1
|
Stine AE, Parmar J, Smith AK, Cummins Z, Pillalamarri NR, Bender RJ. Simulation of clinical trials of oral treprostinil in pulmonary arterial hypertension using a virtual population. NPJ Syst Biol Appl 2025; 11:9. [PMID: 39814773 PMCID: PMC11735615 DOI: 10.1038/s41540-024-00481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025] Open
Abstract
Challenges in drug development for rare diseases such as pulmonary arterial hypertension can be addressed through the use of mathematical modeling. In this study, a quantitative systems pharmacology model of pulmonary arterial hypertension pathophysiology and pharmacology was used to predict changes in pulmonary vascular resistance and six-minute walk distance in the context of oral treprostinil clinical studies. We generated a virtual population that spanned the range of clinical observations and then calibrated virtual patient-specific weights to match clinical trials. We then used this virtual population to predict the results of clinical trials on the basis of disease severity, dosing regimen, time since diagnosis, and co-administered background therapies. The virtual population captured the effect of changes in trial design and patient subpopulation on clinical response. We also demonstrated the virtual trial workflow's potential for enriching populations based on clinical biomarkers to increase likelihood of trial success.
Collapse
Affiliation(s)
| | | | - Amy K Smith
- United Therapeutics Corporation, Silver Spring, MD, USA
| | | | | | | |
Collapse
|
2
|
Walker M, Moore H, Ataya A, Pham A, Corris PA, Laubenbacher R, Bryant AJ. A perfectly imperfect engine: Utilizing the digital twin paradigm in pulmonary hypertension. Pulm Circ 2024; 14:e12392. [PMID: 38933181 PMCID: PMC11199193 DOI: 10.1002/pul2.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Pulmonary hypertension (PH) is a severe medical condition with a number of treatment options, the majority of which are introduced without consideration of the underlying mechanisms driving it within an individual and thus a lack of tailored approach to treatment. The one exception is a patient presenting with apparent pulmonary arterial hypertension and shown to have vaso-responsive disease, whose clinical course and prognosis is significantly improved by high dose calcium channel blockers. PH is however characterized by a relative abundance of available data from patient cohorts, ranging from molecular data characterizing gene and protein expression in different tissues to physiological data at the organ level and clinical information. Integrating available data with mechanistic information at the different scales into computational models suggests an approach to a more personalized treatment of the disease using model-based optimization of interventions for individual patients. That is, constructing digital twins of the disease, customized to a patient, promises to be a key technology for personalized medicine, with the aim of optimizing use of existing treatments and developing novel interventions, such as new drugs. This article presents a perspective on this approach in the context of a review of existing computational models for different aspects of the disease, and it lays out a roadmap for a path to realizing it.
Collapse
Affiliation(s)
- Melody Walker
- University of Florida College of MedicineGainesvilleFloridaUSA
| | - Helen Moore
- University of Florida College of MedicineGainesvilleFloridaUSA
| | - Ali Ataya
- University of Florida College of MedicineGainesvilleFloridaUSA
| | - Ann Pham
- University of Florida College of MedicineGainesvilleFloridaUSA
| | - Paul A. Corris
- The Faculty of Medical Sciences Newcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
3
|
Odeigah OO, Valdez-Jasso D, Wall ST, Sundnes J. Computational models of ventricular mechanics and adaptation in response to right-ventricular pressure overload. Front Physiol 2022; 13:948936. [PMID: 36091369 PMCID: PMC9449365 DOI: 10.3389/fphys.2022.948936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with substantial remodeling of the right ventricle (RV), which may at first be compensatory but at a later stage becomes detrimental to RV function and patient survival. Unlike the left ventricle (LV), the RV remains understudied, and with its thin-walled crescent shape, it is often modeled simply as an appendage of the LV. Furthermore, PAH diagnosis is challenging because it often leaves the LV and systemic circulation largely unaffected. Several treatment strategies such as atrial septostomy, right ventricular assist devices (RVADs) or RV resynchronization therapy have been shown to improve RV function and the quality of life in patients with PAH. However, evidence of their long-term efficacy is limited and lung transplantation is still the most effective and curative treatment option. As such, the clinical need for improved diagnosis and treatment of PAH drives a strong need for increased understanding of drivers and mechanisms of RV growth and remodeling (G&R), and more generally for targeted research into RV mechanics pathology. Computational models stand out as a valuable supplement to experimental research, offering detailed analysis of the drivers and consequences of G&R, as well as a virtual test bench for exploring and refining hypotheses of growth mechanisms. In this review we summarize the current efforts towards understanding RV G&R processes using computational approaches such as reduced-order models, three dimensional (3D) finite element (FE) models, and G&R models. In addition to an overview of the relevant literature of RV computational models, we discuss how the models have contributed to increased scientific understanding and to potential clinical treatment of PAH patients.
Collapse
Affiliation(s)
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | | | | |
Collapse
|
4
|
Prasad V, Makkaoui N, Rajan R, Patel A, Mainali B, Bagchi P, Kumar R, Rogers J, Diamond J, Maxwell JT. Loss of cardiac myosin light chain kinase contributes to contractile dysfunction in right ventricular pressure overload. Physiol Rep 2022; 10:e15238. [PMID: 35384363 PMCID: PMC8981447 DOI: 10.14814/phy2.15238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023] Open
Abstract
Nearly 1 in every 100 children born have a congenital heart defect. Many of these defects primarily affect the right heart causing pressure overload of the right ventricle (RV). The RV maintains function by adapting to the increased pressure; however, many of these adaptations eventually lead to RV hypertrophy and failure. In this study, we aim to identify the cellular and molecular mechanisms of these adaptions. We utilized a surgical animal model of pulmonary artery banding (PAB) in juvenile rats that has been shown to accurately recapitulate the physiology of right ventricular pressure overload in young hearts. Using this model, we examined changes in cardiac myocyte protein expression as a result of pressure overload with mass spectrometry 4 weeks post-banding. We found pressure overload of the RV induced significant downregulation of cardiac myosin light chain kinase (cMLCK). Single myocyte calcium and contractility recordings showed impaired contraction and relaxation in PAB RV myocytes, consistent with the loss of cMLCK. In the PAB myocytes, calcium transients were of smaller amplitude and decayed at a slower rate compared to controls. We also identified miR-200c, which has been shown to regulate cMLCK expression, as upregulated in the RV in response to pressure overload. These results indicate the loss of cMLCK is a critical maladaptation of the RV to pressure overload and represents a novel target for therapeutic approaches to treat RV hypertrophy and failure associated with congenital heart defects.
Collapse
Affiliation(s)
- Vidhya Prasad
- Division of Pediatric CardiologyDepartment of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
- Children’s Heart Research & Outcomes (HeRO) CenterChildren’s Healthcare of Atlanta & Emory UniversityAtlantaGeorgiaUSA
| | - Nour Makkaoui
- Division of Pediatric CardiologyDepartment of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
- Children’s Heart Research & Outcomes (HeRO) CenterChildren’s Healthcare of Atlanta & Emory UniversityAtlantaGeorgiaUSA
| | - Rohan Rajan
- Emory University College of Arts and SciencesAtlantaGeorgiaUSA
| | - Alisha Patel
- Emory University College of Arts and SciencesAtlantaGeorgiaUSA
| | - Bipul Mainali
- Emory University College of Arts and SciencesAtlantaGeorgiaUSA
| | - Pritha Bagchi
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Rhea Kumar
- Emory University College of Arts and SciencesAtlantaGeorgiaUSA
| | - Julia Rogers
- Emory University College of Arts and SciencesAtlantaGeorgiaUSA
| | - Jake Diamond
- Emory University College of Arts and SciencesAtlantaGeorgiaUSA
| | - Joshua T. Maxwell
- Division of Pediatric CardiologyDepartment of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
- Children’s Heart Research & Outcomes (HeRO) CenterChildren’s Healthcare of Atlanta & Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Leopold JA, Kawut SM, Aldred MA, Archer SL, Benza RL, Bristow MR, Brittain EL, Chesler N, DeMan FS, Erzurum SC, Gladwin MT, Hassoun PM, Hemnes AR, Lahm T, Lima JA, Loscalzo J, Maron BA, Rosa LM, Newman JH, Redline S, Rich S, Rischard F, Sugeng L, Tang WHW, Tedford RJ, Tsai EJ, Ventetuolo CE, Zhou Y, Aggarwal NR, Xiao L. Diagnosis and Treatment of Right Heart Failure in Pulmonary Vascular Diseases: A National Heart, Lung, and Blood Institute Workshop. Circ Heart Fail 2021; 14:e007975. [PMID: 34422205 PMCID: PMC8375628 DOI: 10.1161/circheartfailure.120.007975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Right ventricular dysfunction is a hallmark of advanced pulmonary vascular, lung parenchymal, and left heart disease, yet the underlying mechanisms that govern (mal)adaptation remain incompletely characterized. Owing to the knowledge gaps in our understanding of the right ventricle (RV) in health and disease, the National Heart, Lung, and Blood Institute (NHLBI) commissioned a working group to identify current challenges in the field. These included a need to define and standardize normal RV structure and function in populations; access to RV tissue for research purposes and the development of complex experimental platforms that recapitulate the in vivo environment; and the advancement of imaging and invasive methodologies to study the RV within basic, translational, and clinical research programs. Specific recommendations were provided, including a call to incorporate precision medicine and innovations in prognosis, diagnosis, and novel RV therapeutics for patients with pulmonary vascular disease.
Collapse
Affiliation(s)
- Jane A. Leopold
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Steven M. Kawut
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Micheala A. Aldred
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Stephen L. Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ray L. Benza
- Department of Medicine, Allegheny General Hospital, Pittsburgh, PA
| | | | - Evan L. Brittain
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN
| | - Naomi Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI
| | - Frances S. DeMan
- Department of Pulmonary Medicine, PHEniX laboratory, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Mark T. Gladwin
- Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paul M. Hassoun
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Anna R. Hemnes
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Joao A.C. Lima
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Bradley A. Maron
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School and Department of Cardiology, Boston VA Healthcare System, West Roxbury, MA
| | - Laura Mercer Rosa
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John H. Newman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Susan Redline
- Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Stuart Rich
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Franz Rischard
- Department of Medicine, University of Arizona- Tucson, Tucson, AZ
| | - Lissa Sugeng
- Department of Medicine, Yale School of Medicine, New Haven, CT
| | - W. H. Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Emily J. Tsai
- Division of Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Corey E. Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI
| | - YouYang Zhou
- Departments of Pediatrics (Division of Critical Care), Pharmacology, and Medicine, Northwestern University Feinberg School of Medicine. Chicago, Illinois
| | - Neil R. Aggarwal
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Lei Xiao
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| |
Collapse
|
6
|
Haller C, Friedberg MK, Laflamme MA. The role of regenerative therapy in the treatment of right ventricular failure: a literature review. Stem Cell Res Ther 2020; 11:502. [PMID: 33239066 PMCID: PMC7687832 DOI: 10.1186/s13287-020-02022-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
Right ventricular (RV) failure is a commonly encountered problem in patients with congenital heart disease but can also be a consequence of left ventricular disease, primary pulmonary hypertension, or RV-specific cardiomyopathies. Improved survival of the aforementioned pathologies has led to increasing numbers of patients suffering from RV dysfunction, making it a key contributor to morbidity and mortality in this population. Currently available therapies for heart failure were developed for the left ventricle (LV), and there is clear evidence that LV-specific strategies are insufficient or inadequate for the RV. New therapeutic strategies are needed to address this growing clinical problem, and stem cells show significant promise. However, to properly evaluate the prospects of a potential stem cell-based therapy for RV failure, one needs to understand the unique pathophysiology of RV dysfunction and carefully consider available data from animal models and human clinical trials. In this review, we provide a comprehensive overview of the molecular mechanisms involved in RV failure such as hypertrophy, fibrosis, inflammation, changes in energy metabolism, calcium handling, decreasing RV contractility, and apoptosis. We also summarize the available preclinical and clinical experience with RV-specific stem cell therapies, covering the broad spectrum of stem cell sources used to date. We describe two different scientific rationales for stem cell transplantation, one of which seeks to add contractile units to the failing myocardium, while the other aims to augment endogenous repair mechanisms and/or attenuate harmful remodeling. We emphasize the limitations and challenges of regenerative strategies, but also highlight the characteristics of the failing RV myocardium that make it a promising target for stem cell therapy.
Collapse
Affiliation(s)
- Christoph Haller
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,McEwen Stem Cell Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| | - Mark K Friedberg
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,McEwen Stem Cell Institute, Toronto Medical Discovery Tower, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
7
|
Multiscale modeling of ventricular–vascular dysfunction in pulmonary arterial hypertension. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Cowley PM, Wang G, Swigart PM, Raghunathan A, Reddy N, Dulam P, Lovett DH, Simpson PC, Baker AJ. Reversal of right ventricular failure by chronic α 1A-subtype adrenergic agonist therapy. Am J Physiol Heart Circ Physiol 2019; 316:H224-H232. [PMID: 30412439 PMCID: PMC6859419 DOI: 10.1152/ajpheart.00507.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
Abstract
Right ventricular (RV) failure (RVF) is a serious disease with no effective treatment available. We recently reported a disease prevention study showing that chronic stimulation of α1A-adrenergic receptors (α1A-ARs), started at the time of RV injury, prevented the development of RVF. The present study used a clinically relevant disease reversal design to test if chronic α1A-AR stimulation, started after RVF was established, could reverse RVF. RVF was induced surgically by pulmonary artery constriction in mice. Two weeks after pulmonary artery constriction, in vivo RV fractional shortening as assessed by MRI was reduced by half relative to sham-operated controls (25 ± 2%, n = 27, vs. 52 ± 2%, n = 13, P < 10-11). Subsequent chronic treatment with the α1A-AR agonist A61603 for a further 2 wk resulted in a substantial recovery of RV fractional shortening (to 41 ± 2%, n = 17, P < 10-7 by a paired t-test) along with recovery of voluntary exercise capacity. Mechanistically, chronic A61603 treatment resulted in increased activation of the prosurvival kinase ERK, increased abundance of the antiapoptosis factor Bcl-2, and decreased myocyte necrosis evidenced by a decreased serum level of cardiac troponin. Moreover, A61603 treatment caused increased abundance of the antioxidant glutathione peroxidase-1, decreased level of reactive oxygen species, and decreased oxidative modification (carbonylation) of myofilament proteins. Consistent with these effects, A61603 treatment resulted in increased force development by cardiac myofilaments, which might have contributed to increased RV function. These findings suggest that the α1A-AR is a therapeutic target to reverse established RVF. NEW & NOTEWORTHY Currently, there are no effective therapies for right ventricular (RV) failure (RVF). This project evaluated a novel therapy for RVF. In a mouse model of RVF, chronic stimulation of α1A-adrenergic receptors with the agonist A61603 resulted in recovery of in vivo RV function, improved exercise capacity, reduced oxidative stress-related carbonylation of contractile proteins, and increased myofilament force generation. These results suggest that the α1A-adrenergic receptor is a therapeutic target to treat RVF.
Collapse
Affiliation(s)
- Patrick M Cowley
- Veterans Affairs Medical Center, San Francisco, California, and Department of Medicine, University of California , San Francisco, California
| | - Guanying Wang
- Veterans Affairs Medical Center, San Francisco, California, and Department of Medicine, University of California , San Francisco, California
| | - Philip M Swigart
- Veterans Affairs Medical Center, San Francisco, California, and Department of Medicine, University of California , San Francisco, California
| | - Anaha Raghunathan
- Veterans Affairs Medical Center, San Francisco, California, and Department of Medicine, University of California , San Francisco, California
| | - Nikitha Reddy
- Veterans Affairs Medical Center, San Francisco, California, and Department of Medicine, University of California , San Francisco, California
| | - Pranavi Dulam
- Veterans Affairs Medical Center, San Francisco, California, and Department of Medicine, University of California , San Francisco, California
| | - David H Lovett
- Veterans Affairs Medical Center, San Francisco, California, and Department of Medicine, University of California , San Francisco, California
| | - Paul C Simpson
- Veterans Affairs Medical Center, San Francisco, California, and Department of Medicine, University of California , San Francisco, California
| | - Anthony J Baker
- Veterans Affairs Medical Center, San Francisco, California, and Department of Medicine, University of California , San Francisco, California
| |
Collapse
|