lymphatic drainage of the serous cavities, the immune response to intracellular multiplication of pathogens, and downregulation of neutrophil migration, but also induces genocytotoxic and mutagenic effects when present in excess. NO is implicated in the pathogenesis of asbestos-related or exudative pleural disease and mesothelioma. From a clinical point of view, the fraction of exhaled NO has been suggested as a potential non-invasive tool for the diagnosis of benign asbestos-related disorders. Under experimental conditions, NO-mimetics were found to attenuate hypoxia-induced therapy resistance in mesothelioma. Similarly, hybrid agents consisting of an NO donor coupled with a parent anti-inflammatory drug showed an enhancement of the anti-inflammatory activity of anti-inflammatory drugs. However, given the paucity of research work performed over the last years in this area, further research should be undertaken to establish reliable conclusions with respect to the feasibility of determining or targeting the NO signaling pathway for pleural disease diagnosis and therapeutic management.
Collapse
Affiliation(s)
- Ourania S Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110, Larissa, Greece; Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece.
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| |
Collapse
|
7
|
Reamon-Buettner SM, Hackbarth A, Leonhardt A, Braun A, Ziemann C. Cellular senescence as a response to multiwalled carbon nanotube (MWCNT) exposure in human mesothelial cells. Mech Ageing Dev 2021; 193:111412. [PMID: 33279583 DOI: 10.1016/j.mad.2020.111412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a stable cell cycle arrest induced by diverse triggers, including replicative exhaustion, DNA damaging agents, oncogene activation, oxidative stress, and chromatin disruption. With important roles in aging and tumor suppression, cellular senescence has been implicated also in tumor promotion. Here we show that certain multiwalled carbon nanotubes (MWCNTs), as fiber-like nanomaterials, can trigger cellular senescence in primary human mesothelial cells. Using in vitro approaches, we found manifestation of several markers of cellular senescence, especially after exposure to a long and straight MWCNT. These included inhibition of cell division, senescence-associated heterochromatin foci, senescence-associated distension of satellites, LMNB1 depletion, γH2A.X nuclear panstaining, and enlarged cells exhibiting senescence-associated β-galactosidase activity. Furthermore, genome-wide transcriptome analysis revealed many differentially expressed genes, among which were genes encoding for a senescence-associated secretory phenotype. Our results clearly demonstrate the potential of long and straight MWCNTs to induce premature cellular senescence. This finding may find relevance in risk assessment of workplace safety, and in evaluating MWCNT's use in medicine such as drug carrier, due to exposure effects that might prompt onset of age-related diseases, or even carcinogenesis.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Anja Hackbarth
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Albrecht Leonhardt
- Nanoscale Chemistry, Leibniz Institute for Solid State and Materials Research IFW, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Armin Braun
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Christina Ziemann
- Fraunhofer-Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
8
|
Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Research on the toxicity of engineered carbon nanotubes (CNT) was initiated by Belgian academic chemists and toxicologists more than 15 years ago. It is now undisputed that some of these attractive nanomaterials induce serious illness such as fibrosis and cancer. The physico-chemical determinants of CNT-induced adverse effects are now elucidated and include shape, nanoscale diameter, and structural defects. Generated in vitro and in vivo data on their inflammogenic and fibrogenic activities were combined and translated in AOP (adverse outcome pathways) available for risk assessment and regulatory policies. The asbestos-like carcinogenic effect of CNT, notably their capacity to induce malignant mesothelioma (MM), remain, however, a cause of concern for public health and strongly curb the craze for CNT in industries. MM still represents a real challenge for clinicians and a highly refractory cancer to existing therapeutic strategies. By comparing mesotheliomagenic CNT (needle-like CNT-N) to non mesotheliomagenic CNT (tangled-like CNT-T), our group generated a relevant animal model that highlights immune pathways specifically associated to the carcinogenic process. Evidence indicates that only CNT-N possess the intrinsic capacity to induce a preferential, rapid, and sustained accumulation of host immunosuppressive cells that subvert immune surveillance and suppress anti-mesothelioma immunity. This new concept offers novel horizons for the clinical management of mesothelioma and represents an additional tool for predicting the mesotheliomagenic activity of newly elaborated CNT or nanoparticles.
Collapse
|
9
|
Ahmadzada T, Kao S, Reid G, Clarke S, Grau GE, Hosseini-Beheshti E. Extracellular vesicles as biomarkers in malignant pleural mesothelioma: A review. Crit Rev Oncol Hematol 2020; 150:102949. [PMID: 32330840 DOI: 10.1016/j.critrevonc.2020.102949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EV) are secreted by all cells, including cancer cells, as a mode of intercellular transport and communication. The main types of EV known to date include exosomes, microvesicles and apoptotic bodies, as well as oncosomes and large oncosomes, which are specific to cancer cells. These different EV populations carry specific cargo from one cell to another to stimulate a specific response. They can be found in all body fluids and can be detected in liquid biopsies. EV released from mesothelioma cells can reveal important information about the molecules and signalling pathways involved in the development and progression of the tumour. The presence of tumour-derived EV in circulating body fluids makes them potential novel biomarkers for early diagnosis, prognostication and surveillance of cancer. In this review, we explore the characteristics and functional roles of EV reported in the literature, with a focus on their role in malignant pleural mesothelioma.
Collapse
Affiliation(s)
- Tamkin Ahmadzada
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.
| | - Steven Kao
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; Chris O'Brien Lifehouse, Sydney, NSW, Australia; Asbestos Diseases Research Institute (ADRI), Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Stephen Clarke
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Georges E Grau
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; Vascular Immunology Unit, Department of Pathology, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Elham Hosseini-Beheshti
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; Vascular Immunology Unit, Department of Pathology, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
10
|
Abstract
Carbon nanotubes (CNTs) are nanomaterials with unique physicochemical properties that are targets of great interest for industrial and commercial applications. Notwithstanding, some characteristics of CNTs are associated with adverse outcomes from exposure to pathogenic particulates, raising concerns over health risks in exposed workers and consumers. Indeed, certain forms of CNTs induce a range of harmful effects in laboratory animals, among which inflammation, fibrosis, and cancer are consistently observed for some CNTs. Inflammation, fibrosis, and malignancy are complex pathological processes that, in summation, underlie a major portion of human disease. Moreover, the functional interrelationship among them in disease pathogenesis has been increasingly recognized. The CNT-induced adverse effects resemble certain human disease conditions, such as pneumoconiosis, idiopathic pulmonary fibrosis (IPF), and mesothelioma, to some extent. Progress has been made in understanding CNT-induced pathologic conditions in recent years, demonstrating a close interconnection among inflammation, fibrosis, and cancer. Mechanistically, a number of mediators, signaling pathways, and cellular processes are identified as major mechanisms that underlie the interplay among inflammation, fibrosis, and malignancy, and serve as pathogenic bases for these disease conditions in CNT-exposed animals. These studies indicate that CNT-induced pathological effects, in particular, inflammation, fibrosis, and cancer, are mechanistically, and in some cases, causatively, interrelated. These findings generate new insights into CNT adverse effects and pathogenesis and provide new targets for exposure monitoring and drug development against inflammation, fibrosis, and cancer caused by inhaled nanomaterials.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| |
Collapse
|
11
|
Rouka E, Beltsios E, Goundaroulis D, Vavougios GD, Solenov EI, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. In Silico Transcriptomic Analysis of Wound-Healing-Associated Genes in Malignant Pleural Mesothelioma. ACTA ACUST UNITED AC 2019; 55:medicina55060267. [PMID: 31212858 PMCID: PMC6631992 DOI: 10.3390/medicina55060267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Background and objectives: Malignant pleural mesothelioma (MPM) is a devastating malignancy with poor prognosis. Reliable biomarkers for MPM diagnosis, monitoring, and prognosis are needed. The aim of this study was to identify genes associated with wound healing processes whose expression could serve as a prognostic factor in MPM patients. Materials and Methods: We used data mining techniques and transcriptomic analysis so as to assess the differential transcriptional expression of wound-healing-associated genes in MPM. Moreover, we investigated the potential prognostic value as well as the functional enrichments of gene ontologies relative to microRNAs (miRNAs) of the significantly differentially expressed wound-healing-related genes in MPM. Results: Out of the 82 wound-healing-associated genes analyzed, 30 were found significantly deregulated in MPM. Kaplan–Meier analysis revealed that low ITGAV gene expression could serve as a prognostic factor favoring survival of MPM patients. Finally, gene ontology annotation enrichment analysis pointed to the members of the hsa-miR-143, hsa-miR-223, and the hsa-miR-29 miRNA family members as important regulators of the deregulated wound healing genes. Conclusions: 30 wound-healing-related genes were significantly deregulated in MPM, which are potential targets of hsa-miR-143, hsa-miR-223, and the hsa-miR-29 miRNA family members. Out of those genes, ITGAV gene expression was a prognostic factor of overall survival in MPM. Our results highlight the role of impaired tissue repair in MPM development and should be further validated experimentally.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Transfusion Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| | - Eleftherios Beltsios
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| | - Dimos Goundaroulis
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | | | - Evgeniy I Solenov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| |
Collapse
|
12
|
Loh KP, Ho D, Chiu GNC, Leong DT, Pastorin G, Chow EKH. Clinical Applications of Carbon Nanomaterials in Diagnostics and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802368. [PMID: 30133035 DOI: 10.1002/adma.201802368] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Nanomaterials have the potential to improve how patients are clinically treated and diagnosed. While there are a number of nanomaterials that can be used toward improved drug delivery and imaging, how these nanomaterials confer an advantage over other nanomaterials, as well as current clinical approaches is often application or disease specific. How the unique properties of carbon nanomaterials, such as nanodiamonds, carbon nanotubes, carbon nanofibers, graphene, and graphene oxides, make them promising nanomaterials for a wide range of clinical applications are discussed herein, including treating chemoresistant cancer, enhancing magnetic resonance imaging, and improving tissue regeneration and stem cell banking, among others. Additionally, the strategies for further improving drug delivery and imaging by carbon nanomaterials are reviewed, such as inducing endothelial leakiness as well as applying artificial intelligence toward designing optimal nanoparticle-based drug combination delivery. While the clinical application of carbon nanomaterials is still an emerging field of research, there is substantial preclinical evidence of the translational potential of carbon nanomaterials. Early clinically trial studies are highlighted, further supporting the use of carbon nanomaterials in clinical applications for both drug delivery and imaging.
Collapse
Affiliation(s)
- Kian Ping Loh
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, 117543, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Singapore Institute for Neurotechnology (SINAPSE), Singapore, 117456, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), Singapore, 117599, Singapore
| | - Gigi Ngar Chee Chiu
- Department of Pharmacy, National University of Singapore, Singapore, 117543, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore, 117543, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|