1
|
Bokov RO, Sharlo KA, Vilchinskaya NA, Tyganov SA, Turtikova OV, Rozhkov SV, Deviatiiarov RM, Gusev OA, Tomilovskaya ES, Shenkman BS, Orlov OI. Molecular insights into human soleus muscle atrophy development: long-term dry immersion effects on the transcriptomic profile and posttranslational signaling. Physiol Genomics 2025; 57:357-382. [PMID: 40072920 DOI: 10.1152/physiolgenomics.00196.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease, and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle. We performed both transcriptomic analysis and Western blots to describe the states of the key signaling pathways regulating soleus muscle fiber size, fiber type, and metabolism. Twenty-one-day dry immersion resulted in both slow-type and fast-type myofibers atrophy, downregulation of rRNA content, and mTOR signaling. Twenty-one-day dry immersion also leads to slow-to-fast fiber-type and gene expression shift, upregulation of p-eEF2, p-CaMKII, p-ACC content and downregulation of NFATc1 nuclear content. It also caused massive gene expression alterations associated with calcium signaling, cytoskeletal parameters, and downregulated mitochondrial signaling (including fusion, fission, and marker of mitochondrial density).NEW & NOTEWORTHY The main findings of our study are as follows: 1) The soleus slow fibers atrophy after 21-day dry immersion (DI) does not exceed that after 7-day DI; 2) The soleus ubiquitin ligases expression after 21-day DI returns to its initial level; 3) The soleus slow fibers atrophy after 21-day DI is accompanied by a mitochondrial apparatus structural markers decrease; 4) The soleus fibers signaling pathways restructuring process during 21-day DI is carried out in a complex manner.
Collapse
Affiliation(s)
- Roman O Bokov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Kristina A Sharlo
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Turtikova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Rozhkov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Oleg A Gusev
- Life Improvement by Future Technologies Center, Moscow, Russia
| | | | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oleg I Orlov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
García-Luque L, Alcaraz-Clariana S, Rodrigues-de-Souza DP, Carmona-Pérez C, Garrido-Castro JL, Alburquerque-Sendín F. Influence of pain, sequential movement or short-term rest performance on the evaluation results of neck muscle mechanical properties: a case-control study. Physiother Theory Pract 2025:1-10. [PMID: 39846441 DOI: 10.1080/09593985.2025.2451200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/19/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION Individuals with neck pain (NP) often experience altered muscle mechanical properties (MMPs), such as increased tone and stiffness. Myotonometry has become a reliable, noninvasive tool for measuring MMPs. However, the effect of movement and rest on MMPs in acute neck pain (ANP) individuals remains insufficiently explored. OBJECTIVE This study aimed to evaluate how sequential movement and short-term rest influence the MMPs of neck muscles in subjects with ANP. METHODS A case-control study was conducted with 37 subjects with APN and 37 matched healthy controls. Muscle mechanical properties were assessed by myotonometry at baseline, post-movement (after a motion assessment sequence), and post-rest. The outcome measures of MMPs were frequency or tone, stiffness, decrement, which is the inverse of elasticity, relaxation, and creep. RESULTS Subjects with ANP showed higher muscle tone, stiffness and decrement, and lower relaxation than controls, all with p < .05. In the ANP group, decrement was the only property that showed a significant change after movement and rest, both with p < .05. Reduced means values (m) with its standard deviation (SD) were observed post-movement (m = 1.35 Ø, SD = 0.03) and post-rest (m = 1.33 Ø, SD = 0.03) compared to baseline values (m = 1.43 Ø, SD = 0.04). The other MMPs remained stable across evaluation times (p > .05). CONCLUSION The evaluation of MMPs should be conducted prior to any mobility protocol to ensure that the results reflect the basal tissue characteristics in individuals with ANP, highlighting decrement as a sensitive marker of these changes.
Collapse
Affiliation(s)
- Lourdes García-Luque
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, Córdoba, Spain
| | - Sandra Alcaraz-Clariana
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, Córdoba, Spain
| | - Daiana Priscila Rodrigues-de-Souza
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Cristina Carmona-Pérez
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, Córdoba, Spain
| | - Juan Luis Garrido-Castro
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba, Córdoba, Spain
| | - Francisco Alburquerque-Sendín
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| |
Collapse
|
3
|
Colonna S, Casacci F. Myofascial System and Physical Exercise: A Narrative Review on Stiffening (Part II). Cureus 2024; 16:e76295. [PMID: 39850177 PMCID: PMC11755199 DOI: 10.7759/cureus.76295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
In the past two decades, interest in the fascial system has exponentially increased, particularly manual treatment and stretching exercises. The fascia's fundamental role remains the transmission of tensions, although this function can be impaired due to excessive or reduced stiffness. This second part of the work outlines the basic principles concerning the importance of appropriate and balanced fascial stiffness for correct postural and functional maintenance of the human body. Additionally, the limited studies available in the literature are reviewed, with a focus on therapeutic exercises aimed at increasing fascial system stiffness. The article addresses how fascia develops the ability to contract to maintain a physiological tension referred to as human resting myofascial tone. Additionally, it discusses the most recognized tools for assessing fascial tension: myotonometry and shear wave elastography. The final section is dedicated to presenting the current literature on the relationship between physical exercise and fascial stiffness.
Collapse
Affiliation(s)
- Saverio Colonna
- Rehabilitation Medicine, Spine Center, Bologna, ITA
- Research and Development, Osteopathic Spine Center Education, Bologna, ITA
| | - Fabio Casacci
- Rehabilitation Medicine, Spine Center, Bologna, ITA
- Research and Development, Osteopathic Spine Center Education, Bologna, ITA
| |
Collapse
|
4
|
Clément G, Moudy SC, Macaulay TR, Mulder E, Wood SJ. Effects of intermittent seating upright, lower body negative pressure, and exercise on functional tasks performance after head-down tilt bed rest. Front Physiol 2024; 15:1442239. [PMID: 39308978 PMCID: PMC11412840 DOI: 10.3389/fphys.2024.1442239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Bed rest can be used as a ground-based analog of the body unloading associated with spaceflight. In this study, we determined how strict head-down tilt bed rest affects subjects' performance of functional tests (sit-to-stand, tandem walk, walk-and-turn, dynamic posturography) that challenge astronauts' balance control systems immediately after they return from space. Methods Forty-seven participants were assessed before and a few hours after 30 days of 6° head down tilt bed rest at the DLR:envihab facility. During this bed rest study, called SANS-CM, the participants were divided into 4 groups that either a) were positioned in head-down tilt continuously throughout the 30 days; b) sat upright for 6 h a day; c) were exposed to lower body negative pressure (LBNP) for 6 h a day; or d) exercised for 60 min and then wore venous-occlusive cuffs for 6 h a day. Results Results showed that strict head-down tilt bed rest caused deficits in performance of functional tasks that were similar to those observed in astronauts after spaceflight. Seated upright posture mitigated these deficits, whereas exercise or LBNP and cuffs partly mitigated them. Discussion These data suggest that more direct, active sensorimotor-based countermeasures may be necessary to maintain preflight levels of functional performance after a long period of body unloading.
Collapse
Affiliation(s)
| | | | | | - Edwin Mulder
- DLR, Institute of Aerospace Medicine, Cologne, Germany
| | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States
| |
Collapse
|
5
|
Shen X, Wang S, Chen J, Li J, Li C, Xiang R, Zhao C, Xu X. Inter-rater reliability and test-retest reliability of the foot posture index (FPI-6) for assessing static foot posture in elderly female patients with knee osteoarthritis and its association with quadriceps muscle tone and stiffness. Front Bioeng Biotechnol 2024; 12:1385986. [PMID: 38983600 PMCID: PMC11232489 DOI: 10.3389/fbioe.2024.1385986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
Objective 1. To assess the Inter-rater reliability and test-retest reliability of FPI-6 total score and individual scores in static foot posture evaluation among elderly female patients with knee osteoarthritis (KOA), aiming to establish the reliability of the FPI-6 scale. 2. To investigate the disparity between dominant and non-dominant quadriceps characteristics in elderly female KOA patients, as well as explore the correlation between quadriceps characteristics and abnormal foot posture, thereby offering novel insights for the prevention and treatment of KOA. Methods The study enrolled a total of 80 lower legs of 40 participants (all female) with unilateral or bilateral KOA, who were assessed by two raters at three different time points. The inter-rater and test-retest reliability of the FPI-6 was evaluated using the intra-class correlation coefficient (ICC), while the absolute reliability of FPI-6 was examined using the standard error of measurement (SEM), minimum detectable change (MDC), and Bland-Altman analysis. The internal consistency of FPI-6 was assessed using Spearman's correlation coefficient. Additionally, MyotonPRO was employed to assess quadriceps muscle tone and stiffness in all participants, and the association between quadriceps muscle tone/stiffness and the total score of FPI-6 was analyzed. Result Our study found excellent inter-rater and test-retest reliability (ICC values of 0.923 and 0.931, respectively) for the FPI-6 total score, as well as good to excellent reliability (ICC values ranging from 0.680 to 0.863 and 0.739-0.883) for individual items. The SEM and MDC values for the total score of FPI-6 among our study inter-rater were 0.78 and 2.15, respectively. and the SEM and MDC values for the test-retest total score of FPI-6 were found to be 0.76 and 2.11, respectively. Furthermore, the SEM and MDC values between inter-rater and test-retest across six individual items ranged from 0.30 to 0.56 and from 0.84 to 1.56. The Bland-Altman plots and respective 95% LOA showed no evidence of systematic bias. In terms of the mechanical properties of the quadriceps on both sides, the muscle tone and stiffness of rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) were significantly higher in the non-dominant leg compared to the dominant leg. Additionally, in the non-dominant leg, there was a significant positive correlation between the muscle tone and stiffness of VM, VL, RF and the total score of FPI-6. However, in the dominant leg, only VM's muscle tone and stiffness showed a significant positive correlation with the total score of FPI-6. Conclusion The reliability of the FPI-6 total score and its six individual items was good to excellent. Our findings offer a straightforward and dependable approach for researchers to assess foot posture in elderly female patients with KOA. Furthermore, we observed significantly greater quadriceps tension and stiffness in the non-dominant leg compared to the dominant leg. The FPI-6 total score exhibited a significant correlation with changes in quadriceps muscle performance among KOA patients. These observations regarding the relationship between changes in quadriceps muscle performance and foot posture in elderly female KOA patients may provide novel insights for disease prevention, treatment, and rehabilitation.
Collapse
Affiliation(s)
- XingXing Shen
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Wang
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahao Chen
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyi Li
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congcong Li
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruian Xiang
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanxi Zhao
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuemeng Xu
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| |
Collapse
|
6
|
Schoenrock B, Muckelt PE, Hastermann M, Albracht K, MacGregor R, Martin D, Gunga HC, Salanova M, Stokes MJ, Warner MB, Blottner D. Muscle stiffness indicating mission crew health in space. Sci Rep 2024; 14:4196. [PMID: 38378866 PMCID: PMC10879143 DOI: 10.1038/s41598-024-54759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes.
Collapse
Affiliation(s)
- Britt Schoenrock
- NeuroMuscular System & Signaling Group, Berlin Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany, Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany, 10115, Berlin, Germany
| | - Paul E Muckelt
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Maria Hastermann
- Experimental and Clinical Research Center (ECRC) and NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Hans-Christian Gunga
- Institute of Physiology, Berlin Center of Space Medicine and Extreme Environments, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany, Berlin, Germany
| | - Michele Salanova
- NeuroMuscular System & Signaling Group, Berlin Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany, Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany, 10115, Berlin, Germany
| | - Maria J Stokes
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Martin B Warner
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Dieter Blottner
- NeuroMuscular System & Signaling Group, Berlin Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany, Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany, 10115, Berlin, Germany.
| |
Collapse
|
7
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
8
|
Plehuna A, Green DA, Amirova LE, Tomilovskaya ES, Rukavishnikov IV, Kozlovskaya IB. Dry immersion induced acute low back pain and its relationship with trunk myofascial viscoelastic changes. Front Physiol 2022; 13:1039924. [PMID: 36311233 PMCID: PMC9606241 DOI: 10.3389/fphys.2022.1039924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 08/12/2023] Open
Abstract
Microgravity induces spinal elongation and Low Back Pain (LBP) but the pathophysiology is unknown. Changes in paraspinal muscle viscoelastic properties may play a role. Dry Immersion (DI) is a ground-based microgravity analogue that induces changes in m. erector spinae superficial myofascial tissue tone within 2 h. This study sought to determine whether bilateral m. erector spinae tone, creep, and stiffness persist beyond 2 h; and if such changes correlate with DI-induced spinal elongation and/or LBP. Ten healthy males lay in the DI bath at the Institute of Biomedical Problems (Moscow, Russia) for 6 h. Bilateral lumbar (L1, L4) and thoracic (T11, T9) trunk myofascial tone, stiffness and creep (MyotonPRO), and subjective LBP (0-10 NRS) were recorded before DI, after 1h, 6 h of DI, and 30min post. The non-standing spinal length was evaluated on the bath lifting platform using a bespoke stadiometer before and following DI. DI significantly modulated m. erector spinae viscoelastic properties at L4, L1, T11, and T9 with no effect of laterality. Bilateral tissue tone was significantly reduced after 1 and 6 h DI at L4, L1, T11, and T9 to a similar extent. Stiffness was also reduced by DI at 1 h but partially recovered at 6 h for L4, L1, and T11. Creep was increased by DI at 1 h, with partial recovery at 6 h, although only T11 was significant. All properties returned to baseline 30 min following DI. Significant spinal elongation (1.17 ± 0.20 cm) with mild (at 1 h) to moderate (at 6 h) LBP was induced, mainly in the upper lumbar and lower thoracic regions. Spinal length increases positively correlated (Rho = 0.847, p = 0.024) with middle thoracic (T9) tone reduction, but with no other stiffness or creep changes. Spinal length positively correlated (Rho = 0.557, p = 0.039) with Max LBP; LBP failed to correlate with any m. erector spinae measured parameters. The DI-induced bilateral m. erector spinae tone, creep, and stiffness changes persist beyond 2 h. Evidence of spinal elongation and LBP allows suggesting that the trunk myofascial tissue changes could play a role in LBP pathogenesis observed in real and simulated microgravity. Further study is warranted with longer duration DI, assessment of IVD geometry, and vertebral column stability.
Collapse
Affiliation(s)
- Anastasija Plehuna
- King’s College London, Centre of Human & Applied Physiological Sciences, London, United Kingdom
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - David Andrew Green
- King’s College London, Centre of Human & Applied Physiological Sciences, London, United Kingdom
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
| | - Liubov E. Amirova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Rukavishnikov
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inessa B. Kozlovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Bohlen L, Schwarze J, Richter J, Gietl B, Lazarov C, Kopyakova A, Brandl A, Schmidt T. Effect of osteopathic techniques on human resting muscle tone in healthy subjects using myotonometry: a factorial randomized trial. Sci Rep 2022; 12:16953. [PMID: 36217012 PMCID: PMC9551048 DOI: 10.1038/s41598-022-20452-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022] Open
Abstract
Musculoskeletal disorders (MSDs) are highly prevalent, burdensome, and putatively associated with an altered human resting muscle tone (HRMT). Osteopathic manipulative treatment (OMT) is commonly and effectively applied to treat MSDs and reputedly influences the HRMT. Arguably, OMT may modulate alterations in HRMT underlying MSDs. However, there is sparse evidence even for the effect of OMT on HRMT in healthy subjects. A 3 × 3 factorial randomised trial was performed to investigate the effect of myofascial release (MRT), muscle energy (MET), and soft tissue techniques (STT) on the HRMT of the corrugator supercilii (CS), superficial masseter (SM), and upper trapezius muscles (UT) in healthy subjects in Hamburg, Germany. Participants were randomised into three groups (1:1:1 allocation ratio) receiving treatment, according to different muscle-technique pairings, over the course of three sessions with one-week washout periods. We assessed the effect of osteopathic techniques on muscle tone (F), biomechanical (S, D), and viscoelastic properties (R, C) from baseline to follow-up (primary objective) and tested if specific muscle-technique pairs modulate the effect pre- to post-intervention (secondary objective) using the MyotonPRO (at rest). Ancillary, we investigate if these putative effects may differ between the sexes. Data were analysed using descriptive (mean, standard deviation, and quantiles) and inductive statistics (Bayesian ANOVA). 59 healthy participants were randomised into three groups and two subjects dropped out from one group (n = 20; n = 20; n = 19-2). The CS produced frequent measurement errors and was excluded from analysis. OMT significantly changed F (-0.163 [0.060]; p = 0.008), S (-3.060 [1.563]; p = 0.048), R (0.594 [0.141]; p < 0.001), and C (0.038 [0.017]; p = 0.028) but not D (0.011 [0.017]; p = 0.527). The effect was not significantly modulated by muscle-technique pairings (p > 0.05). Subgroup analysis revealed a significant sex-specific difference for F from baseline to follow-up. No adverse events were reported. OMT modified the HRMT in healthy subjects which may inform future research on MSDs. In detail, MRT, MET, and STT reduced the muscle tone (F), decreased biomechanical (S not D), and increased viscoelastic properties (R and C) of the SM and UT (CS was not measurable). However, the effect on HRMT was not modulated by muscle-technique interaction and showed sex-specific differences only for F.Trial registration German Clinical Trial Register (DRKS00020393).
Collapse
Affiliation(s)
- Lucas Bohlen
- Osteopathic Research Institute, Osteopathie Schule Deutschland, Hamburg, Germany.
| | - Jonah Schwarze
- Osteopathic Research Institute, Osteopathie Schule Deutschland, Hamburg, Germany
| | - Jannik Richter
- Osteopathie Schule Deutschland, Hamburg, Germany
- Dresden International University, Dresden, Germany
| | - Bernadette Gietl
- Osteopathie Schule Deutschland, Hamburg, Germany
- Dresden International University, Dresden, Germany
| | - Christian Lazarov
- Osteopathie Schule Deutschland, Hamburg, Germany
- Dresden International University, Dresden, Germany
| | - Anna Kopyakova
- Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Andreas Brandl
- Osteopathic Research Institute, Osteopathie Schule Deutschland, Hamburg, Germany
| | - Tobias Schmidt
- Osteopathic Research Institute, Osteopathie Schule Deutschland, Hamburg, Germany
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Cruz-Montecinos C, Besomi M, Acevedo-Valenzuela N, Cares-Marambio K, Bustamante A, Guzmán-González B, Tapia-Malebrán C, Sanzana-Cuche R, Calatayud J, Méndez-Rebolledo G. Soleus muscle and Achilles tendon compressive stiffness is related to knee and ankle positioning. J Electromyogr Kinesiol 2022; 66:102698. [PMID: 36007467 DOI: 10.1016/j.jelekin.2022.102698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
Changes in fascicle length and tension of the soleus (SOL) muscle have been observed in humans using B-mode ultrasound to examine the knee from different angles. An alternative technique of assessing muscle and tendon stiffness is myometry, which is non-invasive, accessible, and easy to use. This study aimed to estimate the compressive stiffness of the distal SOL and Achilles tendon (AT) using myometry in various knee and ankle joint positions. Twenty-six healthy young males were recruited. The Myoton-PRO device was used to measure the compressive stiffness of the distal SOL and AT in the dominant leg. The knee was measured in two positions (90° of flexion and 0° of flexion) and the ankle joint in three positions (10° of dorsiflexion, neutral position, and 30° of plantar flexion) in random order. A three-way repeated-measures ANOVA test was performed. Significant interactions were found for structure × ankle position, structure × knee position, and structure × ankle position × knee position (p < 0.05). The AT and SOL showed significant increases in compressive stiffness with knee extension over knee flexion for all tested ankle positions (p < 0.05). Changes in stiffness relating to knee positioning were larger in the SOL than in the AT (p < 0.05). These results indicate that knee extension increases the compressive stiffness of the distal SOL and AT under various ankle joint positions, with a greater degree of change observed for the SOL. This study highlights the relevance of knee position in passive stiffness of the SOL and AT.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Department of Physical Therapy, Laboratory of Clinical Biomechanics, Faculty of Medicine, University of Chile, Santiago, Chile; Division of Research, Devolvement and Innovation in Kinesiology, Kinesiology Unit, San José Hospital, Northern Metropolitan Health Service, Santiago, Chile.
| | - Manuela Besomi
- Carrera de Kinesiología, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Chile; School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicolás Acevedo-Valenzuela
- Department of Physical Therapy, Laboratory of Clinical Biomechanics, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Kevin Cares-Marambio
- Department of Physical Therapy, Laboratory of Clinical Biomechanics, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandro Bustamante
- Department of Physical Therapy, Laboratory of Clinical Biomechanics, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Benjamín Guzmán-González
- Department of Physical Therapy, Laboratory of Clinical Biomechanics, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Tapia-Malebrán
- Department of Physical Therapy, Laboratory of Clinical Biomechanics, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodolfo Sanzana-Cuche
- Department of Anatomy and Legal Medicine Faculty of Medicine, University of Chile, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Chile
| | - Joaquín Calatayud
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Spain
| | | |
Collapse
|
11
|
Muckelt PE, Warner MB, Cheliotis-James T, Muckelt R, Hastermann M, Schoenrock B, Martin D, MacGregor R, Blottner D, Stokes M. Protocol and reference values for minimal detectable change of MyotonPRO and ultrasound imaging measurements of muscle and subcutaneous tissue. Sci Rep 2022; 12:13654. [PMID: 35953503 PMCID: PMC9372175 DOI: 10.1038/s41598-022-17507-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The assessment of muscle health is of paramount importance, as the loss of muscle mass and strength can affect performance. Two non-invasive tools that have been found to be useful in this are the MyotonPRO and rehabilitative ultrasound imaging, both have shown to be reliable in previous studies many of which conducted by the research team. This study aims to determine the reliability of previously unassessed local body structures and to determine their minimal detectable changes (MDC) to support both researchers and clinicians. Twenty healthy participants were recruited to determine the reliability of seven skin positions out of a previously established protocol. Reliability was determined between three independent raters, and day to day reliability was assessed with one rater a week apart. Intraclass Correlation Coefficients (ICC) between raters and between days for tissue stiffness, tone and elasticity range from moderate to excellent (ICC 0.52–0.97), with most good or excellent. ICCs for subcutaneous thickness between days was good or excellent (ICC 0.86–0.91) and moderate to excellent between raters (ICC 0.72–0.96), in muscles it was moderate to excellent between raters and days (ICC 0.71–0.95). The protocol in this study is repeatable with overall good reliability, it also provides established MDC values for several measurement points.
Collapse
Affiliation(s)
- Paul E Muckelt
- School of Health Sciences, University of Southampton, Southampton, UK. .,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Southampton, UK.
| | - Martin B Warner
- School of Health Sciences, University of Southampton, Southampton, UK.,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Southampton, UK
| | | | | | - Maria Hastermann
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC) & NeuroCure Clinical Research Center (NCRC), Clinical Neuroimmunology, Charité-Universitätsmedizin Berlin, Lindenbergerweg 80, 13125, Berlin, Germany
| | - Britt Schoenrock
- NeuroMuscular Group, Center of Space Medicine and Extreme Environments at Charité, Berlin, Germany
| | | | | | - Dieter Blottner
- NeuroMuscular Group, Center of Space Medicine and Extreme Environments at Charité, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Maria Stokes
- School of Health Sciences, University of Southampton, Southampton, UK.,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Southampton, UK.,Southampton NIHR Biomedical Research Centre, Southampton, UK
| |
Collapse
|
12
|
Saldiran TÇ, Yazgan P, Akgöl AC, Mutluay FK. Radial shock-wave therapy for frozen shoulder patients with type 2 diabetes mellitus: a pilot trial comparing two different energy levels. Eur J Phys Rehabil Med 2022; 58:412-422. [PMID: 35191654 PMCID: PMC9980541 DOI: 10.23736/s1973-9087.22.07087-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Extracorporeal shock-wave therapy (ESWT) is highly recommended for the management of orthopedic shoulder pathologies. Yet, the clinical relevance of the dose difference effect of radial ESWT approaches in the management of frozen shoulder patients with type 2 diabetes mellitus remains uncertain. AIM The aim was to examine the short-term effects of medium-and high-energy levels of radial ESWT (rESWT) in the treatment of frozen shoulder patients with type 2 diabetes mellitus. DESIGN Prospective clinical pilot study. SETTING This study was conducted in an outpatient clinic. POPULATION Thirty-nine patients who had frozen shoulder untreated for at least 3 months, diagnosed with type 2 diabetes mellitus for ≥3 years were included. METHODS The patients were randomly allocated to receive either high-energy rESWT (hrESWT), or medium-energy rESWT (mrESWT) or placebo at 8 Hz twice a week for six weeks. The primary outcome measure was pain, evaluated by the Visual Analog Scale (VAS) Score. Secondary outcome measures were function evaluated by the Shoulder Pain and Disability Index (SPADI) Score, and shoulder active range of motion (AROM). The mechanical properties of the deltoid and trapezius muscles were assessed using the MyotonPRO (Myoton AS, Tallinn, Estonia). RESULTS The mrESWT resulted in statistically significant reductions in night pain at 6 weeks (η<inf>p</inf>2=0.27, P=0.003). Significantly improved function (SPADI scores: -35.42±21.29 vs.-29.59±22.60; η<inf>p</inf>2=0.39, P˂0.001) was found in both hrESWT and mrESWT group by 6 weeks. Significantly higher mean shoulder AROM values were recorded for external rotation (η<inf>p</inf>2=0.53, P<0.001), and internal rotation (η<inf>p</inf>2=0.21, P=0.020), in the hrESWT group at the 6th week. A significantly improved resting tone (η<inf>p</inf>2=0.58) and stiffness of deltoid muscle (η<inf>p</inf>2=0.62) were found in the mrESWT group (P<0.001). The trapezius muscle resting tone reduced with hrESWT (η<inf>p</inf>2=0.17, P=0.033). CONCLUSIONS Regardless of the energy levels, rESWT appears to be an effective therapeutic intervention for frozen shoulder patients with type 2 diabetes mellitus in the short-term results. CLINICAL REHABILITATION IMPACT Our results suggest that this rESWT can be a useful strategy for the rehabilitation of frozen shoulder patients with type 2 diabetes mellitus. This is the first study on dose difference effectiveness in terms of the clinical significance of rESWT which is key to transfer research evidence into practice.
Collapse
Affiliation(s)
- Tülay Ç Saldiran
- School of Health Sciences, Department of Physiotherapy and Rehabilitation, Bitlis Eren University, Bitlis, Turkey -
| | - Pelin Yazgan
- Department of Physical Therapy and Medicine, Faculty of Medicine, Istanbul Okan University, Istanbul, Turkey
| | - Ahmet C Akgöl
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Okan University, Istanbul, Turkey
| | - Fatma K Mutluay
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
13
|
Alcaraz-Clariana S, García-Luque L, Garrido-Castro JL, Carmona-Pérez C, Rodrigues-de-Souza DP, Fernández-de-las-Peñas C, Alburquerque-Sendín F. Influence of Spinal Movements Associated with Physical Evaluation on Muscle Mechanical Properties of the Lumbar Paraspinal in Subjects with Acute Low Back Pain. Diagnostics (Basel) 2022; 12:302. [PMID: 35204392 PMCID: PMC8870934 DOI: 10.3390/diagnostics12020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
This research aimed to identify changes in muscle mechanical properties (MMPs) when a standardized sequence of movements is performed and to determine the influence of acute low back pain (LBP) and age on the MMPs. Socio-demographic, clinical variables and MMPs were collected in 33 patients with LBP and 33 healthy controls. A 2 × 2 × 2 (group × age × time) analysis of variance (ANOVA) mixed model was used to determine the effect of the study factors on the different MMPs. There were no significant triple interactions. After the movements, tone and stiffness increased 0.37 Hz and 22.75 N/m, respectively, in subjects <35 years, independent of their clinical status. Relaxation showed differences by age in healthy subjects and creep in LBP subjects. Furthermore, elasticity was higher in <35 years (p < 0.001) without the influence of any other factor. In conclusion, sequenced movements can modify tone and stiffness as a function of age, while age-associated changes in viscoelastic characteristics depends on pain but not on movements. The MMPs should be assessed, not only at the beginning of the physical examination at rest, but also along the patient's follow-up, depending on their pain and age, in a clinical setting.
Collapse
Affiliation(s)
- Sandra Alcaraz-Clariana
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (S.A.-C.); (L.G.-L.); (C.C.-P.); (D.P.R.-d.-S.); (F.A.-S.)
| | - Lourdes García-Luque
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (S.A.-C.); (L.G.-L.); (C.C.-P.); (D.P.R.-d.-S.); (F.A.-S.)
| | - Juan Luis Garrido-Castro
- Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba, 14071 Córdoba, Spain;
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Cristina Carmona-Pérez
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (S.A.-C.); (L.G.-L.); (C.C.-P.); (D.P.R.-d.-S.); (F.A.-S.)
| | - Daiana Priscila Rodrigues-de-Souza
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (S.A.-C.); (L.G.-L.); (C.C.-P.); (D.P.R.-d.-S.); (F.A.-S.)
| | - César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, 28922 Madrid, Spain
- Cátedra Institucional en Docencia, Clínica e Investigación en Fisioterapia: Terapia Manual, Punción Seca y Ejercicio Terapéutico, Universidad Rey Juan Carlos, Alcorcón, 28922 Madrid, Spain
| | - Francisco Alburquerque-Sendín
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (S.A.-C.); (L.G.-L.); (C.C.-P.); (D.P.R.-d.-S.); (F.A.-S.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain
| |
Collapse
|
14
|
Passive mechanical properties of extrinsic foot muscles and Achilles tendon in adults with and without pes planus. J Biomech 2022; 133:110961. [DOI: 10.1016/j.jbiomech.2022.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
|
15
|
Chen Z, Ye X, Shen Z, Wang Y, Wu Z, Chen G, Guan Y, Wu J, Jiang T, Wu H, Liu W, Xu X. Comparison of the Asymmetries in Foot Posture and Properties of Gastrocnemius Muscle and Achilles Tendon Between Patients With Unilateral and Bilateral Knee Osteoarthritis. Front Bioeng Biotechnol 2021; 9:636571. [PMID: 34738007 PMCID: PMC8561212 DOI: 10.3389/fbioe.2021.636571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Asymmetrical foot posture and properties alterations of the gastrocnemius muscle (GM) and Achilles tendon (AT) were observed in knee osteoarthritis (KOA). We aimed to investigate the inter-limbs asymmetries in foot posture and the properties of GM and AT and explore the association between them. Methods: A total of 62 subjects with unilateral or bilateral KOA were included in this study: 30 patients with unilateral pain and 32 patients with bilateral pain were assigned to the bilateral group (BG) and unilateral group (UG), respectively. The relatively serious leg (RSL) and relatively moderate leg (RML) were judged according to the severity of symptoms assessed by using visual analogue scale (VAS) motion. Foot posture and asymmetrical foot posture scores were assessed based on Foot Posture index (FPI-6). Subsequently, all the participants received an assessment for properties of GM and AT, including tone/tension (Hz), stiffness (N/m), and elasticity. We calculated the asymmetry index of AT (Asy-AT) in both legs and the difference of muscle properties between medial and lateral gastrocnemius (D-MLG) in the ipsilateral limb. Results: Asymmetry of foot posture was categorized into three types including normal, asymmetry, and severe asymmetry. The percentage of subjects classified as normal was higher in the BG (62.5%) than in the UG (36.67%), p < 0.05. Tension of AT and tone of lateral gastrocnemius (LG) in RSL were higher than those in RML (15.71 ± 0.91 vs. 15.23 ± 1.01; 25.31 ± 2.09 vs. 23.96 ± 2.08, p < 0.01 and p < 0.01, respectively), and stiffness of AT in the RSL was higher than that in RML (676.58 ± 111.45 vs. 625.66 ± 111.19, p < 0.01). Meanwhile, a positive relationship was found between ipsilateral FPI and tone of MG and LG in the left leg (0.246 per degree, 95% CI: −0.001, 0.129; p = 0.054 and 0.293 per degree, 95% CI: −0.014, 0.157; p = 0.021, respectively) and right leg (0.363 per degree, 95% CI: 0.033, 0.146; p = 0.004 and 0.272 per degree, 95% CI: 0.007, −0.144; p = 0.032, respectively). Moreover, a positive link was observed between asymmetrical FPI scores and K/L grade (0.291 per degree, 95% CI: 0.018, 0.216; p = 0.022). Furthermore, a significantly greater Asy-AT(tension) was detected in the UG than that in the BG (UG vs. UG: 8.20 ± 5.09% vs. 5.11 ± 4.72%, p < 0.01). Additionally, an increased asymmetrical FPI score (i.e., more severe asymmetry) was significantly associated with increases in Asy-AT(tension) and Asy-AT(stiffness) (0.42 per degree, 95% CI: 0.533, 1.881; p = 0.001 and 0.369 per degree, 95% CI: 0.596, 2.82; p = 0.003, respectively). Conclusions: The stiffness and tension of AT and the tone of LG in RSL were higher than those in RML in KOA patients, and inter-limbs foot posture and tension of AT were more asymmetrical in unilateral KOA patients compared to patients with bilateral KOA. Notably, foot posture, as an important biomechanical factor, was significantly associated with properties of GM, AT, and K/L grade in KOA patients.
Collapse
Affiliation(s)
- Zehua Chen
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangling Ye
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhen Shen
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yi Wang
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zugui Wu
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoqian Chen
- Department of Orthopaedic Surgery, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Yingxin Guan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Zhuhai Hospital of Guangdong Province Traditional Chinese Medical Hospital, Zhuhai, China
| | - Jiatao Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Zhuhai Hospital of Guangdong Province Traditional Chinese Medical Hospital, Zhuhai, China
| | - Tao Jiang
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Huai Wu
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Wengang Liu
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuemeng Xu
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| |
Collapse
|
16
|
Wu Z, Wang Y, Ye Z, Guan Y, Ye X, Chen Z, Li C, Chen G, Zhu Y, Du J, Chen G, Liu W, Xu X. Effects of Age and Sex on Properties of Lumbar Erector Spinae in Healthy People: Preliminary Results From a Pilot Study. Front Physiol 2021; 12:718068. [PMID: 34616306 PMCID: PMC8488426 DOI: 10.3389/fphys.2021.718068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The influences of age and sex on properties of lumbar erector spinae have not been previously studied. Changes in the performance of lumbar erector spinae properties associated with age represent a valuable indicator of risk for lower-back-related disease. Objective: To investigate the lumbar erector spinae properties with regard to age and sex to provide a reference dataset. Methods: We measured muscle tone and stiffness of the lumbar erector spinae (at the L3–4 level) in healthy men and women (50 young people, aged 20–30 years; 50 middle-aged people, aged 40–50 years; and 50 elderly people, aged 65–75 years) using a MyotonPRO device. Results: In general, there are significant differences in muscle tone and stiffness among young, middle-aged, and elderly participants, and there were significant differences in muscle tone and stiffness between men and women, and there was no interaction between age and sex. The muscle tone and stiffness of the elderly participants were significantly higher than those of the middle-aged and young participants (P < 0.01), and the muscle tone and stiffness of the middle-aged participants were significantly higher than those of the young participants (P < 0.01). In addition, the muscle tone and stiffness of men participants were significantly higher than that of women participants (P < 0.01). Conclusion: Our results indicate that muscle tone and stiffness of the lumbar erector spinae increase with age. The muscle tone and stiffness of the lumbar erector spinae in men are significantly higher than in women. The present study highlights the importance of considering age and sex differences when assessing muscle characteristics of healthy people or patients.
Collapse
Affiliation(s)
- Zugui Wu
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixuan Ye
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingxing Guan
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangling Ye
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zehua Chen
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congcong Li
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoqian Chen
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Yue Zhu
- Baishui Health Center, Qujing, China
| | - Jianping Du
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Guocai Chen
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wengang Liu
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuemeng Xu
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| |
Collapse
|
17
|
Khuu S, Fernandez JW, Handsfield GG. A Coupled Mechanobiological Model of Muscle Regeneration In Cerebral Palsy. Front Bioeng Biotechnol 2021; 9:689714. [PMID: 34513808 PMCID: PMC8429491 DOI: 10.3389/fbioe.2021.689714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
Cerebral palsy is a neuromusculoskeletal disorder associated with muscle weakness, altered muscle architecture, and progressive musculoskeletal symptoms that worsen with age. Pathological changes at the level of the whole muscle have been shown; however, it is unclear why this progression of muscle impairment occurs at the cellular level. The process of muscle regeneration is complex, and the interactions between cells in the muscle milieu should be considered in the context of cerebral palsy. In this work, we built a coupled mechanobiological model of muscle damage and regeneration to explore the process of muscle regeneration in typical and cerebral palsy conditions, and whether a reduced number of satellite cells in the cerebral palsy muscle environment could cause the muscle regeneration cycle to lead to progressive degeneration of muscle. The coupled model consisted of a finite element model of a muscle fiber bundle undergoing eccentric contraction, and an agent-based model of muscle regeneration incorporating satellite cells, inflammatory cells, muscle fibers, extracellular matrix, fibroblasts, and secreted cytokines. Our coupled model simulated damage from eccentric contraction followed by 28 days of regeneration within the muscle. We simulated cyclic damage and regeneration for both cerebral palsy and typically developing muscle milieus. Here we show the nonlinear effects of altered satellite cell numbers on muscle regeneration, where muscle repair is relatively insensitive to satellite cell concentration above a threshold, but relatively sensitive below that threshold. With the coupled model, we show that the fiber bundle geometry undergoes atrophy and fibrosis with too few satellite cells and excess extracellular matrix, representative of the progression of cerebral palsy in muscle. This work uses in silico modeling to demonstrate how muscle degeneration in cerebral palsy may arise from the process of cellular regeneration and a reduced number of satellite cells.
Collapse
Affiliation(s)
- Stephanie Khuu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Justin W. Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
18
|
Roth C, Rettenmaier L, Behringer M. High-Protein Energy-Restriction: Effects on Body Composition, Contractile Properties, Mood, and Sleep in Active Young College Students. Front Sports Act Living 2021; 3:683327. [PMID: 34212136 PMCID: PMC8239143 DOI: 10.3389/fspor.2021.683327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background: It is often advised to ensure a high-protein intake during energy-restricted diets. However, it is unclear whether a high-protein intake is able to maintain muscle mass and contractility in the absence of resistance training. Materials and Methods: After 1 week of body mass maintenance (45 kcal/kg), 28 male college students not performing resistance training were randomized to either the energy-restricted (ER, 30 kcal/kg, n = 14) or the eucaloric control group (CG, 45 kcal/kg, n = 14) for 6 weeks. Both groups had their protein intake matched at 2.8 g/kg fat-free-mass and continued their habitual training throughout the study. Body composition was assessed weekly using multifrequency bioelectrical impedance analysis. Contractile properties of the m. rectus femoris were examined with Tensiomyography and MyotonPRO at weeks 1, 3, and 5 along with sleep (PSQI) and mood (POMS). Results: The ER group revealed greater reductions in body mass (Δ -3.22 kg vs. Δ 1.90 kg, p < 0.001, partial η 2 = 0.360), lean body mass (Δ -1.49 kg vs. Δ 0.68 kg, p < 0.001, partial η 2 = 0.152), body cell mass (Δ -0.85 kg vs. Δ 0.59 kg, p < 0.001, partial η 2 = 0.181), intracellular water (Δ -0.58 l vs. Δ 0.55 l, p < 0.001, partial η 2 = 0.445) and body fat percentage (Δ -1.74% vs. Δ 1.22%, p < 0.001, partial η 2 = 433) compared to the CG. Contractile properties, sleep onset, sleep duration as well as depression, fatigue and hostility did not change (p > 0.05). The PSQI score (Δ -1.43 vs. Δ -0.64, p = 0.006, partial η 2 = 0.176) and vigor (Δ -2.79 vs. Δ -4.71, p = 0.040, partial η 2 = 0.116) decreased significantly in the ER group and the CG, respectively. Discussion: The present data show that a high-protein intake alone was not able to prevent lean mass loss associated with a 6-week moderate energy restriction in college students. Notably, it is unknown whether protein intake at 2.8 g/kg fat-free-mass prevented larger decreases in lean body mass. Muscle contractility was not negatively altered by this form of energy restriction. Sleep quality improved in both groups. Whether these advantages are due to the high-protein intake cannot be clarified and warrants further study. Although vigor was negatively affected in both groups, other mood parameters did not change.
Collapse
Affiliation(s)
- Christian Roth
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lukas Rettenmaier
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Behringer
- Department of Sports Medicine and Exercise Physiology, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
19
|
Amirova LE, Plehuna A, Rukavishnikov IV, Saveko AA, Peipsi A, Tomilovskaya ES. Sharp Changes in Muscle Tone in Humans Under Simulated Microgravity. Front Physiol 2021; 12:661922. [PMID: 34025451 PMCID: PMC8134537 DOI: 10.3389/fphys.2021.661922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
A decrease in muscle tone induced by space flight requires a standardized assessment of changes to control the state of the neuromuscular system. This study is a step toward the development of a unified protocol, aimed at determining the initial effect of the presence or withdrawal of support on muscle tone, the effects of a 2-h supportlessness in Dry Immersion (DI) experiments, and the changes in muscle tone depending on the site of measurement. To perform measurements of changes in muscle tone, we used a MyotonPRO device. The list of muscles that we assessed includes: trunk – mm. deltoideus posterior, trapezius, erector spinae; leg – mm. biceps femoris, rectus femoris, tibialis anterior, soleus, gastrocnemius; foot – m. flexor digitorum brevis, tendo Achillis, aponeurosis plantaris. The study involved 12 healthy volunteers (6 men, 6 women) without musculoskeletal disorders and aged 32.8 ± 1.6 years. At the start of DI, there was a significant decrease in muscle tone of the following muscles: mm. tibialis anterior (−10.9%), soleus (−9.6%), erector spinae (−14.4%), and the tendo Achillis (−15.3%). The decrease continued to intensify over the next 2 h. In contrast, the gastrocnemius muscle demonstrated an increase in muscle tone (+7.5%) 2 h after the start of DI compared to the immediate in-bath baseline. Muscle tone values were found to be site-dependent and varied in different projections of mm. erector spinae and soleus. In previous experiments, we observed a high sensitivity of the myotonometry technique, which was confirmed in this study. To make it possible to compare data from different studies, a standardized protocol for measuring muscle tone for general use in gravitational physiology needs to be developed.
Collapse
Affiliation(s)
- Liubov E Amirova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Anastasija Plehuna
- King's College London, Centre of Human & Applied Physiological Sciences, London, United Kingdom
| | - Ilya V Rukavishnikov
- Department of Medical Support for Spaceflight, Institute of Biomedical Problem of Russian Academy of Science, Moscow, Russia
| | - Alina A Saveko
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Elena S Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Kramer A, Venegas-Carro M, Zange J, Sies W, Maffiuletti NA, Gruber M, Degens H, Moreno-Villanueva M, Mulder E. Daily 30-min exposure to artificial gravity during 60 days of bed rest does not maintain aerobic exercise capacity but mitigates some deteriorations of muscle function: results from the AGBRESA RCT. Eur J Appl Physiol 2021; 121:2015-2026. [PMID: 33811556 PMCID: PMC8192329 DOI: 10.1007/s00421-021-04673-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Spaceflight impairs physical capacity. Here we assessed the protective effect of artificial gravity (AG) on aerobic exercise capacity and muscle function during bed rest, a spaceflight analogue. METHODS 24 participants (33 ± 9 years, 175 ± 9 cm, 74 ± 10 kg, 8 women) were randomly allocated to one of three groups: continuous AG (cAG), intermittent AG (iAG) or control (CTRL). All participants were subjected to 60 days of six-degree head-down tilt bed rest, and subjects of the intervention groups completed 30 min of centrifugation per day: cAG continuously and iAG for 6 × 5 min, with an acceleration of 1g at the center of mass. Physical capacity was assessed before and after bed rest via maximal voluntary contractions, cycling spiroergometry, and countermovement jumps. RESULTS AG had no significant effect on aerobic exercise capacity, flexor muscle function and isometric knee extension strength or rate of force development (RFD). However, AG mitigated the effects of bed rest on jumping power (group * time interaction of the rmANOVA p < 0.001; iAG - 25%, cAG - 26%, CTRL - 33%), plantar flexion strength (group * time p = 0.003; iAG - 35%, cAG - 31%, CTRL - 48%) and plantar flexion RFD (group * time p = 0.020; iAG - 28%, cAG - 12%, CTRL - 40%). Women showed more pronounced losses than men in jumping power (p < 0.001) and knee extension strength (p = 0.010). CONCLUSION The AG protocols were not suitable to maintain aerobic exercise capacity, probably due to the very low cardiorespiratory demand of this intervention. However, they mitigated some losses in muscle function, potentially due to the low-intensity muscle contractions during centrifugation used to avoid presyncope.
Collapse
Affiliation(s)
- Andreas Kramer
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany.
| | - María Venegas-Carro
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Wolfram Sies
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - María Moreno-Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
21
|
Basti A, Yalçin M, Herms D, Hesse J, Aboumanify O, Li Y, Aretz Z, Garmshausen J, El-Athman R, Hastermann M, Blottner D, Relógio A. Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day. BMJ Open Sport Exerc Med 2021; 7:e000876. [PMID: 33680499 PMCID: PMC7878143 DOI: 10.1136/bmjsem-2020-000876] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives In this study, we investigated daily fluctuations in molecular (gene expression) and physiological (biomechanical muscle properties) features in human peripheral cells and their correlation with exercise performance. Methods 21 healthy participants (13 men and 8 women) took part in three test series: for the molecular analysis, 15 participants provided hair, blood or saliva time-course sampling for the rhythmicity analysis of core-clock gene expression via RT-PCR. For the exercise tests, 16 participants conducted strength and endurance exercises at different times of the day (9h, 12h, 15h and 18h). Myotonometry was carried out using a digital palpation device (MyotonPRO), five muscles were measured in 11 participants. A computational analysis was performed to relate core-clock gene expression, resting muscle tone and exercise performance. Results Core-clock genes show daily fluctuations in expression in all biological samples tested for all participants. Exercise performance peaks in the late afternoon (15–18 hours for both men and women) and shows variations in performance, depending on the type of exercise (eg, strength vs endurance). Muscle tone varies across the day and higher muscle tone correlates with better performance. Molecular daily profiles correlate with daily variation in exercise performance. Conclusion Training programmes can profit from these findings to increase efficiency and fine-tune timing of training sessions based on the individual molecular data. Our results can benefit both professional athletes, where a fraction of seconds may allow for a gold medal, and rehabilitation in clinical settings to increase therapy efficacy and reduce recovery times.
Collapse
Affiliation(s)
- Alireza Basti
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Systems Medicine and Bioinformatics, Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Müge Yalçin
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Herms
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Karate Department, Berliner Turn- und Sportclub e.V, Berlin, Germany
| | - Janina Hesse
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Systems Medicine and Bioinformatics, Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Ouda Aboumanify
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yin Li
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Zita Aretz
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josefin Garmshausen
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rukeia El-Athman
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maria Hastermann
- Center of Space Medicine Berlin, NeuroMuscular Group and Institut für Integrative Neuroanatomie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dieter Blottner
- Center of Space Medicine Berlin, NeuroMuscular Group and Institut für Integrative Neuroanatomie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Angela Relógio
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Systems Medicine and Bioinformatics, Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Makhnovskii PA, Bokov RO, Kolpakov FA, Popov DV. Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise. Int J Mol Sci 2021; 22:ijms22031208. [PMID: 33530535 PMCID: PMC7866200 DOI: 10.3390/ijms22031208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/08/2023] Open
Abstract
Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.
Collapse
Affiliation(s)
- Pavel A. Makhnovskii
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Roman O. Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Fedor A. Kolpakov
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
23
|
Sichting F, Kram NC. Phantom material testing indicates that the mechanical properties, geometrical dimensions, and tensional state of tendons affect oscillation-based measurements. Physiol Meas 2020; 41:095010. [PMID: 33021964 DOI: 10.1088/1361-6579/abb4b3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE There is an increasing interest in the application of oscillation-based measurement techniques to evaluate the mechanical stiffness of healthy and diseased tendons. These techniques measure the stiffness of a tendon indirectly by registering the oscillation response of a tendon to an external mechanical impulse. Although these measurement techniques seem to be comparatively easy and time-saving, their applicability is implicitly limited by their indirect measurement principle. APPROACH In this study, we aim to find evidence that the oscillation response of a tendon to an external mechanical impulse is not only affected by the stiffness of a tendon but also by the tendons' cross-sectional area (CSA), length, and tension. Therefore, we reviewed the current literature on oscillation-based techniques that measure in vivo tendon properties. Further, a phantom material was used to mimic the nature of tendons and to test the impact of four factors on oscillation-based measurements. MAIN RESULTS Our results indicate that the mechanical properties, geometrical dimensions (length and CSA), and tensional state affect oscillation-based measures. Surprisingly, most studies on tendon behavior often exclusively associate their oscillation-based measurements with the mechanical stiffness of a tendon. SIGNIFICANCE While this narrow perspective bears the risk of misinterpretation or false implications, a broader understanding of oscillation-based measurements has the potential to shed new light on the interaction of muscles and tendons in vivo.
Collapse
Affiliation(s)
- Freddy Sichting
- Department of Human Locomotion, Chemnitz University of Technology, Chemnitz, Germany
| | - Nicolai C Kram
- Department of Human Locomotion, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
24
|
Csapo R, Gumpenberger M, Wessner B. Skeletal Muscle Extracellular Matrix - What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front Physiol 2020; 11:253. [PMID: 32265741 PMCID: PMC7096581 DOI: 10.3389/fphys.2020.00253] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle represents the largest body-composition component in humans. In addition to its primary function in the maintenance of upright posture and the production of movement, it also plays important roles in many other physiological processes, including thermogenesis, metabolism and the secretion of peptides for communication with other tissues. Research attempting to unveil these processes has traditionally focused on muscle fibers, i.e., the contractile muscle cells. However, it is a frequently overlooked fact that muscle fibers reside in a three-dimensional scaffolding that consists of various collagens, glycoproteins, proteoglycans, and elastin, and is commonly referred to as extracellular matrix (ECM). While initially believed to be relatively inert, current research reveals the involvement of ECM cells in numerous important physiological processes. In interaction with other cells, such as fibroblasts or cells of the immune system, the ECM regulates muscle development, growth and repair and is essential for effective muscle contraction and force transmission. Since muscle ECM is highly malleable, its texture and, consequently, physiological roles may be affected by physical training and disuse, aging or various diseases, such as diabetes. With the aim to stimulate increased efforts to study this still poorly understood tissue, this narrative review summarizes the current body of knowledge on (i) the composition and structure of the ECM, (ii) molecular pathways involved in ECM remodeling, (iii) the physiological roles of muscle ECM, (iv) dysregulations of ECM with aging and disease as well as (v) the adaptations of muscle ECM to training and disuse.
Collapse
Affiliation(s)
- Robert Csapo
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Matthias Gumpenberger
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Barbara Wessner
- Department of Sports Medicine, Exercise Physiology and Prevention, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Blottner D, Hastermann M, Weber R, Lenz R, Gambara G, Limper U, Rittweger J, Bosutti A, Degens H, Salanova M. Reactive Jumps Preserve Skeletal Muscle Structure, Phenotype, and Myofiber Oxidative Capacity in Bed Rest. Front Physiol 2020; 10:1527. [PMID: 32009969 PMCID: PMC6974579 DOI: 10.3389/fphys.2019.01527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Identification of countermeasures able to prevent disuse-induced muscle wasting is crucial to increase performance of crew members during space flight as well as ameliorate patient’s clinical outcome after long immobilization periods. We report on the outcome of short but high-impact reactive jumps (JUMP) as countermeasure during 60 days of 6° head-down tilt (HDT) bed rest on myofiber size, type composition, capillarization, and oxidative capacity in tissue biopsies (pre/post/recovery) from the knee extensor vastus lateralis (VL) and deep calf soleus (SOL) muscle of 22 healthy male participants (Reactive jumps in a sledge, RSL-study 2015–2016, DLR:envihab, Cologne). Bed rest induced a slow-to-fast myofiber shift (type I –>II) with an increased prevalence of hybrid fibers in SOL after bed rest without jumps (control, CTRL, p = 0.016). In SOL, JUMP countermeasure in bed rest prevented both fast and slow myofiber cross-sectional area (CSA) decrements (p = 0.005) in CTRL group. In VL, bed rest only induced capillary rarefaction, as reflected by the decrease in local capillary-to-fiber ratio (LCFR) for both type II (pre vs. post/R + 10, p = 0.028/0.028) and type I myofibers (pre vs. R + 10, p = 0.012), which was not seen in the JUMP group. VO2maxFiber (pL × mm–1 × min–1) calculated from succinate dehydrogenase (SDH)-stained cryosections (OD660 nm) showed no significant differences between groups. High-impact jump training in bed rest did not prevent disuse-induced myofiber atrophy in VL, mitigated phenotype transition (type I – >II) in SOL, and attenuated capillary rarefaction in the prime knee extensor VL however with little impact on oxidative capacity changes.
Collapse
Affiliation(s)
- Dieter Blottner
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany.,NeuroMuscular Group, Center of Space Medicine and Extreme Environments, Berlin, Germany
| | - Maria Hastermann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany.,NeuroMuscular Group, Center of Space Medicine and Extreme Environments, Berlin, Germany
| | - Robert Weber
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Regina Lenz
- Department of Movement and Neurosciences, German Sports University, Cologne, Germany
| | - Guido Gambara
- Charité Comprehensive Cancer Center, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Limper
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Department of Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Jörn Rittweger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | | | - Hans Degens
- Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Michele Salanova
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany.,NeuroMuscular Group, Center of Space Medicine and Extreme Environments, Berlin, Germany
| |
Collapse
|
26
|
Lo WLA, Yu Q, Mao Y, Li W, Hu C, Li L. Lumbar muscles biomechanical characteristics in young people with chronic spinal pain. BMC Musculoskelet Disord 2019; 20:559. [PMID: 31759390 PMCID: PMC6875033 DOI: 10.1186/s12891-019-2935-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/07/2019] [Indexed: 11/15/2022] Open
Abstract
Background The prevalence of low back pain is rising among the young adult population. Altered lumbar muscle tone was suggested to be associated with underlying pathologies and symptoms. To date, there is minimum information available on the repeatability of lumbar spine muscle mechanical properties in the young adults who experienced low back pain. This study aimed to assess the reproducibility of mechanical properties of lumbar spinal muscle in young adults with spinal pain by myotonometer and explored the difference in reproducibility when different number of indentations was used. Methods Participants who aged between 18 to 25 and reported chronic LBP were recruited. Lumbar muscle tone (Hz) and stiffness (N/m) were assessed by myotonometer on one occasion by two assessors. Parameters were recorded by triple scans and 5-scans mode. Intraclass correlation coefficient (ICC), standard error of measurement (SEM), smallest real difference (SRD), Bland and Altman analysis were used to assess agreement between two measurements. The relationship between muscle mechanical properties and pain score and disability level were assessed by Spearman’s rank correlation coefficient. Results The results of ICCs indicated excellent repeatability in triple scans and 5-scans mode for each lumbar level bilaterally (ICC > 0.75). SEM and SRD were smaller in triple scans than 5-scans mode for most levels. Bland and Altman analysis revealed no systematic bias. Spearman’s rank correlation analysis indicated significant high correlations between muscle tone and disability level (r = 0.80, p < 0.05), and between muscle stiffness and disability level (r = 0.81, p < 0.05). Conclusions This study found that lumbar spinal muscle tone and stiffness were repeatable parameters when measured by myotonometer. The reproducibility of muscle mechanical parameters did not appear to differ between the two scanning modes with different number of indentations. Muscle tone and stiffness measured by myotonometer may therefore be reliable as outcome measures to assess intervention induced changes. The lack of significant association between intensity of pain and mechanical properties of paraspinal muscles may suggest that muscle properties measured at rest might not be related to pain level at rest but more related to pain elicited during movement.
Collapse
Affiliation(s)
- Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiuhua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yurong Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenfeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chengpeng Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Le Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Dunn N, Williams EM, Fishbourne M, Dolan G, Davies JH. Home management of lower limb lymphoedema with an intermittent pneumatic compression device: a feasibility study. Pilot Feasibility Stud 2019; 5:113. [PMID: 31583112 PMCID: PMC6767651 DOI: 10.1186/s40814-019-0496-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background Lymphoedema is a chronic condition that causes swelling in the body tissues. Presently, there is no cure for lymphoedema; instead, current treatment is aimed at lifelong management to help control symptoms. Intermittent pneumatic compression (IPC) therapy can be considered as an adjunct to standard lymphoedema care; however, research regarding the efficacy of this treatment modality is limited. Methods Twenty participants were recruited from an outpatient lymphoedema clinic (South Wales, UK) to a feasibility randomised control trial designed to evaluate the efficacy of an IPC device (LymphAssist, Huntleigh Healthcare) in reducing lower limb volume. The primary objective was to assess feasibility in terms of (1) study feasibility, including recruitment, retention and assessment of outcome measures, and (2) intervention feasibility, including intervention fidelity and acceptability to participants. Participants were randomly assigned to a control group (n = 10) or intervention group (n = 10). The control group received their standard lymphoedema care only for a 6-month period, whereas the intervention group received their standard lymphoedema care plus an IPC device to use for 6 months. A bilateral lower limb assessment and quality of life survey were undertaken at baseline and 3- and 6-month time points. Results The study recruited to target within the planned time frame with a retention rate of 80%. Issues relating to potential recruitment bias and study attrition were identified and possible solutions explored. In addition, supplementary primary outcome measures that are important to the study population were identified and will be incorporated into the design of future studies. Conclusion This feasibility study identified that a larger randomised controlled trial investigating the efficacy of home use IPC devices is feasible with modifications to the study protocol. Trial registration This trial is registered with clinicaltrials.gov (NCT03825263).
Collapse
Affiliation(s)
- Nyree Dunn
- 1Faculty of Life Sciences, University of South Wales, Lower Glyntaff Campus, Room AB034, Treforest, Pontypridd, CF37 4BD UK
| | - E Mark Williams
- 1Faculty of Life Sciences, University of South Wales, Lower Glyntaff Campus, Room AB034, Treforest, Pontypridd, CF37 4BD UK
| | | | - Gina Dolan
- 1Faculty of Life Sciences, University of South Wales, Lower Glyntaff Campus, Room AB034, Treforest, Pontypridd, CF37 4BD UK
| | - Jane H Davies
- 3Centre for Trials Research, Cardiff University, Cardiff, UK
| |
Collapse
|
28
|
Yuan M, Custaud MA, Xu Z, Wang J, Yuan M, Tafforin C, Treffel L, Arbeille P, Nicolas M, Gharib C, Gauquelin-Koch G, Arnaud L, Lloret JC, Li Y, Navasiolava N. Multi-System Adaptation to Confinement During the 180-Day Controlled Ecological Life Support System (CELSS) Experiment. Front Physiol 2019; 10:575. [PMID: 31164833 PMCID: PMC6536695 DOI: 10.3389/fphys.2019.00575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 02/01/2023] Open
Abstract
Confinement experiments are essential to prepare long-term space exploration. The 180-day Chinese CELSS (Controlled Ecological Life Support System) study is unique in its design, including a closed-loop system and mid-mission simulation of Mars-like day-night cycle of 24 h 40 min for 36 days (days 72-108). Our aim was to study physiological and psychological consequences of this confinement in four healthy volunteers (one female). CELSS platform consisted of six interconnected modules including four greenhouses. Life support systems were controlled automatically. Body composition, fluid compartments, metabolic state, heart, large vessels, endothelial function, and muscle tone were studied using biological, functional, and/or morphological measurements. Behavioral activities were studied by ethological monitoring; psychological state was assessed by questionnaires. Body weight decreased by ∼2 kg mostly due to lean mass loss. Plasma volume and volume-regulating hormones were mostly stable. Carotid intima-media thickness (IMT) increased by 10-15%. Endothelium-dependent vasodilation decreased. Masseter tone increased by 6-14% suggesting stress, whereas paravertebral muscle tone diminished by 10 ± 6%. Behavioral flow reflecting global activity decreased 1.5- to 2-fold after the first month. Psychological questionnaires revealed decrease in hostility and negative emotions but increase in emotional adaptation suggesting boredom and monotony. One subject was clearly different with lower fitness, higher levels of stress and anxiety, and somatic signs as back pain, peak in masseter tone, increased blood cortisol and C-reactive protein. Comparison of CELSS experiment with Mars500 confinement program suggests the need for countermeasures to prevent increased IMT and endothelial deconditioning. Daily activity in greenhouse could act as countermeasure against psycho-physiological deconditioning.
Collapse
Affiliation(s)
- Ming Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Space Institute of Southern China, Shenzhen, China
| | - Marc-Antoine Custaud
- Centre de Recherche Clinique, Centre Hospitalier Universitaire d’Angers, Angers, France
- MitoVasc UMR INSERM 1083-CNRS 6015, Université d’Angers, Angers, France
| | - Zi Xu
- Space Institute of Southern China, Shenzhen, China
| | - Jingyu Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Min Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Carole Tafforin
- Research and Study Group in Human and Space Ethology, Ethospace, Toulouse, France
| | - Loïc Treffel
- Institut Toulousain d’Ostéopathie, Toulouse, France
- Centre de Recherche International en Biomécanique, Lagarde, France
| | - Philippe Arbeille
- Faculté de Médecine, Unité de Médecine et Physiologie Spatiales, Centre Hospitalier Universitaire Trousseau de Tours, Tours, France
| | - Michel Nicolas
- Laboratory of Psychology Psy-DREPI (EA 7458), Sport Sciences Department, University Bourgogne Franche-Comté, Dijon, France
| | - Claude Gharib
- Institut NeuroMyogène, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Nastassia Navasiolava
- Centre de Recherche Clinique, Centre Hospitalier Universitaire d’Angers, Angers, France
| |
Collapse
|
29
|
Thiesemann R. [Pain and ageing]. Z Gerontol Geriatr 2018; 51:855-858. [PMID: 30397739 DOI: 10.1007/s00391-018-01472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- R Thiesemann
- Gemeinschaftspraxis Dr.Thiesemann et al, Akademische Forschungspraxis, Universitätsklinik Hamburg-Eppendorf, Alter Postweg 25, 21075, Hamburg, Deutschland.
| |
Collapse
|