1
|
Short KL, Lao J, Lam R, Moreau JLM, Ng J, Piran M, Combes AN, Cottle DL, Cole TJ. Disrupted glucocorticoid receptor cell signalling causes a ciliogenesis defect in the fetal mouse renal tubule. EMBO Rep 2025:10.1038/s44319-025-00454-0. [PMID: 40247090 DOI: 10.1038/s44319-025-00454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/14/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Primary cilia are cell signalling and environment sensing organelles and have important roles during embryogenesis and homeostasis. We demonstrate glucocorticoid signalling is essential for normal cilia formation in mouse and human renal tubules. RNA sequencing of E18.5 kidneys from glucocorticoid receptor (GR) null mice identified significant reductions in key ciliogenesis-related genes including Ccp110, Cep97, Cep290 and Kif3a. Confocal microscopy reveals abnormal, stunted cilia on proximal tubules, podocytes, and collecting duct cells in mice with global or conditional deletion of GR. In contrast, activation of GR signalling with dexamethasone in human kidney organoids or mouse IMCD3 cells increases cilia length, an effect blocked by the GR antagonist RU486. Analysis of GR-null kidney extracts demonstrates reduced levels of pERK and SUFU identifying potential cell pathway crosstalk with GR signalling that coordinately regulate ciliogenesis in the renal tubule. Finally, dexamethasone reduces Aurora kinase A levels, a factor driving cilia disassembly and implicated in the pathogenesis of polycystic kidney disease.
Collapse
Affiliation(s)
- Kelly L Short
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jianshen Lao
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rachel Lam
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Julie L M Moreau
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Judy Ng
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Mehran Piran
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Alexander N Combes
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
2
|
Verouti S, Aeschlimann G, Wang Q, Del Olmo DA, Peyter AC, Menétrey S, Winter DV, Odermatt A, Pearce D, Hummler E, Vanderriele PE. Salt-sensitive hypertension in GR mutant rats is associated with altered plasma polyunsaturated fatty acid levels and aortic vascular reactivity. Pflugers Arch 2025; 477:37-53. [PMID: 39256246 PMCID: PMC11711871 DOI: 10.1007/s00424-024-03014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
In humans, glucocorticoid resistance is attributed to mutations in the glucocorticoid receptor (GR). Most of these mutations result in decreased ligand binding, transactivation, and/or translocation, albeit with normal protein abundances. However, there is no clear genotype‒phenotype relationship between the severity or age at disease presentation and the degree of functional loss of the receptor. Previously, we documented that a GR+/- rat line developed clinical features of glucocorticoid resistance, namely, hypercortisolemia, adrenal hyperplasia, and salt-sensitive hypertension. In this study, we analyzed the GR+/em4 rat model heterozygously mutant for the deletion of exon 3, which encompasses the second zinc finger, including the domains of DNA binding, dimerization, and nuclear localization signals. On a standard diet, mutant rats exhibited a trend toward increased corticosterone levels and a normal systolic blood pressure and heart rate but presented with adrenal hyperplasia. They exhibited increased adrenal soluble epoxide hydroxylase (sEH), favoring an increase in less active polyunsaturated fatty acids. Indeed, a significant increase in nonactive omega-3 and omega-6 polyunsaturated fatty acids, such as 5(6)-DiHETrE or 9(10)-DiHOME, was observed with advanced age (10 versus 5 weeks old) and following a switch to a high-salt diet accompanied by salt-sensitive hypertension. In thoracic aortas, a reduced soluble epoxide hydrolase (sEH) protein abundance resulted in altered vascular reactivity upon a standard diet, which was blunted upon a high-salt diet. In conclusion, mutations in the GR affecting the ligand-binding domain as well as the dimerization domain resulted in deregulated GR signaling, favoring salt-sensitive hypertension in the absence of obvious mineralocorticoid excess.
Collapse
Affiliation(s)
- S Verouti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- National Center of Competence in Research, Kidney.CH, Lausanne, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - G Aeschlimann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Q Wang
- Division of Nephrology and Hypertension, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - D Ancin Del Olmo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - A C Peyter
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - S Menétrey
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - D V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - A Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - D Pearce
- Department of Medicine and Cellular & Molecular Pharmacology, University of California, San Francisco, USA
| | - E Hummler
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- National Center of Competence in Research, Kidney.CH, Lausanne, Switzerland
| | - P E Vanderriele
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
- National Center of Competence in Research, Kidney.CH, Lausanne, Switzerland.
| |
Collapse
|
3
|
Abstract
Salt (sodium chloride) is an essential nutrient required to maintain physiological functions. However, for most people, daily salt intake far exceeds their physiological need and is habitually greater than recommended upper thresholds. Excess salt intake leads to elevation in blood pressure which drives cardiovascular morbidity and mortality. Indeed, excessive salt intake is estimated to be responsible for ≈5 million deaths per year globally. For approximately one-third of otherwise healthy individuals (and >50% of those with hypertension), the effect of salt intake on blood pressure elevation is exaggerated; such people are categorized as salt sensitive and salt sensitivity of blood pressure is considered an independent risk factor for cardiovascular disease and death. The prevalence of salt sensitivity is higher in women than in men and, in both, increases with age. This narrative review considers the foundational concepts of salt sensitivity and the underlying effector systems that cause salt sensitivity. We also consider recent updates in preclinical and clinical research that are revealing new modifying factors that determine the blood pressure response to high salt intake.
Collapse
Affiliation(s)
- Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (N.D.)
| |
Collapse
|
4
|
Riojas AM, Reeves KD, Shade RE, Puppala SR, Christensen CL, Birnbaum S, Glenn JP, Li C, Shaltout H, Hall-Ursone S, Cox LA. Blood pressure and the kidney cortex transcriptome response to high-sodium diet challenge in female nonhuman primates. Physiol Genomics 2022; 54:443-454. [PMID: 36062883 PMCID: PMC9639778 DOI: 10.1152/physiolgenomics.00144.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Blood pressure (BP) is influenced by genetic variation and sodium intake with sex-specific differences; however, studies to identify renal molecular mechanisms underlying the influence of sodium intake on BP in nonhuman primates (NHP) have focused on males. To address the gap in our understanding of molecular mechanisms regulating BP in female primates, we studied sodium-naïve female baboons (n = 7) fed a high-sodium (HS) diet for 6 wk. We hypothesized that in female baboons variation in renal transcriptional networks correlates with variation in BP response to a high-sodium diet. BP was continuously measured for 64-h periods throughout the study by implantable telemetry devices. Sodium intake, blood samples for clinical chemistries, and ultrasound-guided kidney biopsies were collected before and after the HS diet for RNA-Seq and bioinformatic analyses. We found that on the LS diet but not the HS diet, sodium intake and serum 17 β-estradiol concentration correlated with BP. Furthermore, kidney transcriptomes differed by diet-unbiased weighted gene coexpression network analysis revealed modules of genes correlated with BP on the HS diet but not the LS diet. Our results showed variation in BP on the HS diet correlated with variation in novel kidney gene networks regulated by ESR1 and MYC; i.e., these regulators have not been associated with BP regulation in male humans or rodents. Validation of the mechanisms underlying regulation of BP-associated gene networks in female NHP will inform better therapies toward greater precision medicine for women.
Collapse
Affiliation(s)
- Angelica M Riojas
- Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kimberly D Reeves
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Robert E Shade
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Sobha R Puppala
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Shifra Birnbaum
- Molecular Services Core, Texas Biomedical Research Institute, San Antonio, Texas
| | - Jeremy P Glenn
- Molecular Services Core, Texas Biomedical Research Institute, San Antonio, Texas
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Hossam Shaltout
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
5
|
Role of glucocorticoid receptor mutations in hypertension and adrenal gland hyperplasia. Pflugers Arch 2022; 474:829-840. [PMID: 35732960 PMCID: PMC9217122 DOI: 10.1007/s00424-022-02715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Hypertension is one of the leading causes of premature death in humans and exhibits a complex aetiology including environmental and genetic factors. Mutations within the glucocorticoid receptor (GR) can cause glucocorticoid resistance, which is characterized by several clinical features like hypercortisolism, hypokalaemia, adrenal hyperplasia and hypertension. Altered glucocorticoid receptor signalling further affects sodium and potassium homeostasis as well as blood pressure regulation and cell proliferation and differentiation that influence organ development and function. In salt-sensitive hypertension, excessive renal salt transport and sympathetic nervous system stimulation may occur simultaneously, and, thus, both the mineralocorticoid receptor (MR) and the GR-signalling may be implicated or even act interdependently. This review focuses on identified GR mutations in human primary generalized glucocorticoid resistance (PGGR) patients and their related clinical phenotype with specific emphasis on adrenal gland hyperplasia and hypertension. We compare these findings to mouse and rat mutants harbouring genetically engineered mutations to further dissect the cause and/or the consequence of clinical features which are common or different.
Collapse
|
6
|
Salt-Sensitive Hypertension in GR +/- Rats Is Accompanied with Dysregulation in Adrenal Soluble Epoxide Hydrolase and Polyunsaturated Fatty Acid Pathways. Int J Mol Sci 2021; 22:ijms222413218. [PMID: 34948014 PMCID: PMC8708190 DOI: 10.3390/ijms222413218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
Mutations within the glucocorticoid receptor (GR) gene locus lead to glucocorticoid resistance which is characterized by several clinical symptoms such as adrenal gland hyperplasia and salt-sensitive hypertension, although the underlying mechanisms are still unknown. We studied GR haploinsufficient (GR+/−) Sprague Dawley rats which, on a standard diet, showed significantly increased plasma aldosterone and corticosterone levels and an adrenocortex hyperplasia accompanied by a normal systolic blood pressure. Following a high salt diet, these rats developed salt-sensitive hypertension and maintained elevated enzyme-soluble epoxide hydrolase (sEH) in adrenal glands, while sEH was significantly decreased in wild-type rats. Furthermore, GR+/− rats showed dysregulation of the equilibrated linoleic and arachidonic acid pathways, with a significant increase of less active metabolites such as 8,9-DiHETrE. In Sprague Dawley rats, GR haploinsufficiency induced steroid disturbances, which provoked hypertension only in combination with high salt intake, which was accompanied by disturbances in sEH and fatty acid metabolism. Our results suggest that sEH inhibition could be a potential target to treat hypertension in patients with GR haploinsufficiency.
Collapse
|
7
|
Domínguez-Vías G, Segarra AB, Ramírez-Sánchez M, Prieto I. The Type of Fat in the Diet Influences Regulatory Aminopeptidases of the Renin-Angiotensin System and Stress in the Hypothalamic-Pituitary-Adrenal Axis in Adult Wistar Rats. Nutrients 2021; 13:nu13113939. [PMID: 34836194 PMCID: PMC8625891 DOI: 10.3390/nu13113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Prolonged feeding with a high-fat diet (HFD) acts as a stressor by activating the functions of the hypothalamic-pituitary-adrenal gland (HPA) stress axis, accompanied of hypertension by inducing the renin-angiotensin-aldosterone system. Angiotensinases enzymes are regulatory aminopeptidases of angiotensin metabolism, which together with the dipeptidyl peptidase IV (DPP-IV), pyroglutamyl- and tyrosyl-aminopeptidase (pGluAP, TyrAP), participate in cognitive, stress, metabolic and cardiovascular functions. These functions appear to be modulated by the type of fat used in the diet. (2) Methods: To analyze a possible coordinated response of aminopeptidases, their activities were simultaneously determined in the hypothalamus, adenohypophysis and adrenal gland of adult male rats fed diets enriched with monounsaturated (standard diet (S diet) supplemented with 20% virgin olive oil; VOO diet) or saturated fatty acids (diet S supplemented with 20% butter and 0.1% cholesterol; Bch diet). Aminopeptidase activities were measured by fluorimetry using 2-Naphthylamine as substrates. (3) Results: the hypothalamus did not show differences in any of the experimental diets. In the pituitary, the Bch diet stimulated the renin-angiotensin system (RAS) by increasing certain angiotensinase activities (alanyl-, arginyl- and cystinyl-aminopeptidase) with respect to the S and VOO diets. DPP-IV activity was increased with the Bch diet, and TyrAP activity decrease with the VOO diet, having both a crucial role on stress and eating behavior. In the adrenal gland, both HFDs showed an increase in angiotensinase aspartyl-aminopeptidase. The interrelation of angiotensinases activities in the tissues were depending on the type of diet. In addition, correlations were shown between angiotensinases and aminopeptidases that regulate stress and eating behavior. (4) Conclusions: Taken together, these results support that the source of fat in the diet affects several peptidases activities in the HPA axis, which could be related to alterations in RAS, stress and feeding behavior.
Collapse
Affiliation(s)
- Germán Domínguez-Vías
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
- Department of Physiology, Faculty of Health Sciences, Ceuta, University of Granada, 18071 Granada, Spain
- Correspondence: (G.D.-V.); (I.P.); Tel.: +34-953-212008 (I.P.)
| | - Ana Belén Segarra
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
| | - Manuel Ramírez-Sánchez
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
| | - Isabel Prieto
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
- Correspondence: (G.D.-V.); (I.P.); Tel.: +34-953-212008 (I.P.)
| |
Collapse
|
8
|
Sierra-Ramos C, Velazquez-Garcia S, Keskus AG, Vastola-Mascolo A, Rodríguez-Rodríguez AE, Luis-Lima S, Hernández G, Navarro-González JF, Porrini E, Konu O, Alvarez de la Rosa D. Increased SGK1 activity potentiates mineralocorticoid/NaCl-induced kidney injury. Am J Physiol Renal Physiol 2021; 320:F628-F643. [PMID: 33586495 DOI: 10.1152/ajprenal.00505.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) stimulates aldosterone-dependent renal Na+ reabsorption and modulates blood pressure. In addition, genetic ablation or pharmacological inhibition of SGK1 limits the development of kidney inflammation and fibrosis in response to excess mineralocorticoid signaling. In this work, we tested the hypothesis that a systemic increase in SGK1 activity would potentiate mineralocorticoid/salt-induced hypertension and kidney injury. To that end, we used a transgenic mouse model with increased SGK1 activity. Mineralocorticoid/salt-induced hypertension and kidney damage was induced by unilateral nephrectomy and treatment with deoxycorticosterone acetate and NaCl in the drinking water for 6 wk. Our results show that although SGK1 activation did not induce significantly higher blood pressure, it produced a mild increase in glomerular filtration rate, increased albuminuria, and exacerbated glomerular hypertrophy and fibrosis. Transcriptomic analysis showed that extracellular matrix- and immune response-related terms were enriched in the downregulated and upregulated genes, respectively, in transgenic mice. In conclusion, we propose that systemically increased SGK1 activity is a risk factor for the development of mineralocorticoid-dependent kidney injury in the context of low renal mass and independently of blood pressure.NEW & NOTEWORTHY Increased activity of the protein kinase serum and glucocorticoid-regulated kinase 1 may be a risk factor for accelerated renal damage. Serum and glucocorticoid-regulated kinase 1 expression could be a marker for the rapid progression toward chronic kidney disease and a potential therapeutic target to slow down the process.
Collapse
Affiliation(s)
- Catalina Sierra-Ramos
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Silvia Velazquez-Garcia
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Ayse G Keskus
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey
| | - Arianna Vastola-Mascolo
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | | | - Sergio Luis-Lima
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Departamento de Medicina Interna, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Guadalberto Hernández
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Juan F Navarro-González
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Esteban Porrini
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Departamento de Medicina Interna, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Ozlen Konu
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Ankara, Turkey
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Ivy JR, Bailey MA. Nondipping Blood Pressure: Predictive or Reactive Failure of Renal Sodium Handling? Physiology (Bethesda) 2021; 36:21-34. [PMID: 33325814 DOI: 10.1152/physiol.00024.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood pressure follows a daily rhythm, dipping during nocturnal sleep in humans. Attenuation of this dip (nondipping) is associated with increased risk of cardiovascular disease. Renal control of sodium homeostasis is essential for long-term blood pressure control. Sodium reabsorption and excretion have rhythms that rely on predictive/circadian as well as reactive adaptations. We explore how these rhythms might contribute to blood pressure rhythm in health and disease.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Ralph AF, Grenier C, Costello HM, Stewart K, Ivy JR, Dhaun N, Bailey MA. Activation of the Sympathetic Nervous System Promotes Blood Pressure Salt-Sensitivity in C57BL6/J Mice. Hypertension 2020; 77:158-168. [PMID: 33190558 PMCID: PMC7720873 DOI: 10.1161/hypertensionaha.120.16186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Global salt intake averages >8 g/person per day, over twice the limit advocated by the American Heart Association. Dietary salt excess leads to hypertension, and this partly mediates its poor health outcomes. In ≈30% of people, the hypertensive response to salt is exaggerated. This salt-sensitivity increases cardiovascular risk. Mechanistic cardiovascular research relies heavily on rodent models and the C57BL6/J mouse is the most widely used reference strain. We examined the effects of high salt intake on blood pressure, renal, and vascular function in the most commonly used and commercially available C57BL6/J mouse strain. Changing from control (0.3% Na+) to high salt (3% Na+) diet increased systolic blood pressure in male mice by ≈10 mm Hg within 4 days of dietary switch. This hypertensive response was maintained over the 3-week study period. Returning to control diet gradually reduced blood pressure back to baseline. High-salt diet caused a rapid and sustained downregulation in mRNA encoding renal NHE3 (sodium-hydrogen-exchanger 3) and EnaC (epithelial sodium channel), although we did not observe a suppression in aldosterone until ≈7 days. During the development of salt-sensitivity, the acute pressure natriuresis relationship was augmented and neutral sodium balance was maintained throughout. High-salt diet increased ex vivo sensitivity of the renal artery to phenylephrine and increased urinary excretion of adrenaline, but not noradrenaline. The acute blood pressure-depressor effect of hexamethonium, a ganglionic blocker, was enhanced by high salt. Salt-sensitivity in commercially sourced C57BL6/J mice is attributable to sympathetic overactivity, increased adrenaline, and enhanced vascular sensitivity to alpha-adrenoreceptor activation and not sodium retention or attenuation of the acute pressure natriuresis response.
Collapse
Affiliation(s)
- Ailsa F Ralph
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Celine Grenier
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Hannah M Costello
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Kevin Stewart
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Jessica R Ivy
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Neeraj Dhaun
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| |
Collapse
|
11
|
Soto-Piña AE, Franklin C, Rani CSS, Fernandez E, Cardoso-Peña E, Benítez-Arciniega AD, Gottlieb H, Hinojosa-Laborde C, Strong R. Dexamethasone Causes Hypertension in Rats Even Under Chemical Blockade of Peripheral Sympathetic Nerves. Front Neurosci 2019; 13:1305. [PMID: 31866814 PMCID: PMC6909820 DOI: 10.3389/fnins.2019.01305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022] Open
Abstract
Synthetic glucocorticoids (GCs) are widely used to treat inflammatory conditions. However, chronic use of GCs can lead to hypertension. The cause of this undesired side effect remains unclear. Previously, we developed an in vivo rat model to study the mechanisms underlying hypertension induced by the chronic administration of the potent synthetic GC, dexamethasone (DEX) and found that the catecholamine biosynthetic pathway plays an important role. In the current study, we used this model to investigate the role of the adrenal medulla, renal nerves, and other peripheral sympathetic nerves in DEX-induced hypertension. After 5 days of baseline telemetric recording of mean arterial pressure (MAP) and heart rate (HR), rats were subjected to one of the following treatments: renal denervation (RDNX), adrenal medullectomy (ADMX), 6-hydroxydopamine (6-OHDA, 20 mg/kg, i.p.) to induce chemical sympathectomy, or a combination of ADMX and 6-OHDA. On day 11, the animals received vehicle (VEH) or DEX in drinking water for 7 days, with the latter causing an increase in MAP in control animals. ADMX and RDNX by themselves exacerbated the pressor effect of DEX. In the chemical sympathectomy group, DEX still caused a rise in MAP but the response was lower (ΔMAP of 6-OHDA/DEX < VEH/DEX, p = 0.039). However, when ΔMAP was normalized to day 10, 6-OHDA + DEX did not show any difference from VEH + DEX, certainly not an increase as observed in DEX + ADMX or RDNX groups. This indicates that sympathetic nerves do not modulate the pressor effect of DEX. TH mRNA levels increased in the adrenal medulla in both VEH/DEX (p = 0.009) and 6-OHDA/DEX (p = 0.031) groups. In the 6-OHDA group, DEX also increased plasma levels of norepinephrine (NE) (p = 0.016). Our results suggest that the activation of catecholamine synthetic pathway could be involved in the pressor response to DEX in animals even under chemical sympathectomy with 6-OHDA.
Collapse
Affiliation(s)
| | - Cynthia Franklin
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX, United States
| | - C S Sheela Rani
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Elizabeth Fernandez
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Elías Cardoso-Peña
- Unidad de Medicina Familiar 220, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Helmut Gottlieb
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX, United States
| | - Carmen Hinojosa-Laborde
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Randy Strong
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| |
Collapse
|
12
|
Lin SR, Lin SY, Chen CC, Fu YS, Weng CF. Exploring a New Natural Treating Agent for Primary Hypertension: Recent Findings and Forthcoming Perspectives. J Clin Med 2019; 8:E2003. [PMID: 31744165 PMCID: PMC6912567 DOI: 10.3390/jcm8112003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Primary hypertension describes abnormally-high systolic/diastolic blood pressure in a resting condition caused by various genetic or environmental risk factors. Remarkably, severe complications, such as ischemic cardiovascular disease, stroke, and chronic renal disease have led to primary hypertension becoming a huge burden for almost one-third of the total population. Medication is the major regimen for treating primary hypertension; however, recent medications may have adverse effects that attenuate energy levels. Hence, the search for new hypotensive agents from folk or traditional medicine may be fruitful in the discovery and development of new drugs. This review assembles recent findings for natural antihypertensive agents, extracts, or decoctions published in PubMed, and provides insights into the search for new hypotensive compounds based on blood-pressure regulating mechanisms, including the renin-angiotensin-aldosterone system and the sympathetic/adrenergic receptor/calcium channel system.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (S.-R.L.); (C.-C.C.)
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Shiuan-Yea Lin
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Cheng Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (S.-R.L.); (C.-C.C.)
- Camillian Saint Mary’s Hospital Luodong,160 Zhongzheng S. Rd. Luodong, Yilan 26546, Taiwan
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Feng Weng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Basic Medical Science, Center for Transitional Medicine, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
13
|
Ivy JR, Jones NK, Costello HM, Mansley MK, Peltz TS, Flatman PW, Bailey MA. Glucocorticoid receptor activation stimulates the sodium-chloride cotransporter and influences the diurnal rhythm of its phosphorylation. Am J Physiol Renal Physiol 2019; 317:F1536-F1548. [PMID: 31588796 PMCID: PMC6962506 DOI: 10.1152/ajprenal.00372.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sodium-chloride cotransporter (NCC) in the distal convoluted tubule contributes importantly to sodium balance and blood pressure (BP) regulation. NCC phosphorylation determines transport activity and has a diurnal rhythm influenced by glucocorticoids. Disturbing this rhythm induces “nondipping” BP, an abnormality that increases cardiovascular risk. The receptor through which glucocorticoids regulate NCC is not known. In this study, we found that acute administration of corticosterone to male C57BL6 mice doubled NCC phosphorylation without affecting total NCC abundance in both adrenalectomized and adrenal-intact mice. Corticosterone also increased the whole kidney expression of canonical clock genes: period circadian protein homolog 1 (Per1), Per2, cryptochrome 1, and aryl hydrocarbon receptor nuclear translocator-like protein 1. In adrenal-intact mice, chronic blockade of glucocorticoid receptor (GR) with RU486 did not change total NCC but prevented corticosterone-induced NCC phosphorylation and activation of clock genes. Blockade of mineralocorticoid receptor (MR) with spironolactone reduced the total pool of NCC but did not affect stimulation by corticosterone. The diurnal rhythm of NCC phosphorylation, measured at 6-h intervals, was blunted by chronic GR blockade, and a similar dampening of diurnal variation was seen in GR heterozygous null mice. These effects on NCC phosphorylation did not reflect altered rhythmicity of plasma corticosterone or serum and glucocorticoid-induced kinase 1 activity. Both mineralocorticoids and glucocorticoids emerge as regulators of NCC, acting via distinct receptor pathways. MR activation provides maintenance of the NCC protein pool; GR activation dynamically regulates NCC phosphorylation and establishes the diurnal rhythm of NCC activity. This study has implications for circadian BP homeostasis, particularly in individuals with abnormal glucocorticoid signaling as is found in chronic stress and corticosteroid therapy.
Collapse
Affiliation(s)
- Jessica Ruth Ivy
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Natalie K Jones
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Hannah M Costello
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Morag K Mansley
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Theresa S Peltz
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Peter W Flatman
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Medical School, The University of Edinburgh, United Kingdom
| |
Collapse
|
14
|
Canonica J, Frateschi S, Boscardin E, Ebering A, Sergi C, Jäger Y, Peyrollaz T, Mérillat AM, Maillard M, Klusonova P, Odermatt A, Koesters R, Debonneville A, Staub O, Verouti SN, Hummler E. Lack of Renal Tubular Glucocorticoid Receptor Decreases the Thiazide-Sensitive Na +/Cl - Cotransporter NCC and Transiently Affects Sodium Handling. Front Physiol 2019; 10:989. [PMID: 31474871 PMCID: PMC6702950 DOI: 10.3389/fphys.2019.00989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic glucocorticoid infusion impairs NCC activity and induces a non-dipping profile in mice, suggesting that glucocorticoids are essential for daily blood pressure variations. In this paper, we studied mice lacking the renal tubular glucocorticoid receptor (GR) in adulthood (GR knockouts, Nr3c1Pax8/LC1). Upon standard salt diet, Nr3c1Pax8/LC1 mice grow normally, but show reduced NCC activity despite normal plasma aldosterone levels. Following diet switch to low sodium, Nr3c1Pax8/LC1 mice exhibit a transient but significant reduction in the activity of NCC and expression of NHE3 and NKCC2 accompanied by significant increased Spak activity. This is followed by transiently increased urinary sodium excretion and higher plasma aldosterone concentrations. Plasma corticosterone levels and 11βHSD2 mRNA expression and activity in the whole kidney remain unchanged. High salt diet does not affect whole body Na+ and/or K+ balance and NCC activity is not reduced, but leads to a significant increase in diastolic blood pressure dipping in Nr3c1Pax8/LC1 mice. When high sodium treatment is followed by 48 h of darkness, NCC abundance is reduced in knockout mice although activity is not different. Our data show that upon Na+ restriction renal tubular GR-deficiency transiently affects Na+ handling and transport pathways. Overall, upon standard, low Na+ and high Na+ diet exposure Na+ and K+ balance is maintained as evidenced by normal plasma and urinary Na+ and K+ and aldosterone concentrations.
Collapse
Affiliation(s)
- Jérémie Canonica
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Anna Ebering
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Chloé Sergi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Yannick Jäger
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Thibaud Peyrollaz
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Anne-Marie Mérillat
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Marc Maillard
- Department of Nephrology Service, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Petra Klusonova
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Robert Koesters
- Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Anne Debonneville
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Sophia N Verouti
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| |
Collapse
|