1
|
Li B, Gao H, Xiao H, He H, Ni Q, Li Q, Wang H, Chen L. Abnormal chenodexycholic acid metabolism programming promotes cartilage matrix degradation in male adult offspring rats induced by prenatal caffeine exposure. Toxicol Res (Camb) 2025; 14:tfaf063. [PMID: 40331087 PMCID: PMC12051868 DOI: 10.1093/toxres/tfaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/01/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Epidemiological evidence links osteoarthritis to fetal origins. Our study shows prenatal caffeine exposure (PCE) in rats predisposes adult offspring to osteoarthritis, associated with elevated intrauterine glucocorticoid levels. Previous research indicates that chenodeoxycholic acid (CDCA), a bile acid, can slow osteoarthritis progression when administered intra-articularly. This study explored if disrupted bile acid metabolism in cartilage affects osteoarthritis risk in adult offspring with PCE. Our findings indicate that the expression of MMP3/MMP13 was upregulated, while endogenous CDCA levels were reduced in the cartilage of PCE-exposed offspring. Furthermore, we observed a persistent reduction in H3K27ac levels at the CYP7B1 promoter and its expression in the cartilage of PCE offspring from fetus to adulthood. Moreover, a sub-physiological level of CDCA promoted NF-κB phosphorylation and the expression of MMP3/MMP13 in chondrocytes in vitro. High levels of glucocorticoids reduced H3K27ac levels and CYP7B1 expression in the promoter region of CYP7B1 through the glucocorticoid receptor and histone deacetylase 4, consequently leading to decreased CDCA levels. In summary, our findings suggest that intrauterine low-expression programming of CYP7B1, induced by elevated glucocorticoid levels, reduces local CDCA levels in the cartilage of PCE offspring, ultimately leading to increased matrix degradation and susceptibility to osteoarthritis.
Collapse
Affiliation(s)
- Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Gao
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hangyuan He
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qubo Ni
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qingxian Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| |
Collapse
|
2
|
Nie Q, Wang C, Zhou L. Association between Serum Selenium Levels and Lipids among People with and without Diabetes. Nutrients 2023; 15:3190. [PMID: 37513608 PMCID: PMC10383610 DOI: 10.3390/nu15143190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The current study aimed to examine the association between serum selenium levels and lipids and explore whether the association was modified by diabetic status. A total of 4132 adults from the National Health and Nutrition Examination Survey (2011-2016) were included in this study. Multiple linear regression models were used to estimate the association between serum selenium and lipids. Higher serum selenium levels were significantly associated with increased total cholesterol (TC) (p < 0.001), triglyceride (TG) (p = 0.003), and low-density lipoprotein cholesterol (LDL-C) (p = 0.003) in the overall population. Diabetic status interacted with serum selenium for TC and LDL-C (p for interaction = 0.007 and <0.001). Comparing the highest with the lowest tertiles of serum selenium, the multivariate-adjusted β coefficients (95% CIs) were 17.88 (10.89, 24.87) for TC, 13.43 (7.68, 19.18) for LDL-C among subjects without diabetes, but nonsignificant among those with diabetes. In US adults, the serum selenium was positively associated with lipids and the association was modified by diabetic status. Higher serum selenium levels were significantly associated with increased TC and LDL-C among participants without diabetes, but not among participants with diabetes.
Collapse
Affiliation(s)
- Qi Nie
- Department of Nutrition, Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Changsi Wang
- Department of Nutrition, Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Li Zhou
- Department of Nutrition, Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
3
|
Salimi M, Eskandari F, Khodagholi F, Abdollahifar MA, Hedayati M, Zardooz H, Keyhanmanesh R. Perinatal stress exposure induced oxidative stress, metabolism disorder, and reduced GLUT-2 in adult offspring of rats. Hormones (Athens) 2022; 21:625-640. [PMID: 35843978 DOI: 10.1007/s42000-022-00383-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Growing evidence has demonstrated that adversity in early life, especially in the prenatal and postnatal period, may change the programming of numerous body systems and cause the incidence of various disorders in later life. Accordingly, this experimental animal study aimed to investigate the effect of stress exposure during perinatal (prenatal and/or postnatal) on the induction of oxidative stress in the pancreas and its effect on glucose metabolism in adult rat offspring. METHODS In this experimental study based on maternal exposure to variable stress throughout the perinatal period, the pups were divided into eight groups, as follows: control group (C); prepregnancy, pregnancy, lactation stress group (PPPLS); prepregnancy stress group (PPS); pregnancy stress group (PS); lactation stress group (LS); prepregnancy, pregnancy stress group (PPPS); pregnancy, lactation stress group (PLS); and prepregnancy, lactation stress group (PPLS). Following an overnight fast on postnatal day (PND) 64, plasma glucose, insulin, leptin levels, and lipid profiles were evaluated in the offspring groups. GLUT-2 protein levels, lipid peroxidation, antioxidant status, and number of beta-cells in the pancreatic islets of Langerhans as well as the weights of intra-abdominal fat and adrenal glands were assessed. Levels of plasma corticosterone were determined in the different groups of mothers and offspring. RESULTS The levels of plasma corticosterone, insulin, and HOMA-B index increased, whereas glucose level and QUICKI index were reduced in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Plasma triglyceride, LDL, and cholesterol level rose significantly, but HDL level decreased in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Perinatal stress raised MDA concentrations and reduced the activities of antioxidant enzymes in plasma and pancreas compared to C group (p < 0.001 to p < 0.05). GLUT-2 protein levels and number of beta-cells in the stress groups declined compared to C group (p < 0.001 to p < 0.05). Intra-abdominal fat weight decreased in the PPS, PS, and LS groups compared to C group (p < 0.001 to p < 0.01), but adrenal gland weight remained unchanged. CONCLUSION Our results showed that long-term exposure to elevated levels of corticosterone during critical development induces metabolic syndrome in adult male rats.
Collapse
Affiliation(s)
- Mina Salimi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, PO Box: 5166614756, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box: 19615-1178, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box: 19615-1178, Tehran, Iran.
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Effect of a maternal high fat diet with vegetable substitution on fetal brain transcriptome. J Nutr Biochem 2022; 108:109088. [PMID: 35691591 DOI: 10.1016/j.jnutbio.2022.109088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Maternal dietary conditions play a major role in fetal growth and brain development. The primary aim of this study was to determine the effects of 5% of energy substitution by vegetables in a maternal dietary fat on placental and fetal weight and on fetal brain gene expression. Two-month-old female C57BL/6 mice were fed 16% (normal-fat, NF), 45% fat (HF), or HF substituted with vegetables (5% energy, HF+VS) diets for 12 weeks. Dams were then bred with NF diet-fed male mice. Placenta and fetal weights were measured at gestational age 19 (D19). RNA was isolated from fetal whole brains and sequenced using Illumina HiSeq. HF+VS diet prevented maternal HF diet-induced decreases in placental weight at D19. Feeding of a maternal HF diet was associated with 79 differentially expressed genes (DEGs), while maternal vegetable substitution was associated with 131 DEGs. The vegetable substitution diet decreased Apold1 (P=0.0319), Spata2l (P=0.0404) and Celsr1 (P<0.03) expression compared to HF diet. Enrichment analysis of HF vs HF +VS DEGs identified that synapse organization, and regulation of embryonic development were significantly represented. KEGG enrichment analysis identified a significant representation of DEGs in the ubiquitin mediated proteolysis pathway in HF vs HF +VS, and chemokine signaling pathway in NF vs HF. These findings suggest that at D19, in a rodent model, a maternal HF diet alters placental and fetal growth, and that vegetable supplementation renders a protective effect against these changes.
Collapse
|
5
|
Marques ES, Agudelo J, Kaye EM, Modaresi SMS, Pfohl M, Bečanová J, Wei W, Polunas M, Goedken M, Slitt AL. The role of maternal high fat diet on mouse pup metabolic endpoints following perinatal PFAS and PFAS mixture exposure. Toxicology 2021; 462:152921. [PMID: 34464680 DOI: 10.1016/j.tox.2021.152921] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a family of chemicals that are ubiquitous in the environment. Some of these chemicals, such as perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonate (PFHxS) and perfluorooctanoic acid (PFOA), are found in human sera and have been shown to cause liver steatosis and reduce postnatal survival and growth in rodents. The purpose of this work is to evaluate the impact of diet and PFAS exposure to mouse dam (mus musculus) on the risk to pup liver and metabolism endpoints later in life, as well as evaluate PFAS partitioning to pups. Timed-pregnant dams were fed a standard chow diet or 60 % kcal high fat diet (HFD). Dams were administered either vehicle, 1 mg/kg PFOA, 1 mg/kg PFOS, 1 mg/kg PFHxS, or a PFAS mixture (1 mg/kg of each PFOA, PFOS, and PFHxS) daily via oral gavage from gestation day 1 until postnatal day (PND) 20. At PND 21, livers of dams and 2 pups of each sex were evaluated for lipid changes while remaining pups were weaned to the same diet as the dam for an additional 10 weeks. Dam and pup serum at PND 21 and PND 90 were also evaluated for PFAS concentration, alanine aminotransferase (ALT), leptin and adiponectin, and glycosylated hemoglobin A1c. Perinatal exposure to a HFD, as expected, increased pup body weight, maternal liver weight, pup liver triglycerides, pup serum ALT, and pup serum leptin. PFOA and the PFAS mixture increased liver weights, and. treatment with all three compounds increased liver triglycerides. The maternal HFD increased dam and pup serum PFAS levels, however, was protective against PFOA-induced increase in serum ALT and observed increases in liver triglycerides. The PFAS mixture had very distinct effects when compared to single compound treatment, suggesting some cumulative effects, particularly when evaluating PFAS transfer from dam to pup. This data highlights the importance of diet and mixtures when evaluating liver effect of PFAS and PFAS partitioning.
Collapse
Affiliation(s)
- Emily S Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Juliana Agudelo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Emily M Kaye
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Seyed Mohamad Sadegh Modaresi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Jitka Bečanová
- Graduate School of Oceanography, University of Rhode Island, 215 S Ferry Rd, Narragansett, RI 02882, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Marianne Polunas
- Rutgers Translational Sciences, Rutgers University, 33 Knightsbridge Road, Piscataway, NJ 08854, USA
| | - Michael Goedken
- Rutgers Translational Sciences, Rutgers University, 33 Knightsbridge Road, Piscataway, NJ 08854, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA.
| |
Collapse
|
6
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Lee S, Kim YN, Im D, Cho SH, Kim J, Kim JH, Kim K. DNA Methylation and gene expression patterns are widely altered in fetal growth restriction and associated with FGR development. Anim Cells Syst (Seoul) 2021; 25:128-135. [PMID: 34262655 PMCID: PMC8253195 DOI: 10.1080/19768354.2021.1925741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is the failure of the fetus toachieve its genetically determined growth potential, which increasesrisks for a variety of genetic diseases, such as type 2 diabetes mellitus, coronary artery disease, and stroke, during the lifetime. The dysregulation of DNA methylationis known to interact with environmental fluctuations, affect gene expressions comprehensively, and be fatal to fetus development in specific cases. Therefore, we set out to find out epigenetic and transcriptomic alterations associated with FGR development. We found a set of differentially expressed genes associated with differentially methylated regions in placentae and cord blood samples. Using dimensional reduction analysis, the expression and methylation variables of the epigenetically altered genes classified the FGR samples from the controls. These genes were also enriched in the biological pathways such as metabolism and developmental processes related to FGR. Furthermore, three genes of INS, MEG3, and ZFP36L2 are implicated in epigenetic imprinting, which has been associated with FGR. These results strongly suggest that DNA methylation is highly dysregulated during FGR development, and abnormal DNA methylation patterns are likely to alter gene expression.
Collapse
Affiliation(s)
- Seoyeong Lee
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Young Nam Kim
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - DoHwa Im
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Su Han Cho
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyeon Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Hyun Kim
- Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kwoneel Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Gawlińska K, Gawliński D, Filip M, Przegaliński E. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutr Rev 2020; 79:709-725. [PMID: 32447401 DOI: 10.1093/nutrit/nuaa020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A balanced maternal diet is essential for proper fetal development, and the consumption of a nutritionally inadequate diet during intrauterine development and early childhood is associated with a significantly increased risk of metabolic and brain disorders in offspring. The current literature indicates that maternal exposure to a high-fat diet exerts an irreversible influence on the general health of the offspring. This review of preclinical research examines the relationship between a maternal high-fat diet during pregnancy or lactation and metabolic changes, molecular alterations in the brain, and behavioral disorders in offspring. Animal models indicate that offspring exposed to a maternal high-fat diet during pregnancy and lactation manifest increased depressive-like and aggressive behaviors, reduced cognitive development, and symptoms of metabolic syndrome. Recently, epigenetic and molecular studies have shown that maternal nutrition during pregnancy and the suckling period modifies the development of neurotransmitter circuits and many other factors important to central nervous system development. This finding confirms the importance of a balanced maternal diet for the health of offspring.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
9
|
Zhao N, Yang S, Feng Y, Sun B, Zhao R. Enhanced hepatic cholesterol accumulation induced by maternal betaine exposure is associated with hypermethylation of CYP7A1 gene promoter. Endocrine 2019; 64:544-551. [PMID: 30924082 DOI: 10.1007/s12020-019-01906-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/15/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Betaine contains three methyl groups and plays a critical role in regulating glucose and lipid metabolism via epigenetic modifications. However, it is unclear whether prenatal betaine intake could affect cholesterol metabolism of progeny through DNA methylation. METHODS Hence, pregnant rats were randomly divided into control and betaine groups fed standard diet or 1% betaine supplementation diet, respectively, throughout gestation and lactation. RESULTS Maternal betaine exposure significantly (P < 0.05) increased serum and hepatic cholesterol contents but not triglyceride levels in offspring rats. Accordantly, maternal intake of betaine markedly downregulated (P < 0.05) hepatic cholesterol 7 alpha-hydroxylase (CYP7A1) expression at both the mRNA and protein level, while the protein content of low-density lipoprotein receptor (LDLR) was upregulated in the liver of betaine-exposed rats. In addition, prenatal betaine supplementation extremely increased (P < 0.05) hepatic betaine-homocysteine methyltransferase (BHMT) expression at the mRNA and protein level but not affected the expression of other key enzymes involved in methionine metabolism. Furthermore, hepatic hypermethylation of CYP7A1 gene promoter was observed in progeny rats derived from betaine-supplemented dams. CONCLUSIONS Our results provide evidence that maternal betaine supplementation significantly enhances hepatic cholesterol contents accompanied with alterations of cholesterol metabolic genes and hypermethylation in offspring rats at weaning.
Collapse
Affiliation(s)
- Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Bo Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, 210095, Nanjing, P. R. China.
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, 210095, Nanjing, P. R. China.
| |
Collapse
|
10
|
Ge MX, Shao RG, He HW. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase. Biochem Pharmacol 2019; 164:152-164. [DOI: 10.1016/j.bcp.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
|
11
|
Zhao Y, Zhang L, Han R, Si Y, Zhao Z. Intravenous injection of post-hemorrhagic shock mesenteric lymph induces multiple organ injury in rats. Exp Ther Med 2018; 17:1449-1455. [PMID: 30680027 DOI: 10.3892/etm.2018.7048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022] Open
Abstract
Post-hemorrhagic shock mesenteric lymph (PHSML) has an important role in the multiple organ injuries caused by severe shock. The current study investigated whether intravenous injection of PHSML induces organ injury in normal rats. Following the establishment of hemorrhagic shock in donor rats (40±2 mmHg, 3 h), PHSML was drained during hypotension at 1-3 h and then injected to normal rats through the femoral vein within 30 min. The mean arterial pressure (MAP) was measured, and samples were obtained for analysis of histology and biochemical indices at 2.5 h post-PHSML administration. PHSML administration resulted in a significant decrease in MAP at the early and late stage of the experiment. Structural damage of the lung, kidney, heart and liver was also observed, and the levels of urea, creatinine, aspartate aminotransferase, total bile acid and creatine kinase MB isoenzyme were increased in the plasma. Additionally, PHSML injection significantly increased the levels of trypsin, tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 and receptor of advanced glycation end-products in the plasma, malondialdehyde in the lung and myocardium, and TNF-α in the lung, kidney, myocardium and liver. Intravenous injection of PHSML induced multiple organ injury in normal rats via increases in trypsin activity, inflammatory factors and free radical production. The findings indicate that PHSML return is an important contributor to organ damage following hemorrhagic shock.
Collapse
Affiliation(s)
- Yifeng Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China.,Department of Oncological Surgery, The Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Limin Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Rui Han
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yonghua Si
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China.,Department of Pediatrics, Cangzhou City People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zigang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
12
|
Zinkhan EK, Yu B, McKnight R. Uteroplacental Insufficiency Impairs Cholesterol Elimination in Adult Female Growth-Restricted Rat Offspring Fed a High-Fat Diet. Reprod Sci 2018; 26:1173-1180. [PMID: 30453824 DOI: 10.1177/1933719118811649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Uteroplacental insufficiency (UPI) causes intrauterine growth restriction (IUGR) and increases the risk of hypercholesterolemia and cardiovascular disease, which are leading causes of morbidity and mortality worldwide. Little is known about the mechanism through which UPI increases cholesterol. Hepatic Cholesterol 7 alpha-hydroxylase (Cyp7a1) is the rate-limiting and most highly regulated step of cholesterol catabolism to bile acids. Cholesterol 7 alpha-hydroxylase is regulated by transcription factor liver X receptor α (Lxrα) and by microRNA-122. We previously showed that microRNA-122 inhibition of Cyp7a1 translation decreased cholesterol catabolism to bile acids in female IUGR rats at the time of weaning. We hypothesized that UPI would increase cholesterol and microRNA-122 and decrease Cyp7a1 protein and hepatic bile acids in young adult female IUGR rats. To test our hypothesis, we used a rat model of IUGR induced by bilateral uterine artery ligation. Both control and IUGR offspring were exposed to a maternal high-fat diet from before conception through lactation, and all offspring were weaned to a high-fat diet on postnatal day 21. At postnatal day 60, IUGR female rats had increased total and low-density lipoprotein serum cholesterol and hepatic cholesterol, decreased Lxrα and Cyp7a1 protein, and decreased hepatic bile acids. Hepatic microRNA-122 was not changed by UPI. Our findings suggest that UPI decreased cholesterol catabolism to bile acids in young adult female rats through a mechanism independent of microRNA-122.
Collapse
Affiliation(s)
- Erin K Zinkhan
- 1 Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Baifeng Yu
- 1 Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert McKnight
- 1 Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|