1
|
Florindi C, Vurro V, Moretti P, Bertarelli C, Zaza A, Lanzani G, Lodola F. Role of stretch-activated channels in light-generated action potentials mediated by an intramembrane molecular photoswitch. J Transl Med 2024; 22:1068. [PMID: 39605022 PMCID: PMC11600573 DOI: 10.1186/s12967-024-05902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The use of light to control the activity of living cells is a promising approach in cardiac research due to its unparalleled spatio-temporal selectivity and minimal invasiveness. Ziapin2, a newly synthesized azobenzene compound, has recently been reported as an efficient tool for light-driven modulation of excitation-contraction coupling (ECC) in human-induced pluripotent stem cells-derived cardiomyocytes. However, the exact biophysical mechanism of this process remains incompletely understood. METHODS To address this, we performed a detailed electrophysiological characterization in a more mature cardiac model, specifically adult mouse ventricular myocytes (AMVMs). RESULTS Our in vitro results demonstrate that Ziapin2 can photomodulate cardiac ECC in mature AMVMs without affecting the main transporters and receptors located within the sarcolemma. We established a connection between Ziapin2-induced membrane thickness modulation and light-generated action potentials by showcasing the pivotal role of stretch-activated channels (SACs). Notably, our experimental findings, through pharmacological blockade, suggest that non-selective SACs might serve as the biological culprit responsible for the effect. CONCLUSIONS Taken together, these findings elucidate the intricacies of Ziapin2-mediated photostimulation mechanism and open new perspectives for its application in cardiac research.
Collapse
Affiliation(s)
- Chiara Florindi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.za della Scienza 2, 20126, Milan, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Vito Vurro
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Paola Moretti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Chiara Bertarelli
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.za della Scienza 2, 20126, Milan, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Francesco Lodola
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.za della Scienza 2, 20126, Milan, Italy.
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy.
| |
Collapse
|
2
|
Diaz-Maue L, Zykov VS, Majumder R. Photon-Scanning Approach to Control Spiral Wave Dynamics in the Heart. PHYSICAL REVIEW LETTERS 2024; 133:218401. [PMID: 39642510 DOI: 10.1103/physrevlett.133.218401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Self-organizing spiral electrical waves are produced in the heart during fatal cardiac arrhythmias. Controlling these waves is therefore an essential step in managing the disease. Here we present an effective method for controlling cardiac spiral waves using optogenetics. The method involves using photons to actively scan the surface of the heart for phase singularities. Once detected, these phase singularities are redirected to an inexcitable wall to be eliminated. Thus, spiral waves can be controlled in a double-blind fashion. We present two theoretical mechanisms with ex vivo validation.
Collapse
|
3
|
Vlasova AD, Bukhalovich SM, Bagaeva DF, Polyakova AP, Ilyinsky NS, Nesterov SV, Tsybrov FM, Bogorodskiy AO, Zinovev EV, Mikhailov AE, Vlasov AV, Kuklin AI, Borshchevskiy VI, Bamberg E, Uversky VN, Gordeliy VI. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem Soc Rev 2024; 53:3327-3349. [PMID: 38391026 DOI: 10.1039/d3cs00699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.
Collapse
Affiliation(s)
- Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei M Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Diana F Bagaeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra P Polyakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor M Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Valentin I Gordeliy
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027 Grenoble, France.
| |
Collapse
|
4
|
Hussaini S, Lädke SL, Schröder-Schetelig J, Venkatesan V, Quiñonez Uribe RA, Richter C, Majumder R, Luther S. Dissolution of spiral wave's core using cardiac optogenetics. PLoS Comput Biol 2023; 19:e1011660. [PMID: 38060618 PMCID: PMC10729946 DOI: 10.1371/journal.pcbi.1011660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/19/2023] [Accepted: 11/04/2023] [Indexed: 12/20/2023] Open
Abstract
Rotating spiral waves in the heart are associated with life-threatening cardiac arrhythmias such as ventricular tachycardia and fibrillation. These arrhythmias are treated by a process called defibrillation, which forces electrical resynchronization of the heart tissue by delivering a single global high-voltage shock directly to the heart. This method leads to immediate termination of spiral waves. However, this may not be the only mechanism underlying successful defibrillation, as certain scenarios have also been reported, where the arrhythmia terminated slowly, over a finite period of time. Here, we investigate the slow termination dynamics of an arrhythmia in optogenetically modified murine cardiac tissue both in silico and ex vivo during global illumination at low light intensities. Optical imaging of an intact mouse heart during a ventricular arrhythmia shows slow termination of the arrhythmia, which is due to action potential prolongation observed during the last rotation of the wave. Our numerical studies show that when the core of a spiral is illuminated, it begins to expand, pushing the spiral arm towards the inexcitable boundary of the domain, leading to termination of the spiral wave. We believe that these fundamental findings lead to a better understanding of arrhythmia dynamics during slow termination, which in turn has implications for the improvement and development of new cardiac defibrillation techniques.
Collapse
Affiliation(s)
- Sayedeh Hussaini
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Sarah L. Lädke
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Johannes Schröder-Schetelig
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Vishalini Venkatesan
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Raúl A. Quiñonez Uribe
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Claudia Richter
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
- WG Cardiovascular Optogenetics, Lab Animal Science Unit, Leibniz Institute for Primate research, Göttingen, Germany
| | - Rupamanjari Majumder
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Stefan Luther
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Germany
| |
Collapse
|
5
|
Leemann S, Schneider-Warme F, Kleinlogel S. Cardiac optogenetics: shining light on signaling pathways. Pflugers Arch 2023; 475:1421-1437. [PMID: 38097805 PMCID: PMC10730638 DOI: 10.1007/s00424-023-02892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
In the early 2000s, the field of neuroscience experienced a groundbreaking transformation with the advent of optogenetics. This innovative technique harnesses the properties of naturally occurring and genetically engineered rhodopsins to confer light sensitivity upon target cells. The remarkable spatiotemporal precision offered by optogenetics has provided researchers with unprecedented opportunities to dissect cellular physiology, leading to an entirely new level of investigation. Initially revolutionizing neuroscience, optogenetics quickly piqued the interest of the wider scientific community, and optogenetic applications were expanded to cardiovascular research. Over the past decade, researchers have employed various optical tools to observe, regulate, and steer the membrane potential of excitable cells in the heart. Despite these advancements, achieving control over specific signaling pathways within the heart has remained an elusive goal. Here, we review the optogenetic tools suitable to control cardiac signaling pathways with a focus on GPCR signaling, and delineate potential applications for studying these pathways, both in healthy and diseased hearts. By shedding light on these exciting developments, we hope to contribute to the ongoing progress in basic cardiac research to facilitate the discovery of novel therapeutic possibilities for treating cardiovascular pathologies.
Collapse
Affiliation(s)
- Siri Leemann
- Institute of Physiology, University of Bern, Bern, Switzerland.
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Sonja Kleinlogel
- Institute of Physiology, University of Bern, Bern, Switzerland
- F. Hoffmann-La Roche, Translational Medicine Neuroscience, Basel, Switzerland
| |
Collapse
|
6
|
Govorunova EG, Sineshchekov OA. Channelrhodopsins: From Phototaxis to Optogenetics. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1555-1570. [PMID: 38105024 DOI: 10.1134/s0006297923100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.
Collapse
|
7
|
Vurro V, Shani K, Ardoña HAM, Zimmerman JF, Sesti V, Lee KY, Jin Q, Bertarelli C, Parker KK, Lanzani G. Light-triggered cardiac microphysiological model. APL Bioeng 2023; 7:026108. [PMID: 37234844 PMCID: PMC10208677 DOI: 10.1063/5.0143409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Light is recognized as an accurate and noninvasive tool for stimulating excitable cells. Here, we report on a non-genetic approach based on organic molecular phototransducers that allows wiring- and electrode-free tissue modulation. As a proof of concept, we show photostimulation of an in vitro cardiac microphysiological model mediated by an amphiphilic azobenzene compound that preferentially dwells in the cell membrane. Exploiting this optical based stimulation technology could be a disruptive approach for highly resolved cardiac tissue stimulation.
Collapse
Affiliation(s)
- V. Vurro
- Center for Nanoscience and Technology, Istituto Italiano di Teconologia, Milano, 20133 Italy
| | - K. Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, Massachusetts 02134, USA
| | | | - J. F. Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, Massachusetts 02134, USA
| | | | | | - Q. Jin
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, Massachusetts 02134, USA
| | | | - K. K. Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, Massachusetts 02134, USA
| | - G. Lanzani
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Nakao M, Watanabe M, Miquerol L, Natsui H, Koizumi T, Kadosaka T, Koya T, Hagiwara H, Kamada R, Temma T, de Vries AAF, Anzai T. Optogenetic termination of atrial tachyarrhythmias by brief pulsed light stimulation. J Mol Cell Cardiol 2023; 178:9-21. [PMID: 36965700 DOI: 10.1016/j.yjmcc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
AIMS The most efficient way to acutely restore sinus rhythm from atrial fibrillation (AF) is electrical cardioversion, which is painful without adequate sedation. Recent studies in various experimental models have indicated that optogenetic termination of AF using light-gated ion channels may provide a myocardium-specific and potentially painless alternative future therapy. However, its underlying mechanism(s) remain(s) incompletely understood. As brief pulsed light stimulation, even without global illumination, can achieve optogenetic AF termination, besides direct conduction block also modulation of action potential (AP) properties may be involved in the termination mechanism. We studied the relationship between optogenetic AP duration (APD) and effective refractory period (ERP) prolongation by brief pulsed light stimulation and termination of atrial tachyarrhythmia (AT). METHODS AND RESULTS Hearts from transgenic mice expressing the H134R variant of channelrhodopsin-2 in atrial myocytes were explanted and perfused retrogradely. AT induced by electrical stimulation was terminated by brief pulsed blue light stimulation (470 nm, 10 ms, 16 mW/mm2) with 68% efficacy. The termination rate was dependent on pulse duration and light intensity. Optogenetically imposed APD and ERP changes were systematically examined and optically monitored. Brief pulsed light stimulation (10 ms, 6 mW/mm2) consistently prolonged APD and ERP when light was applied at different phases of the cardiac action potential. Optical tracing showed light-induced APD prolongation during the termination of AT. CONCLUSION Our results directly demonstrate that cationic channelrhodopsin activation by brief pulsed light stimulation prolongs the atrial refractory period suggesting that this is one of the key mechanisms of optogenetic termination of AT.
Collapse
Affiliation(s)
- Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Lucile Miquerol
- Developmental Biology Institute of Marseille, Aix-Marseille Université, CNRS UMR 7288, Campus de Luminy Case 907, CEDEX 9, Marseille 13288, France
| | - Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology Department of Cardiology, Leiden University Medical Center Leiden, Netherlands
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Optical modulation of excitation-contraction coupling in human-induced pluripotent stem cell-derived cardiomyocytes. iScience 2023; 26:106121. [PMID: 36879812 PMCID: PMC9984557 DOI: 10.1016/j.isci.2023.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Non-genetic photostimulation is a novel and rapidly growing multidisciplinary field that aims to induce light-sensitivity in living systems by exploiting exogeneous phototransducers. Here, we propose an intramembrane photoswitch, based on an azobenzene derivative (Ziapin2), for optical pacing of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The light-mediated stimulation process has been studied by applying several techniques to detect the effect on the cell properties. In particular, we recorded changes in membrane capacitance, in membrane potential (Vm), and modulation of intracellular Ca2+ dynamics. Finally, cell contractility was analyzed using a custom MATLAB algorithm. Photostimulation of intramembrane Ziapin2 causes a transient Vm hyperpolarization followed by a delayed depolarization and action potential firing. The observed initial electrical modulation nicely correlates with changes in Ca2+ dynamics and contraction rate. This work represents the proof of principle that Ziapin2 can modulate electrical activity and contractility in hiPSC-CMs, opening up a future development in cardiac physiology.
Collapse
|
10
|
Brown AC. Optogenetics Sheds Light on Brown and Beige Adipocytes. JOURNAL OF CELLULAR SIGNALING 2023; 4:178-186. [PMID: 37946877 PMCID: PMC10635576 DOI: 10.33696/signaling.4.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Excessive food intake leads to lipid accumulation in white adipose tissue, triggering inflammation, cellular stress, insulin resistance, and metabolic syndrome. In contrast, the dynamic energy expenditure and heat generation of brown and beige adipose tissue, driven by specialized mitochondria, render it an appealing candidate for therapeutic strategies aimed at addressing metabolic disorders. This review examines the therapeutic potential of brown and beige adipocytes for obesity and metabolic disorders, focusing on recent studies that employ optogenetics for thermogenesis control in these cells. The findings delve into the mechanisms underlying UCP1-dependent and UCP1-independent thermogenesis and how optogenetic approaches can be used to precisely modulate energy expenditure and induce thermogenesis. The convergence of adipocyte biology and optogenetics presents an exciting frontier in combating metabolic disorders and advancing our understanding of cellular regulation and energy balance.
Collapse
Affiliation(s)
- Aaron Clifford Brown
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
11
|
Junge S, Schmieder F, Sasse P, Czarske J, Torres-Mapa ML, Heisterkamp A. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology. JOURNAL OF BIOPHOTONICS 2022; 15:e202100352. [PMID: 35397155 DOI: 10.1002/jbio.202100352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
All optical approaches to control and read out the electrical activity in a cardiac syncytium can improve our understanding of cardiac electrophysiology. Here, we demonstrate optogenetic stimulation of cardiomyocytes with high spatial precision using light foci generated with a ferroelectric spatial light modulator. Computer generated holograms binarized by bidirectional error diffusion create multiple foci with more even intensity distribution compared with thresholding approach. We evoke the electrical activity of cardiac HL1 cells expressing the channelrhodopsin-2 variant, ChR2(H134R) using single and multiple light foci and at the same time visualize the action potential using a calcium sensitive indicator called Cal-630. We show that localized regions in the cardiac monolayer can be stimulated enabling us to initiate signal propagation from a precise location. Furthermore, we demonstrate that probing the cardiac cells with multiple light foci enhances the excitability of the cardiac network. This approach opens new applications in manipulating and visualizing the electrical activity in a cardiac syncytium.
Collapse
Affiliation(s)
- Sebastian Junge
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Felix Schmieder
- Faculty of Electrical and Computer Engineering, Laboratory of Measurement and Sensor System Technique and Competence Center Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
| | - Philipp Sasse
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Jürgen Czarske
- Faculty of Electrical and Computer Engineering, Laboratory of Measurement and Sensor System Technique and Competence Center Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
- Faculty of Physics, School of Science and Excellence Cluster Physics of Life, TU Dresden, Dresden, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
12
|
Sung YL, Wang TW, Lin TT, Lin SF. Optogenetics in cardiology: methodology and future applications. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2022. [DOI: 10.1186/s42444-022-00060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractOptogenetics is an emerging biological approach with the unique capability of specific targeting due to the precise light control with high spatial and temporal resolution. It uses selected light wavelengths to control and modulate the biological functions of cells, tissues, and organ levels. Optogenetics has been instrumental in different biomedical applications, including neuroscience, diabetes, and mitochondria, based on distinctive optical biomedical effects with light modulation. Nowadays, optogenetics in cardiology is rapidly evolving for the understanding and treatment of cardiovascular diseases. Several in vitro and in vivo research for cardiac optogenetics demonstrated visible progress. The optogenetics technique can be applied to address critical cardiovascular problems such as heart failure and arrhythmia. To this end, this paper reviews cardiac electrophysiology and the technical progress about experimental and clinical cardiac optogenetics and provides the background and evolution of cardiac optogenetics. We reviewed the literature to demonstrate the servo type, transfection efficiency, signal recording, and heart disease targets in optogenetic applications. Such literature review would hopefully expedite the progress of optogenetics in cardiology and further expect to translate into the clinical terminal in the future.
Collapse
|
13
|
Gruber A, Edri O, Glatstein S, Goldfracht I, Huber I, Arbel G, Gepstein A, Chorna S, Gepstein L. Optogenetic Control of Human Induced Pluripotent Stem Cell-Derived Cardiac Tissue Models. J Am Heart Assoc 2022; 11:e021615. [PMID: 35112880 PMCID: PMC9245811 DOI: 10.1161/jaha.121.021615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Optogenetics, using light‐sensitive proteins, emerged as a unique experimental paradigm to modulate cardiac excitability. We aimed to develop high‐resolution optogenetic approaches to modulate electrical activity in 2‐ and 3‐dimensional cardiac tissue models derived from human induced pluripotent stem cell (hiPSC)‐derived cardiomyocytes. Methods and Results To establish light‐controllable cardiac tissue models, opsin‐carrying HEK293 cells, expressing the light‐sensitive cationic‐channel CoChR, were mixed with hiPSC‐cardiomyocytes to generate 2‐dimensional hiPSC‐derived cardiac cell‐sheets or 3‐dimensional engineered heart tissues. Complex illumination patterns were designed with a high‐resolution digital micro‐mirror device. Optical mapping and force measurements were used to evaluate the tissues' electromechanical properties. The ability to optogenetically pace and shape the tissue's conduction properties was demonstrated by using single or multiple illumination stimulation sites, complex illumination patterns, or diffuse illumination. This allowed to establish in vitro models for optogenetic‐based cardiac resynchronization therapy, where the electrical activation could be synchronized (hiPSC‐derived cardiac cell‐sheets and engineered heart tissue models) and contractile properties improved (engineered heart tissues). Next, reentrant activity (rotors) was induced in the hiPSC‐derived cardiac cell‐sheets and engineered heart tissue models through optogenetics programmed‐ or cross‐field stimulations. Diffuse illumination protocols were then used to terminate arrhythmias, demonstrating the potential to study optogenetics cardioversion mechanisms and to identify optimal illumination parameters for arrhythmia termination. Conclusions By combining optogenetics and hiPSC technologies, light‐controllable human cardiac tissue models could be established, in which tissue excitability can be modulated in a functional, reversible, and localized manner. This approach may bring a unique value for physiological/pathophysiological studies, for disease modeling, and for developing optogenetic‐based cardiac pacing, resynchronization, and defibrillation approaches.
Collapse
Affiliation(s)
- Amit Gruber
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Oded Edri
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Shany Glatstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Idit Goldfracht
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Irit Huber
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Gil Arbel
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Amira Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Snizhanna Chorna
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Lior Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
- Cardiology DepartmentRambam Health Care CampusHaifaIsrael
| |
Collapse
|
14
|
Diaz-Maue L, Steinebach J, Richter C. Patterned Illumination Techniques in Optogenetics: An Insight Into Decelerating Murine Hearts. Front Physiol 2022; 12:750535. [PMID: 35087413 PMCID: PMC8787046 DOI: 10.3389/fphys.2021.750535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Much has been reported about optogenetic based cardiac arrhythmia treatment and the corresponding characterization of photostimulation parameters, but still, our capacity to interact with the underlying spatiotemporal excitation patterns relies mainly on electrical and/or pharmacological approaches. However, these well-established treatments have always been an object of somehow heated discussions. Though being acutely life-saving, they often come with potential side-effects leading to a decreased functionality of the complex cardiac system. Recent optogenetic studies showed the feasibility of the usage of photostimulation as a defibrillation method with comparatively high success rates. Although, these studies mainly concentrated on the description as well as on the comparison of single photodefibrillation approaches, such as locally focused light application and global illumination, less effort was spent on the description of excitation patterns during actual photostimulation. In this study, the authors implemented a multi-site photodefibrillation technique in combination with Multi-Lead electrocardiograms (ECGs). The technical connection of real-time heart rhythm measurements and the arrhythmia counteracting light control provides a further step toward automated arrhythmia classification, which can lead to adaptive photodefibrillation methods. In order to show the power effectiveness of the new approach, transgenic murine hearts expressing channelrhodopsin-2 ex vivo were investigated using circumferential micro-LED and ECG arrays. Thus, combining the best of two methods by giving the possibility to illuminate either locally or globally with differing pulse parameters. The optical technique presented here addresses a number of challenges of technical cardiac optogenetics and is discussed in the context of arrhythmic development during photostimulation.
Collapse
Affiliation(s)
- Laura Diaz-Maue
- Department of Research Electronics, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany
| | - Janna Steinebach
- Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Claudia Richter
- German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany.,Laboratory Animal Science Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
15
|
Li TC, Zhong W, Ai BQ, Panfilov AV, Dierckx H. Control of the chirality of spiral waves and recreation of spatial excitation patterns through optogenetics. Phys Rev E 2022; 105:014214. [PMID: 35193299 DOI: 10.1103/physreve.105.014214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Spiral waves lead to dangerous arrhythmias in the cardiac system. In 2015 Burton et al. demonstrated the reversal of the spiral wave chirality through the rotating spiral-shaped illumination on the optogenetically modified cardiac monolayers. We show that this process entails the recreation of a spiral wave. We show how this methodology can be used to control and create the desired spatial excitation pattern. We found that the control is sensitive to the area of illuminated region but independent of the phase difference of the existing spiral wave and the applied spiral-shaped light. We also discovered that our methodology can temporarily resynchronize a turbulent system. The results offer numerical evidence for the control of spatial pattern in biological excitable systems with optogenetics.
Collapse
Affiliation(s)
- Teng-Chao Li
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhong
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Alexander V Panfilov
- Ural Federal University, Biomed Laboratory, 620002 Ekaterinburg, Russia; Ghent University, 9000 Ghent, Belgium; and World-Class Research Center "Digital Biodesign and Personalized Healthcare," I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Hans Dierckx
- KU Leuven Campus Kortrijk-Kulak, Department of Mathematics, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium and iSi Health - KU Leuven Institute of Physics-based Modeling for In Silico Health, KU Leuven, Belgium
| |
Collapse
|
16
|
Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms. Basic Res Cardiol 2022; 117:25. [PMID: 35488105 PMCID: PMC9054908 DOI: 10.1007/s00395-022-00933-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca2+ cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity. In this work, we propose an approach based on optogenetics to manipulate cardiac electrical activity employing a light-modulated depolarizing current with intensities that are too low to elicit APs (sub-threshold illumination), but are sufficient to fine-tune AP electrical dynamics. We investigated the effects of sub-threshold illumination in isolated cardiomyocytes and whole hearts by using transgenic mice constitutively expressing a light-gated ion channel (channelrhodopsin-2, ChR2). We find that ChR2-mediated depolarizing current prolongs APs and reduces conduction velocity (CV) in a space-selective and reversible manner. Sub-threshold manipulation also affects the dynamics of cardiac electrical activity, increasing the magnitude of cardiac alternans. We used an optical system that uses real-time feedback control to generate re-entrant circuits with user-defined cycle lengths to explore the role of cardiac alternans in spontaneous termination of ventricular tachycardias (VTs). We demonstrate that VT stability significantly decreases during sub-threshold illumination primarily due to an increase in the amplitude of electrical oscillations, which implies that cardiac alternans may be beneficial in the context of self-termination of VT.
Collapse
|
17
|
Abstract
Cation and anion channelrhodopsins (CCRs and ACRs, respectively) primarily from two algal species, Chlamydomonas reinhardtii and Guillardia theta, have become widely used as optogenetic tools to control cell membrane potential with light. We mined algal and other protist polynucleotide sequencing projects and metagenomic samples to identify 75 channelrhodopsin homologs from four channelrhodopsin families, including one revealed in dinoflagellates in this study. We carried out electrophysiological analysis of 33 natural channelrhodopsin variants from different phylogenetic lineages and 10 metagenomic homologs in search of sequence determinants of ion selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins. Our results show that association of a reduced number of glutamates near the conductance path with anion selectivity depends on a wider protein context, because prasinophyte homologs with a glutamate pattern identical to that in cryptophyte ACRs are cation selective. Desensitization is also broadly context dependent, as in one branch of stramenopile ACRs and their metagenomic homologs, its extent roughly correlates with phylogenetic relationship of their sequences. Regarding spectral tuning, we identified two prasinophyte CCRs with red-shifted spectra to 585 nm. They exhibit a third residue pattern in their retinal-binding pockets distinctly different from those of the only two types of red-shifted channelrhodopsins known (i.e., the CCR Chrimson and RubyACRs). In cryptophyte ACRs we identified three specific residue positions in the retinal-binding pocket that define the wavelength of their spectral maxima. Lastly, we found that dinoflagellate rhodopsins with a TCP motif in the third transmembrane helix and a metagenomic homolog exhibit channel activity.
Collapse
|
18
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
19
|
Cardiac Optogenetics in Atrial Fibrillation: Current Challenges and Future Opportunities. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8814092. [PMID: 33195698 PMCID: PMC7641281 DOI: 10.1155/2020/8814092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Abstract
Although rarely life-threatening on short term, atrial fibrillation leads to increased mortality and decreased quality of life through its complications, including heart failure and stroke. Recent studies highlight the benefits of maintaining sinus rhythm. However, pharmacological long-term rhythm control strategies may be shadowed by associated proarrhythmic effects. At the same time, electrical cardioversion is limited to hospitals, while catheter ablation therapy, although effective, is invasive and is dedicated to specific patients, usually with low amounts of atrial fibrosis (preferably Utah I-II). Cardiac optogenetics allows influencing the heart's electrical activity by applying specific wavelength light pulses to previously engineered cardiomyocytes into expressing microbial derived light-sensitive proteins called opsins. The resulting ion influx may give rise to either hyperpolarizing or depolarizing currents, thus offering a therapeutic potential in cardiac electrophysiology, including pacing, resynchronization, and arrhythmia termination. Optogenetic atrial fibrillation cardioversion might be achieved by inducing a conduction block or filling of the excitable gap. The authors agree that transmural opsin expression and appropriate illumination with an exposure time longer than the arrhythmia cycle length are necessary to achieve successful arrhythmia termination. However, the efficiency and safety of biological cardioversion in humans remain to be seen, as well as side effects such as immune reactions and loss of opsin expression. The possibility of delivering pain-free shocks with out-of-hospital biological cardioversion is tempting; however, there are several issues that need to be addressed first: applicability and safety in humans, long-term behaviour, anticoagulation requirements, and fibrosis interactions.
Collapse
|
20
|
Li J, Wang L, Luo J, Li H, Rao P, Cheng Y, Wang X, Huang C. Optical capture and defibrillation in rats with monocrotaline-induced myocardial fibrosis 1 year after a single intravenous injection of adeno-associated virus channelrhodopsin-2. Heart Rhythm 2020; 18:109-117. [PMID: 32781160 DOI: 10.1016/j.hrthm.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Optogenetics uses light to regulate cardiac rhythms and terminate malignant arrhythmias. OBJECTIVE The purpose of this study was to investigate the long-term validity of optical capture properties based on virus-transfected channelrhodopsin-2 (ChR2) and evaluate the effects of optogenetic-based defibrillation in an in vivo rat model of myocardial fibrosis enhanced by monocrotaline (MCT). METHODS Fifteen infant rats received jugular vein injection of adeno-associated virus (AAV). After 8 weeks, 5 rats were randomly selected to verify the effectiveness ChR2 transfection. The remaining rats were administered MCT at 11 months. Four weeks after MCT, the availability of 473-nm blue light to capture heart rhythm in these rats was verified again. Ventricular tachycardia (VT) and ventricular fibrillation (VF) were induced by burst stimulation on the basis of enhanced myocardial fibrosis, and the termination effects of the optical manipulation were tested. RESULTS Eight weeks after AAV injection, there was ChR2 expression throughout the ventricular myocardium as reflected by both fluorescence imaging and optical pacing. Four weeks after MCT, significant myocardial fibrosis was achieved. Light could still trigger the corresponding ectopic heart rhythm, and the pulse width and illumination area could affect the light capture rate. VT/VF was induced successfully in 1-year-observation rats, and the rate of termination of VT/VF under light was much higher than that of spontaneous termination. CONCLUSION Viral ChR2 transfection can play a long-term role in the rat heart, and light can successfully regulate heart rhythm and defibrillate after cardiac fibrosis.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Junmiao Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China.
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China; Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China.
| |
Collapse
|
21
|
Cheng Y, Li H, Wang L, Li J, Kang W, Rao P, Zhou F, Wang X, Huang C. Optogenetic approaches for termination of ventricular tachyarrhythmias after myocardial infarction in rats in vivo. JOURNAL OF BIOPHOTONICS 2020; 13:e202000003. [PMID: 32246523 DOI: 10.1002/jbio.202000003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Cardiac optogenetics facilitates the painless manipulation of the heart with optical energy and was recently shown to terminate ventricular tachycardia (VT) in explanted mice heart. This study aimed to evaluate the optogenetic-based termination of induced VT under ischemia in an open-chest rat model and to develop an optimal, optical-manipulation procedure. VT was induced by burst stimulation after ligation of the left anterior descending coronary artery, and the termination effects of the optical manipulation, including electrical anti-tachycardia pacing (ATP) and spontaneous recovery, were tested. Among different multisegment optical modes, four repeated illuminations of 1000 ms in duration with 1-second interval at a 20-times intensity threshold on the right ventricle achieved the highest termination rate of 86.14% ± 4.145%, higher than that achieved by ATP and spontaneous termination. We demonstrated that optogenetic-based cardioversion is feasible and effective in vivo, with the underlying mechanism involving the light-triggered, ChR2-induced depolarization of the illuminated myocardium, in turn generating an excitation that disrupts the preexisting reentrant wave front.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Wen Kang
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Fang Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
22
|
Sigalas C, Cremer M, Winbo A, Bose SJ, Ashton JL, Bub G, Montgomery JM, Burton RAB. Combining tissue engineering and optical imaging approaches to explore interactions along the neuro-cardiac axis. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200265. [PMID: 32742694 PMCID: PMC7353978 DOI: 10.1098/rsos.200265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 05/05/2023]
Abstract
Interactions along the neuro-cardiac axis are being explored with regard to their involvement in cardiac diseases, including catecholaminergic polymorphic ventricular tachycardia, hypertension, atrial fibrillation, long QT syndrome and sudden death in epilepsy. Interrogation of the pathophysiology and pathogenesis of neuro-cardiac diseases in animal models present challenges resulting from species differences, phenotypic variation, developmental effects and limited availability of data relevant at both the tissue and cellular level. By contrast, tissue-engineered models containing cardiomyocytes and peripheral sympathetic and parasympathetic neurons afford characterization of cellular- and tissue-level behaviours while maintaining precise control over developmental conditions, cellular genotype and phenotype. Such approaches are uniquely suited to long-term, high-throughput characterization using optical recording techniques with the potential for increased translational benefit compared to more established techniques. Furthermore, tissue-engineered constructs provide an intermediary between whole animal/tissue experiments and in silico models. This paper reviews the advantages of tissue engineering methods of multiple cell types and optical imaging techniques for the characterization of neuro-cardiac diseases.
Collapse
Affiliation(s)
| | - Maegan Cremer
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Annika Winbo
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Department of Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland, New Zealand
| | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Jesse L. Ashton
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Rebecca A. B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- Author for correspondence: Rebecca A. B. Burton e-mail:
| |
Collapse
|
23
|
Gundelach LA, Hüser MA, Beutner D, Ruther P, Bruegmann T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Arch 2020; 472:527-545. [PMID: 32415463 PMCID: PMC7239821 DOI: 10.1007/s00424-020-02387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Paralysis is a frequent phenomenon in many diseases, and to date, only functional electrical stimulation (FES) mediated via the innervating nerve can be employed to restore skeletal muscle function in patients. Despite recent progress, FES has several technical limitations and significant side effects. Optogenetic stimulation has been proposed as an alternative, as it may circumvent some of the disadvantages of FES enabling cell type–specific, spatially and temporally precise stimulation of cells expressing light-gated ion channels, commonly Channelrhodopsin2. Two distinct approaches for the restoration of skeletal muscle function with optogenetics have been demonstrated: indirect optogenetic stimulation through the innervating nerve similar to FES and direct optogenetic stimulation of the skeletal muscle. Although both approaches show great promise, both have their limitations and there are several general hurdles that need to be overcome for their translation into clinics. These include successful gene transfer, sustained optogenetic protein expression, and the creation of optically active implantable devices. Herein, a comprehensive summary of the underlying mechanisms of electrical and optogenetic approaches is provided. With this knowledge in mind, we substantiate a detailed discussion of the advantages and limitations of each method. Furthermore, the obstacles in the way of clinical translation of optogenetic stimulation are discussed, and suggestions on how they could be overcome are provided. Finally, four specific examples of pathologies demanding novel therapeutic measures are discussed with a focus on the likelihood of direct versus indirect optogenetic stimulation.
Collapse
Affiliation(s)
- Lili A Gundelach
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
| | - Marc A Hüser
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, Freiburg, Germany
| | - Tobias Bruegmann
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany.
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
24
|
Rao P, Wang L, Cheng Y, Wang X, Li H, Zheng G, Li Z, Jiang C, Zhou Q, Huang C. Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo. BIOMEDICAL OPTICS EXPRESS 2020; 11:1401-1416. [PMID: 32206418 PMCID: PMC7075614 DOI: 10.1364/boe.381480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 05/27/2023]
Abstract
This study determines whether near-infrared (NIR) light can drive tissue-penetrating cardiac optical control with upconversion luminescent materials. Adeno-associated virus (AAV) encoding channelrhodopsin-2 (ChR2) was injected intravenously to rats to achieve ChR2 expression in the heart. The upconversion nanoparticles (UCNP) NaYF4:Yb/Tm or upconversion microparticles (UCMP) NaYF4 to upconvert blue light were selected to fabricate freestanding polydimethylsiloxane films. These were attached on the ventricle and covered with muscle tissue. Additionally, a 980-nm NIR laser was programmed and illuminated on the film or the tissue. The NIR laser successfully captured ectopic paced rhythm in the heart, which displays similar manipulation characteristics to those triggered by blue light. Our results highlight the feasibility of tissue-penetration cardiac optogenetics by NIR and demonstrate the potential to use external optical manipulation for non-invasive or weakly invasive applications in cardiovascular diseases.
Collapse
Affiliation(s)
- Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- These authors contributed equally to this work
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- These authors contributed equally to this work
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Co-corresponding authors
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, 570311, Haikou, China
| | - Guoxing Zheng
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
- Co-corresponding authors
| | - Zile Li
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
| | - Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Qing Zhou
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| |
Collapse
|
25
|
Richter C, Bruegmann T. No light without the dark: Perspectives and hindrances for translation of cardiac optogenetics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:39-50. [PMID: 31515056 DOI: 10.1016/j.pbiomolbio.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
Over the last decade, optogenetic stimulation of the heart and its translational potential for rhythm control attracted more and more interest. Optogenetics allows to stimulate cardiomyocytes expressing the light-gated cation channel Channelrhodopsin 2 (ChR2) with light and thus high spatio-temporal precision. Therefore this new approach can overcome the technical limitations of electrical stimulation. In regard of translational approaches, the prospect of pain-free stimulation, if ChR2 expression is restricted to cardiomyocytes, is especially intriguing and could be highly beneficial for cardioversion and defibrillation. However, there is no light without shadow and cardiac optogenetics has to surmount critical hurdles, namely "how" to inscribe light-sensitivity by expressing ChR2 in a native heart and how to avoid side effects such as possible immune responses against the gene transfer. Furthermore, implantable light devices have to be developed which ensure sufficient illumination in a highly contractile environment. Therefore this article reviews recent advantages in the field of cardiac optogenetics with a special focus on the hindrances for the potential translation of this new approach into clinics and provides an outlook how these have to be carefully investigated and could be solved step by step.
Collapse
Affiliation(s)
- Claudia Richter
- RG Biomedical Physics, Max Planck Institute for Dynamics & Self-Organization, Am Fassberg 17, 37077, Goettingen, Germany; Department of Cardiology and Pneumology, University Medical Center, Robert-Koch-Str. 42a, 37075, Goettingen, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Goettingen, 37075, Goettingen, Germany.
| | - Tobias Bruegmann
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Goettingen, 37075, Goettingen, Germany; Institute for Cardiovascular Physiology, University Medical Center Goettingen, Humboldtallee 23, 37073, Goettingen, Germany.
| |
Collapse
|